Exploring with Controlled Source Electro- Magnetic (CSEM) methods: from 2D profiling to 3D multi-azimuth surveying

Size: px
Start display at page:

Download "Exploring with Controlled Source Electro- Magnetic (CSEM) methods: from 2D profiling to 3D multi-azimuth surveying"

Transcription

1 Exploring with Controlled Source Electro- Magnetic (CSEM) methods: from 2D profiling to 3D multi-azimuth surveying M. Darnet, P. Van Der Sman, R.E. Plessix, J.L. Johnson, M. Rosenquist ( 1 ) ( 1 ) Shell International Exploration and Production Summary Subsurface resistivity mapping based on Controlled Source Electromagnetic (CSEM) measurements is an attractive technology for exploration as it offers the possibility to distinguish between hydrocarbon and brine bearing prospects where conventional seismic methods prove inconclusive. In Shell, we have applied the CSEM method on a worldwide scale since 2003 to both de-risking and portfolio polarization. Early on in the development of the CSEM technique some compelling results were obtained with single 2D profiles over prospects. Unfortunately, the lack of subsurface coverage of this type of acquisition often leads to ambiguous results because the Earth rarely satisfies the 2D assumption at the scale of the CSEM experiment. To reduce such ambiguities, we have focused efforts on the development of 3D processing and inversion capabilities as well as interpretation workflows that take the complexity of the Earth into account. In this paper, we share some of our motivations behind our approach and illustrate its effectiveness with both real and synthetic data examples. The early days of CSEM surveying: from 2D profiling to 3D surveying Since the resistivity of reservoir rock is directly related to the type of pore fluids and their saturations, CSEM offers the possibility to distinguish economic hydrocarbon accumulations from other scenarios. Traditionally, this is done by acquiring CSEM data along a single 2D profile over a prospective area (e.g. Moser et al., 2006). Despite a few compelling examples (Johansen et al., 2005), it quickly became clear that the CSEM technique, because of its large depth of investigation, is not just sensitive to the elevated resistivity of the hydrocarbon-bearing prospect (e.g. Constable, 2006). The interpretation of CSEM data therefore requires to take into account other resistive formations present in its surroundings such as unexpected hydrocarbon accumulations (e.g. shallow gas, gas hydrates, stacked pays) or simply other lithologies (e.g. salt, volcanics, carbonates, marls). This can be done by modeling multiple geological scenarios in 3D and assess which ones are the most likely (e.g. Green et al., 2005, Moser et al., 2006). This process however is very labor- and time-consuming and often only leads to a qualitative interpretation of the data. The CSEM survey acquired offshore Malaysia (Darnet et al., 2007) nicely illustrates this problem. Here, hydrates were the complicating factor (figure 1).

2 a) c) b) Figure 1: Cross-section (a) and shallow depth slice (b) through the 3D conductivity model manually built to interpret a CSEM dataset acquired offshore Malaysia (after Darnet et al., 2007) c) Observed (top) and modelled (bottom) normalized CSEM response at 0.25 Hz and 5.5 km offset for various geological scenarios used to interpret qualitatively the CSEM data (for more details, please refer to Darnet et al., 2007). To allow for a more quantitative interpretation as well as reduce both turn-around time and labor cost, we internally developed an efficient 3D inversion algorithm based on the minimization of a cost function between the synthetic and actual data (Plessix and Mulder, 2007). In addition to providing a much more refined resistivity image of the subsurface in a reasonable timeframe, this approach also ensures the final resistivity model to be compatible with all available input data (multiple source frequencies, offsets, azimuths etc). This integration capacity is especially important when dealing with large datasets, for which manual quality control of the data misfits is prohibitively time-consuming. We applied our inversion workflow to the aforementioned Malaysian dataset and obtained the resistivity distribution of figure 2 in a few hours. Although the resolution of the resistivity image is much lower than presented in figure 1b, the recovered resistivity values are more reliable as the resistivity model now explains all measurements quantitatively. Moreover, these fast turn-around times make possible a sensitivity test on for instance starting model and inversion parameters improving the robustness of the final inversion result. For this particular dataset, it showed for instance that our confidence in the resistivity estimates at the target level is low as a result of the heterogeneity of the shallow subsurface.

3 Figure 2: Cross section through the conductivity model obtained after 3D inversion of the CSEM data presented on figure 1. The black wiggles correspond to the seismic reflectivity data. The age of maturity: 3D multi-azimuth CSEM surveying A natural solution to reduce the aforementioned uncertainty of the final CSEM resulting from complex resistivity structures, is to improve the sampling of the CSEM data. Given the 3D nature of shallow resistivity variations (such as on figure 1) and the incremental cost of 3D surveying versus 2D profiling, acquiring CSEM data in a 3D mode is an attractive option (e.g. Carazzone et al., 2005, Gabrielsen et al., 2009). Unfortunately, as the CSEM source is directional, 3D CSEM acquisition is not just a simple extrapolation of the 2D problem into 3D. One important requirement is that electrical anisotropy of the Earth is taken into account (e.g. Løseth et al., 2007, Jing et al., 2008). One way to do so is by acquiring azimuth-rich 3D CSEM data (e.g. Lu and Xia, 2007, Jing et al., 2008). Let us illustrate this aspect with a synthetic example inspired from the previous Malaysian case. Figure 3 shows the anisotropic resistivity model used to generate the synthetic data. As for the real case, a shallow, gas hydrate layer overlays a deep hydrocarbon bearing reservoir. The acquisition geometry is a grid of receivers at 2 km grid spacing and source lines with 1 km cross-line and 2 km in-line spacing. We further assume that all receivers are live when the source is emitting and thus build up a multiazimuth data set. After unconstrained inversion of these synthetic data, both the shallow hydrates and the deep hydrocarbon bearing reservoir are recovered on the vertical resistivity model (figure 4). They are however absent on the horizontal resistivity panel, suggesting a low sensitivity of this particular acquisition setup to thin resistive layers. The other interesting feature is that the vertical resistivity of the shallow subsurface is so accurately mapped that the presence of the deep hydrocarbon related resistive anomaly is no longer questionable. This example illustrates that in addition to the higher spatial resolution, multi-azimuth 3D acquisition also has the potential to significantly reduce the uncertainty in the final CSEM results for complex resistivity structures when compared to the traditional 2D mode. Figure 3: Top: Cross section through the horizontal (left) and vertical (right) conductivity model used to generate synthetic data Bottom: Depth section at the hydrocarbon reservoir depth (left) and at the hydrates

4 depth (right) through the vertical conductivity model. The black dots and gray lines represent the CSEM receiver and source line locations, respectively. Figure 4: Top: Cross section through the horizontal (left) and vertical (right) conductivity model after inversion of the synthetic data Bottom: Depth section at the hydrocarbon reservoir depth (left) and at the hydrates depth (right) through the vertical conductivity model after inversion. The black dots and gray lines represent the CSEM receiver and source line locations, respectively. Conclusions and future directions The previous synthetic example shows that even though 3D multi-azimuth acquisition provides both higher resolution and more robust resistivity estimates of the subsurface than conventional 2D profiling, the physics of the CSEM is still such that the spatial resolution of the resistivity images (especially vertically) remains low when compared to results from seismic imaging (e.g. top right of figure 4). Therefore, some uncertainties will remain with respect to the actual origin of the resistivity anomaly(ies) at the target level. One possible solution to overcome this limitation is by incorporating additional constraints (e.g. seismic or petrophysical ones) into the inversion process (e.g. Hansen and Mittet, 2009, Brevik et al., 2009). We believe this aspect is crucial in arriving at more reliable results. However, this is not straightforward as changes in elastic properties do not necessarily correspond to changes in resistivity and vice-versa. Moreover, it is this imaging hurdle that needs to be resolved before considering a quantitative interpretation of the resistivity image in terms of hydrocarbon presence, for instance through joint seismic/csem interpretation (e.g. Hovertsen et al. 2006, Harris et al., 2009). Most of the recent developments on the CSEM technology were motivated by the need to better handle the complexity of the Earth (especially its higher dimensionality). A further important learning was that the Earth electrical structure is strongly anisotropic and therefore that 3D multi-azimuth acquisitions as well as 3D anisotropic inversions needed to be implemented. Another aspect that has been largely neglected thus far is the fact that the Earth resistivity is also frequency dependent (e.g. Veeken et al., 2009). Could that be the next layer of complexity that needs to be considered?

5 Acknowledgments The authors wish to acknowledge Dirk Smit and John Voon for their support as well as Yip-Cheong Kok, David Ramirez Mejia, Liam Ó Súilleabháin, Johannes Singer, Chris Shen, Quintijn Van De Laarschot and Femke Vossepoel for their invaluable input. References Brevik I., Gabrielsen P.T., and J.P. Morten, 2009, The role of EM rock physics and seismic data in integrated 3D CSEM data analysis, 79th Annual International Meeting, SEG, Expanded Abstracts Carazzone J. J., O. M. Burtz, K. E. Green, and D. A. Pavlov, C. Xia, 2005, Three Dimensional Imaging of Marine CSEM Data, SEG Expanded Abstracts 24, 575; doi: / Constable, S., 2006, Marine electromagnetic methods A new tool for offshore Exploration, The Leading Edge, 25, Darnet, M., M.C.K. Choo, R.E. Plessix, M.L. Rosenquist, K.Y. Cheong, E. Sims, and J.W.K. Voon, 2007, Detecting hydrocarbon reservoirs from CSEM data in complex settings: Application to deepwater Sabah, Malaysia, Geophysics, v. 72, no. 2, doi: / Gabrielsen P. T., I. Brevik, R. Mittet and L. O. Løseth, 2009, Investigating the exploration potential for 3D CSEM using a calibration survey over the Troll Field, first break, vol. 27, Green, K. E., O. M. Burtz, L. A. Wahrmund, C. Xia, G. Zelewski, T. Clee, I. Gallegos, A. A. Martinez, M. J. Stiver, C. M. Rodriguez, and J. Zhang, 2005, R3M case studies: Detecting reservoir resistivity in complex settings: 75th Annual International Meeting, SEG, Expanded Abstracts, Hansen K.R. and R. Mittet, 2009, Incorporating seismic horizons in inversion of CSEM data, 79th Annual International Meeting, SEG, Expanded Abstracts Harris P., Du Z., MacGregor L., Olsen W., Shu R., and R. Cooper, 2009, Joint interpretation of seismic and CSEM data using well log constraints: an example from the Luva Field, first break, vol. 27, Hoversten G.M., Cassassuce F., Gasperikova E., Newman G.A., Chen J., Rubin Y., Hou Z., and Vasco D., 2006, Direct reservoir parameter estimation using joint inversion of marine seismic AVA and CSEM data: Geophysics, Vol. 71, p. C1 B13 Jing C., K. Green, and D. Willen, 2008, CSEM inversion: Impact of anisotropy, data coverage, and initial models, 78th Annual International Meeting, SEG, Expanded Abstracts, Johansen, S.E., Amundsen, H.E.F., Røsten, T., Ellingsrud, S., Eidesmo, T. and Bhuyian, A.H., 2005, Subsurface hydrocarbons detected by electromagnetic sounding. First Break, 23(3), Løseth, L.O., Ursin, B. and Amundsen, L., 2007, On the effects of anisotropy in marine CSEM. EAGE 69th Conference & Exhibition, Extended Abstracts, D034. Lu, X. and Xia, C., 2007, Understanding anisotropy in marine CSEM data. 77th SEG Annual Conference, Expanded Abstracts, Moser J., M. Poupon, H.J. Meyer, C. Wojcik and M. Rosenquist, 2006, Integration of electromagnetic and seismic data to assess residual gas risk in the toe-thrust belt of deepwater Niger Delta, The Leading Edge; August 2006; v. 25; no. 8; p ; doi: / Plessix R.E. and Mulder W.A., 2008, Resistivity imaging with controlled-source electromagnetic data: depth and data weighting, Inverse Problems, 24, (22pp), doi: / /24/3/ Veeken P., P. Legeydo, I. Pesterev, Y. Davidenko, E. Kudryavceva and S. Ivanov, 2009, Geoelectric modelling with separation between electromagnetic and induced polarization field components, First Break, vol. 27.

SEG Houston 2009 International Exposition and Annual Meeting

SEG Houston 2009 International Exposition and Annual Meeting : The Santos Basin Project - Brazil Andrea Zerilli * and Tiziano Labruzzo, WesternGeco EM, Marco Polo Buonora, Paulo de Tarso Luiz Menezes and Luiz Felipe Rodrigues, Petrobras E&P/GEOF/MP Summary The Santos

More information

X004 3D CSEM Inversion Strategy - An Example Offshore West of Greenland

X004 3D CSEM Inversion Strategy - An Example Offshore West of Greenland X004 3D CSEM Inversion Strategy - An Example Offshore West of Greenland A. Lovatini* (WesternGeco EM - Geosystem), M.D. Watts (WesternGeco EM - Geosystem), K. Umbach (EnCana Corp.) & A. Ferster (EnCana

More information

G008 Advancing Marine Controlled Source Electromagnetics in the Santos Basin, Brazil

G008 Advancing Marine Controlled Source Electromagnetics in the Santos Basin, Brazil G008 Advancing Marine Controlled Source Electromagnetics in the Santos Basin, Brazil M.P. Buonora* (Petrobras), A. Zerilli (WesternGeco Electromagnetics), T. Labruzzo (WesternGeco Electromagnetics) & L.F.

More information

Downloaded 03/06/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 03/06/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Integration of seismic, CSEM and well data in the Perdido basin, Gulf of Mexico Philippe Nivlet, Luis Sánchez Pérez, EMGS Services México, José Antonio Escalera Alcocer, José Trinidad Martínez Vázquez,

More information

Determination of reservoir properties from the integration of CSEM and seismic data

Determination of reservoir properties from the integration of CSEM and seismic data Determination of reservoir properties from the integration of CSEM and seismic data Peter Harris, 1 Rock Solid Images, and Lucy MacGregor, 2 Offshore Hydrocarbons Mapping, discuss the advantages in reservoir

More information

2011 SEG SEG San Antonio 2011 Annual Meeting 771. Summary. Method

2011 SEG SEG San Antonio 2011 Annual Meeting 771. Summary. Method Geological Parameters Effecting Controlled-Source Electromagnetic Feasibility: A North Sea Sand Reservoir Example Michelle Ellis and Robert Keirstead, RSI Summary Seismic and electromagnetic data measure

More information

Vertical and horizontal resolution considerations for a joint 3D CSEM and MT inversion

Vertical and horizontal resolution considerations for a joint 3D CSEM and MT inversion Antony PRICE*, Total E&P and Don WATTS, WesternGeco Electromagnetics Summary To further explore the potential data content and inherent limitations of a detailed 3D Controlled Source ElectroMagnetic and

More information

Reducing Uncertainty through Multi-Measurement Integration: from Regional to Reservoir scale

Reducing Uncertainty through Multi-Measurement Integration: from Regional to Reservoir scale Reducing Uncertainty through Multi-Measurement Integration: from Regional to Reservoir scale Efthimios Tartaras Data Processing & Modeling Manager, Integrated Electromagnetics CoE, Schlumberger Geosolutions

More information

Using seismic guided EM inversion to explore a complex geological area: An application to the Kraken and Bressay heavy oil discoveries, North Sea

Using seismic guided EM inversion to explore a complex geological area: An application to the Kraken and Bressay heavy oil discoveries, North Sea Using seismic guided EM inversion to explore a complex geological area: An application to the Kraken and Bressay heavy oil discoveries, North Sea Zhijun Du*, PGS Summary The integrated analysis of controlled

More information

SEG Houston 2009 International Exposition and Annual Meeting

SEG Houston 2009 International Exposition and Annual Meeting The role of EM rock physics and seismic data in integrated 3D CSEM data analysis I. Brevik*, StatoilHydro, Pål T. Gabrielsen, Vestfonna and Jan Petter Morten, EMGS Summary An extensive 3D CSEM dataset

More information

Downloaded 08/29/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 08/29/13 to Redistribution subject to SEG license or copyright; see Terms of Use at New approach to 3D inversion of MCSEM and MMT data using multinary model transform Alexander V. Gribenko and Michael S. Zhdanov, University of Utah and TechnoImaging SUMMARY Marine controlled-source electromagnetic

More information

The feasibility of reservoir monitoring using time-lapse marine CSEM

The feasibility of reservoir monitoring using time-lapse marine CSEM GEOPHYSICS, VOL., NO. MARCH-APRIL 9 ; P. F F9, FIGS..9/.9 The feasibility of reservoir monitoring using time-lapse marine CSEM Arnold Orange, Kerry Key, and Steven Constable ABSTRACT Monitoring changes

More information

D034 On the Effects of Anisotropy in Marine CSEM

D034 On the Effects of Anisotropy in Marine CSEM D034 On the Effects of Anisotropy in Marine CSEM L.O. Løseth* (Statoil ASA, formerly Dept. of Physics, NTNU), B. Ursin (Dept. of Appl. Geophys., NTNU) & L. Amundsen (Statoil ASA) SUMMARY In marine CSEM

More information

Towed Streamer EM data from Barents Sea, Norway

Towed Streamer EM data from Barents Sea, Norway Towed Streamer EM data from Barents Sea, Norway Anwar Bhuiyan*, Eivind Vesterås and Allan McKay, PGS Summary The measured Towed Streamer EM data from a survey in the Barents Sea, undertaken in the Norwegian

More information

TIV Contrast Source Inversion of mcsem data

TIV Contrast Source Inversion of mcsem data TIV Contrast ource Inversion of mcem data T. Wiik ( ), L. O. Løseth ( ), B. Ursin ( ), K. Hokstad (, ) ( )epartment for Petroleum Technology and Applied Geophysics, Norwegian University of cience and Technology

More information

A11 Planning Time-lapse CSEM-surveys for Joint Seismic-EM Monitoring of Geological Carbon Dioxide Injection

A11 Planning Time-lapse CSEM-surveys for Joint Seismic-EM Monitoring of Geological Carbon Dioxide Injection A11 Planning Time-lapse CSEM-surveys for Joint Seismic-EM Monitoring of Geological Carbon Dioxide Injection T. Norman* (NTNU Trondheim and EMGS ASA), H. Alnes (StatoilHydro Research Trondheim), O. Christensen

More information

Downloaded 10/29/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/29/15 to Redistribution subject to SEG license or copyright; see Terms of Use at CSEM based Anisotropy trends in the Barents Sea. Slim Bouchrara *, Lucy MacGregor, Amanda Alvarez, Michelle Ellis, Rolf Ackermann, Paola Newton, Robert Keirstead, Alburto Rusic,Yijie Zhou and Hung-Wen

More information

Tu B3 15 Multi-physics Characterisation of Reservoir Prospects in the Hoop Area of the Barents Sea

Tu B3 15 Multi-physics Characterisation of Reservoir Prospects in the Hoop Area of the Barents Sea Tu B3 15 Multi-physics Characterisation of Reservoir Prospects in the Hoop Area of the Barents Sea P. Alvarez (RSI), F. Marcy (ENGIE E&P), M. Vrijlandt (ENGIE E&P), K. Nichols (RSI), F. Bolivar (RSI),

More information

Rock physics integration of CSEM and seismic data: a case study based on the Luva gas field.

Rock physics integration of CSEM and seismic data: a case study based on the Luva gas field. Rock physics integration of CSEM and seismic data: a case study based on the Luva gas field. Peter Harris*, Zhijun Du, Harald H. Soleng, Lucy M. MacGregor, Wiebke Olsen, OHM-Rock Solid Images Summary It

More information

Keywords. CSEM, Inversion, Resistivity, Kutei Basin, Makassar Strait

Keywords. CSEM, Inversion, Resistivity, Kutei Basin, Makassar Strait Noor Jehan Ashaari Muhamad* (EMGS Asia Pacific), Ritesh Mohan Joshi (EMGS Asia Pacific), Muhamad Afifie Chan Mahadie Chan (EMGS Asia Pacific) mmuhamad@emgs.com Keywords CSEM, Inversion, Resistivity, Kutei

More information

Geophysical model response in a shale gas

Geophysical model response in a shale gas Geophysical model response in a shale gas Dhananjay Kumar and G. Michael Hoversten Chevron USA Inc. Abstract Shale gas is an important asset now. The production from unconventional reservoir like shale

More information

Modeling of 3D MCSEM and Sensitivity Analysis

Modeling of 3D MCSEM and Sensitivity Analysis PIERS ONLINE, VOL. 3, NO. 5, 2007 641 Modeling of 3D MCSEM and Sensitivity Analysis Zhanxiang He 1, 2, Zhigang Wang 2, Gang Yu 3, Kurt Strack 3, and Haiying Liu 2 1 Department of Geosciences, University

More information

The prediction of reservoir

The prediction of reservoir Risk Reduction in Gas Reservoir Exploration Using Joint Seismic-EM Inversion GAS EXPLORATION By Yoram Rubin, G. Michael Hoversten, Zhangshuan Hou and Jinsong Chen, University of California, Berkeley A

More information

Summary. Introduction

Summary. Introduction Noel Black*, Glenn A. Wilson, TechnoImaging, Alexander V. Gribenko and Michael S. Zhdanov, TechnoImaging and The University of Utah Summary Recent studies have inferred the feasibility of time-lapse controlled-source

More information

Integrating seismic, CSEM, and well-log data for reservoir characterization

Integrating seismic, CSEM, and well-log data for reservoir characterization H o n o r a r y L e c t u r e Integrating seismic, CSEM, and well-log data for reservoir characterization Lucy MacGregor, RSI S urely seismic tells you everything you need to know about the Earth? This

More information

Detection, Delineation and Characterization of Shallow Anomalies Using Dual Sensor Seismic and Towed Streamer EM data

Detection, Delineation and Characterization of Shallow Anomalies Using Dual Sensor Seismic and Towed Streamer EM data Detection, Delineation and Characterization of Shallow Anomalies Using Dual Sensor Seismic and Towed Streamer EM data A.J. McKay* (Petroleum Geo-Services ASA), M. Widmaier (Petroleum Geo- Services ASA),

More information

Anisotropic 2.5D Inversion of Towed Streamer EM Data from Three North Sea Fields Using Parallel Adaptive Finite Elements

Anisotropic 2.5D Inversion of Towed Streamer EM Data from Three North Sea Fields Using Parallel Adaptive Finite Elements Anisotropic 2.5D Inversion of Towed Streamer EM Data from Three North Sea Fields Using Parallel Adaptive Finite Elements K. Key (Scripps Institution of Oceanography), Z. Du* (PGS), J. Mattsson (PGS), A.

More information

IPTC PP Challenges in Shallow Water CSEM Surveying: A Case History from Southeast Asia

IPTC PP Challenges in Shallow Water CSEM Surveying: A Case History from Southeast Asia IPTC-11511-PP Challenges in Shallow Water CSEM Surveying: A Case History from Southeast Asia Sandeep K. Chandola*, Rashidah Karim, Amy Mawarni, Russikin Ismail, Noreehan Shahud, Ramlee Rahman, Paul Bernabe

More information

A Broadband marine CSEM demonstration survey to map the Uranus salt structure

A Broadband marine CSEM demonstration survey to map the Uranus salt structure A Broadband marine CSEM demonstration survey to map the Uranus salt structure M. Vöge ( 1 ), A. A. Pfaffhuber ( 1 ), K. Hokstad ( 2 ), B. Fotland( 2 ) ( 1 ) Norwegian Geotechnical Institute, Sognsveien

More information

Seismic processing of numerical EM data John W. Neese* and Leon Thomsen, University of Houston

Seismic processing of numerical EM data John W. Neese* and Leon Thomsen, University of Houston Seismic processing of numerical EM data John W. Neese* and Leon Thomsen, University of Houston Summary The traditional methods for acquiring and processing CSEM data are very different from those for seismic

More information

C002 Petrophysical Seismic Inversion over an Offshore Carbonate Field

C002 Petrophysical Seismic Inversion over an Offshore Carbonate Field C002 Petrophysical Seismic Inversion over an Offshore Carbonate Field T. Coleou* (CGGVeritas), F. Allo (CGGVeritas), O. Colnard (CGGVeritas), I. Machecler (CGGVeritas), L. Dillon (Petrobras), G. Schwedersky

More information

Sub-basalt exploration in the Kutch-Saurashtra basin using EM

Sub-basalt exploration in the Kutch-Saurashtra basin using EM Sub-basalt exploration in the Kutch-Saurashtra basin using EM Paper ID: 2003081 Deepankar Borgohain 1, Krishna Kumar 2, U G Marathe 3, Pradipta Mishra 3, Deepak Kumar 1 1.EMGS Asia Pacific Sdn Bhd, 1009

More information

Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc.

Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc. Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc. Summary Rock physics establishes the link between reservoir properties,

More information

THE USE OF SEISMIC ATTRIBUTES AND SPECTRAL DECOMPOSITION TO SUPPORT THE DRILLING PLAN OF THE URACOA-BOMBAL FIELDS

THE USE OF SEISMIC ATTRIBUTES AND SPECTRAL DECOMPOSITION TO SUPPORT THE DRILLING PLAN OF THE URACOA-BOMBAL FIELDS THE USE OF SEISMIC ATTRIBUTES AND SPECTRAL DECOMPOSITION TO SUPPORT THE DRILLING PLAN OF THE URACOA-BOMBAL FIELDS Cuesta, Julián* 1, Pérez, Richard 1 ; Hernández, Freddy 1 ; Carrasquel, Williams 1 ; Cabrera,

More information

Towed Streamer EM Integrated interpretation for accurate characterization of the sub-surface. PETEX, Tuesday 15th of November 2016

Towed Streamer EM Integrated interpretation for accurate characterization of the sub-surface. PETEX, Tuesday 15th of November 2016 Towed Streamer EM Integrated interpretation for accurate characterization of the sub-surface. PETEX, Tuesday 15th of November 2016 Joshua May Sales and Marketing Manager Agenda Introduction to Towed Streamer

More information

B033 Improving Subsalt Imaging by Incorporating MT Data in a 3D Earth Model Building Workflow - A Case Study in Gulf of Mexico

B033 Improving Subsalt Imaging by Incorporating MT Data in a 3D Earth Model Building Workflow - A Case Study in Gulf of Mexico B033 Improving Subsalt Imaging by Incorporating MT Data in a 3D Earth Model Building Workflow - A Case Study in Gulf of Mexico E. Medina* (WesternGeco), A. Lovatini (WesternGeco), F. Golfré Andreasi (WesternGeco),

More information

Subsurface hydrocarbons detected by electromagnetic sounding

Subsurface hydrocarbons detected by electromagnetic sounding first break volume 23, March 2005 technical article Subsurface hydrocarbons detected by electromagnetic sounding S.E. Johansen 1, H.E.F. Amundsen 2, T. Røsten 3, S. Ellingsrud 1, T. Eidesmo 1 and A.H.

More information

Summary. (a) (b) Introduction

Summary. (a) (b) Introduction er well in AC 818, Gulf of Mexico Cam Kanhalangsy, Nick Golubev, Jurgen Johann Zach, Daniel Baltar*, EMGS Americas Summary We present anisotropic 2.5D inversion examples illustrating the possibility to

More information

Downloaded 11/02/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Summary.

Downloaded 11/02/16 to Redistribution subject to SEG license or copyright; see Terms of Use at   Summary. in thin sand reservoirs William Marin* and Paola Vera de Newton, Rock Solid Images, and Mario Di Luca, Pacific Exploración y Producción. Summary Rock Physics Templates (RPTs) are useful tools for well

More information

The effect of anticlines on seismic fracture characterization and inversion based on a 3D numerical study

The effect of anticlines on seismic fracture characterization and inversion based on a 3D numerical study The effect of anticlines on seismic fracture characterization and inversion based on a 3D numerical study Yungui Xu 1,2, Gabril Chao 3 Xiang-Yang Li 24 1 Geoscience School, University of Edinburgh, UK

More information

Estimation of density from seismic data without long offsets a novel approach.

Estimation of density from seismic data without long offsets a novel approach. Estimation of density from seismic data without long offsets a novel approach. Ritesh Kumar Sharma* and Satinder Chopra Arcis seismic solutions, TGS, Calgary Summary Estimation of density plays an important

More information

Summary. Introduction

Summary. Introduction Effect of over- and under-burden on time-lapse CSEM monitoring capabilities Arash JafarGandomi* and Andrew Curtis, School of GeoSciences, The University of Edinburgh, Kings Buildings, Edinburgh EH9 3JW,

More information

Reservoir properties prediction using CSEM, pre-stack seismic and well log data: Case Study in the Hoop Area, Barents Sea, Norway

Reservoir properties prediction using CSEM, pre-stack seismic and well log data: Case Study in the Hoop Area, Barents Sea, Norway Reservoir properties prediction using CSEM, pre-stack seismic and well log data: Case Study in the Hoop Area, Barents Sea, Norway ABSTRACT We present an example from the Hoop area of the Barents Sea showing

More information

3D VTI traveltime tomography for near-surface imaging Lina Zhang*, Jie Zhang, Wei Zhang, University of Science and Technology of China (USTC)

3D VTI traveltime tomography for near-surface imaging Lina Zhang*, Jie Zhang, Wei Zhang, University of Science and Technology of China (USTC) Downloaded 01/03/14 to 16.01.198.34. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/ 3D VTI traveltime tomography for near-surface imaging Lina Zhang*, Jie

More information

23855 Rock Physics Constraints on Seismic Inversion

23855 Rock Physics Constraints on Seismic Inversion 23855 Rock Physics Constraints on Seismic Inversion M. Sams* (Ikon Science Ltd) & D. Saussus (Ikon Science) SUMMARY Seismic data are bandlimited, offset limited and noisy. Consequently interpretation of

More information

Controlled source electromagnetic interferometry by multidimensional deconvolution: Spatial sampling aspects

Controlled source electromagnetic interferometry by multidimensional deconvolution: Spatial sampling aspects Controlled source electromagnetic interferometry by multidimensional deconvolution: Spatial sampling aspects Jürg Hunziker, Evert Slob & Kees Wapenaar TU Delft, The Netherlands ABSTRACT We review electromagnetic

More information

Special Section Marine Control-Source Electromagnetic Methods

Special Section Marine Control-Source Electromagnetic Methods GEOPHYSICS, VOL. 7, NO. MARCH-APRIL 7 ; P. WA63 WA7, FIGS. 9/43647 Special Section Marine Control-Source Electromagnetic Methods D marine controlled-source electromagnetic modeling: Part The effect of

More information

SEAM2: 3D NON-SEISMIC MODELING OF A COMPLEX MIDDLE EAST O&G PROSPECT

SEAM2: 3D NON-SEISMIC MODELING OF A COMPLEX MIDDLE EAST O&G PROSPECT 6th International Symposium on Three-Dimensional Electromagnetics Berkeley, California, USA, March 28-3, 217 SEAM2: 3D NON-SEISMIC MODELING OF A COMPLEX MIDDLE EAST O&G PROSPECT M. D. Watts 1, R. L. Mackie

More information

Integration of seismic and fluid-flow data: a two-way road linked by rock physics

Integration of seismic and fluid-flow data: a two-way road linked by rock physics Integration of seismic and fluid-flow data: a two-way road linked by rock physics Abstract Yunyue (Elita) Li, Yi Shen, and Peter K. Kang Geologic model building of the subsurface is a complicated and lengthy

More information

Porosity. Downloaded 09/22/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Porosity. Downloaded 09/22/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Geostatistical Reservoir Characterization of Deepwater Channel, Offshore Malaysia Trisakti Kurniawan* and Jahan Zeb, Petronas Carigali Sdn Bhd, Jimmy Ting and Lee Chung Shen, CGG Summary A quantitative

More information

Tu N Fault Shadow Removal over Timor Trough Using Broadband Seismic, FWI and Fault Constrained Tomography

Tu N Fault Shadow Removal over Timor Trough Using Broadband Seismic, FWI and Fault Constrained Tomography Tu N118 05 Fault Shadow Removal over Timor Trough Using Broadband Seismic, FWI and Fault Constrained Tomography Y. Guo* (CGG), M. Fujimoto (INPEX), S. Wu (CGG) & Y. Sasaki (INPEX) SUMMARY Thrust-complex

More information

Joint inversion of borehole electromagnetic and sonic measurements G. Gao, A. Abubakar, T. M. Habashy, Schlumberger-Doll Research

Joint inversion of borehole electromagnetic and sonic measurements G. Gao, A. Abubakar, T. M. Habashy, Schlumberger-Doll Research Joint inversion of borehole electromagnetic and sonic measurements G. Gao, A. Abubakar, T. M. Habashy, Schlumberger-Doll Research SUMMARY New-generation electromagnetic (EM) and sonic logging tools are

More information

C031 Quantifying Structural Uncertainty in Anisotropic Depth Imaging - Gulf of Mexico Case Study

C031 Quantifying Structural Uncertainty in Anisotropic Depth Imaging - Gulf of Mexico Case Study C031 Quantifying Structural Uncertainty in Anisotropic Depth Imaging - Gulf of Mexico Case Study K. Osypov* (WesternGeco), D. Nichols (WesternGeco), Y. Yang (WesternGeco), F. Qiao (WesternGeco), M. O'Briain

More information

Estimating vertical and horizontal resistivity of the overburden and the reservoir for the Alvheim Boa field. Folke Engelmark* and Johan Mattsson, PGS

Estimating vertical and horizontal resistivity of the overburden and the reservoir for the Alvheim Boa field. Folke Engelmark* and Johan Mattsson, PGS Estimating vertical and horizontal resistivity of the overburden and the reservoir for the Alvheim Boa field. Folke Engelmark* and Johan Mattsson, PGS Summary Towed streamer EM data was acquired in October

More information

Downloaded 10/29/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/29/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Electrical anisotropy drivers in the Snøhvit region of the Barents Sea Michelle Ellis*, Lucy MacGregor, Rolf Ackermann, Paola Newton, Robert Keirstead, Alberto Rusic, Slim Bouchrara, Amanda Geck Alvarez,

More information

Best practices predicting unconventional reservoir quality

Best practices predicting unconventional reservoir quality Introduction Best practices predicting unconventional reservoir quality Cristian Malaver, Michel Kemper, and Jorg Herwanger 1 Unconventional reservoirs have proven challenging for quantitative interpretation

More information

Time vs depth in a North Sea case study of the ugly truth Abstract

Time vs depth in a North Sea case study of the ugly truth Abstract Time vs depth in a North Sea case study of the ugly truth Thomas Massip 1, Lauren Braidwood 1, Juergen Fruehn 1, Owen Isaac 1, Jonathan Denly 1, Robert Richardson 2, Phil Mollicone 3 1 ION Geophysical;

More information

Downloaded 09/16/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/16/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Data Using a Facies Based Bayesian Seismic Inversion, Forties Field, UKCS Kester Waters* (Ikon Science Ltd), Ana Somoza (Ikon Science Ltd), Grant Byerley (Apache Corp), Phil Rose (Apache UK) Summary The

More information

We A Multi-Measurement Integration Case Study from West Loppa Area in the Barents Sea

We A Multi-Measurement Integration Case Study from West Loppa Area in the Barents Sea We-16-12 A Multi-Measurement ntegration Case Study from West Loppa Area in the Barents Sea. Guerra* (WesternGeco), F. Ceci (WesternGeco), A. Lovatini (WesternGeco), F. Miotti (WesternGeco), G. Milne (WesternGeco),

More information

Imaging complex structure with crosswell seismic in Jianghan oil field

Imaging complex structure with crosswell seismic in Jianghan oil field INTERPRETER S CORNER Coordinated by Rebecca B. Latimer Imaging complex structure with crosswell seismic in Jianghan oil field QICHENG DONG and BRUCE MARION, Z-Seis, Houston, Texas, U.S. JEFF MEYER, Fusion

More information

HampsonRussell. A comprehensive suite of reservoir characterization tools. cgg.com/geosoftware

HampsonRussell. A comprehensive suite of reservoir characterization tools. cgg.com/geosoftware HampsonRussell A comprehensive suite of reservoir characterization tools cgg.com/geosoftware HampsonRussell Software World-class geophysical interpretation HampsonRussell Software is a comprehensive suite

More information

PETROLEUM GEOSCIENCES GEOLOGY OR GEOPHYSICS MAJOR

PETROLEUM GEOSCIENCES GEOLOGY OR GEOPHYSICS MAJOR PETROLEUM GEOSCIENCES GEOLOGY OR GEOPHYSICS MAJOR APPLIED GRADUATE STUDIES Geology Geophysics GEO1 Introduction to the petroleum geosciences GEO2 Seismic methods GEO3 Multi-scale geological analysis GEO4

More information

Workflows for Sweet Spots Identification in Shale Plays Using Seismic Inversion and Well Logs

Workflows for Sweet Spots Identification in Shale Plays Using Seismic Inversion and Well Logs Workflows for Sweet Spots Identification in Shale Plays Using Seismic Inversion and Well Logs Yexin Liu*, SoftMirrors Ltd., Calgary, Alberta, Canada yexinliu@softmirrors.com Summary Worldwide interest

More information

Rock physics and AVO applications in gas hydrate exploration

Rock physics and AVO applications in gas hydrate exploration Rock physics and AVO applications in gas hydrate exploration ABSTRACT Yong Xu*, Satinder Chopra Core Lab Reservoir Technologies Division, 301,400-3rd Ave SW, Calgary, AB, T2P 4H2 yxu@corelab.ca Summary

More information

Downloaded 09/16/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/16/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Ehsan Zabihi Naeini*, Ikon Science & Russell Exley, Summit Exploration & Production Ltd Summary Quantitative interpretation (QI) is an important part of successful Central North Sea exploration, appraisal

More information

Recent advances in application of AVO to carbonate reservoirs: case histories

Recent advances in application of AVO to carbonate reservoirs: case histories Recent advances in application of AVO to reservoirs: case histories Yongyi Li, Bill Goodway*, and Jonathan Downton Core Lab Reservoir Technologies Division *EnCana Corporation Summary The application of

More information

Chapter 1. Introduction EARTH MODEL BUILDING

Chapter 1. Introduction EARTH MODEL BUILDING Chapter 1 Introduction Seismic anisotropy in complex earth subsurface has become increasingly important in seismic imaging due to the increasing offset and azimuth in modern seismic data. To account for

More information

AVAZ and VVAZ practical analysis to estimate anisotropic properties

AVAZ and VVAZ practical analysis to estimate anisotropic properties AVAZ and VVAZ practical analysis to estimate anisotropic properties Yexin Liu*, SoftMirrors Ltd., Calgary, Alberta, Canada yexinliu@softmirrors.com Summary Seismic anisotropic properties, such as orientation

More information

Daniele Colombo* Geosystem-WesternGeco, Calgary, AB M.Virgilio Geosystem-WesternGeco, Milan, Italy.

Daniele Colombo* Geosystem-WesternGeco, Calgary, AB M.Virgilio Geosystem-WesternGeco, Milan, Italy. Seismic Imaging Strategies for Thrust-Belt Exploration: Extended Offsets, Seismic/Gravity/EM simultaneous Joint-Inversion and Anisotropic Gaussian Beam Pre-Stack Depth Migration Daniele Colombo* Geosystem-WesternGeco,

More information

The role of seismic modeling in Reservoir characterization: A case study from Crestal part of South Mumbai High field

The role of seismic modeling in Reservoir characterization: A case study from Crestal part of South Mumbai High field P-305 The role of seismic modeling in Reservoir characterization: A case study from Crestal part of South Mumbai High field Summary V B Singh*, Mahendra Pratap, ONGC The objective of the modeling was to

More information

Building more robust low-frequency models for seismic impedance inversion

Building more robust low-frequency models for seismic impedance inversion first break volume 34, May 2016 technical article Building more robust low-frequency models for seismic impedance inversion Amit Kumar Ray 1 and Satinder Chopra 1* Abstract Seismic impedance inversion

More information

We Simultaneous Joint Inversion of Electromagnetic and Seismic Full-waveform Data - A Sensitivity Analysis to Biot Parameter

We Simultaneous Joint Inversion of Electromagnetic and Seismic Full-waveform Data - A Sensitivity Analysis to Biot Parameter We-09-04 Simultaneous Joint Inversion of Electromagnetic and Seismic Full-waveform Data - A Sensitivity Analysis to Biot Parameter J. Giraud* (WesternGeco Geosolutions), M. De Stefano (WesternGeco Geosolutions)

More information

Improved Exploration, Appraisal and Production Monitoring with Multi-Transient EM Solutions

Improved Exploration, Appraisal and Production Monitoring with Multi-Transient EM Solutions Improved Exploration, Appraisal and Production Monitoring with Multi-Transient EM Solutions Folke Engelmark* PGS Multi-Transient EM, Asia-Pacific, Singapore folke.engelmark@pgs.com Summary Successful as

More information

Interpretation and Reservoir Properties Estimation Using Dual-Sensor Streamer Seismic Without the Use of Well

Interpretation and Reservoir Properties Estimation Using Dual-Sensor Streamer Seismic Without the Use of Well Interpretation and Reservoir Properties Estimation Using Dual-Sensor Streamer Seismic Without the Use of Well C. Reiser (Petroleum Geo-Services), T. Bird* (Petroleum Geo-Services) & M. Whaley (Petroleum

More information

Seismic characterization of Montney shale formation using Passey s approach

Seismic characterization of Montney shale formation using Passey s approach Seismic characterization of Montney shale formation using Passey s approach Ritesh Kumar Sharma*, Satinder Chopra and Amit Kumar Ray Arcis Seismic Solutions, Calgary Summary Seismic characterization of

More information

Keywords. PMR, Reservoir Characterization, EEI, LR

Keywords. PMR, Reservoir Characterization, EEI, LR Enhancing the Reservoir Characterization Experience through Post Migration Reprocessed (PMR) Data A case study Indrajit Das*, Ashish Kumar Singh, Shakuntala Mangal, Reliance Industries Limited, Mumbai

More information

Modeling and interpretation of CSEM data from Bressay, Bentley and Kraken area of East Shetland Platform, North Sea

Modeling and interpretation of CSEM data from Bressay, Bentley and Kraken area of East Shetland Platform, North Sea from Bressay, Bentley and Kraken area of East Shetland Platform, North Sea Anwar Bhuiyan*, Rune Sakariassen, Øystein Hallanger and Allan McKay, PGS Summary The heavy oil reservoirs of the Bentley, Bressay

More information

Seismic reservoir characterization in offshore Nile Delta.

Seismic reservoir characterization in offshore Nile Delta. Seismic reservoir characterization in offshore Nile Delta. Part II: Probabilistic petrophysical-seismic inversion M. Aleardi 1, F. Ciabarri 2, B. Garcea 2, A. Mazzotti 1 1 Earth Sciences Department, University

More information

QUANTITATIVE INTERPRETATION

QUANTITATIVE INTERPRETATION QUANTITATIVE INTERPRETATION THE AIM OF QUANTITATIVE INTERPRETATION (QI) IS, THROUGH THE USE OF AMPLITUDE ANALYSIS, TO PREDICT LITHOLOGY AND FLUID CONTENT AWAY FROM THE WELL BORE This process should make

More information

W011 Full Waveform Inversion for Detailed Velocity Model Building

W011 Full Waveform Inversion for Detailed Velocity Model Building W011 Full Waveform Inversion for Detailed Velocity Model Building S. Kapoor* (WesternGeco, LLC), D. Vigh (WesternGeco), H. Li (WesternGeco) & D. Derharoutian (WesternGeco) SUMMARY An accurate earth model

More information

Downloaded 10/02/18 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/02/18 to Redistribution subject to SEG license or copyright; see Terms of Use at Multi-scenario, multi-realization seismic inversion for probabilistic seismic reservoir characterization Kester Waters* and Michael Kemper, Ikon Science Ltd. Summary We propose a two tiered inversion strategy

More information

SEG Houston 2009 International Exposition and Annual Meeting SUMMARY

SEG Houston 2009 International Exposition and Annual Meeting SUMMARY Simultaneous joint inversion of MT and CSEM data using a multiplicative cost function Aria Abubakar, Maokun Li, Jianguo Liu and Tarek M. Habashy, Schlumberger-Doll Research, Cambridge, MA, USA SUMMARY

More information

Seismic Guided Drilling: Near Real Time 3D Updating of Subsurface Images and Pore Pressure Model

Seismic Guided Drilling: Near Real Time 3D Updating of Subsurface Images and Pore Pressure Model IPTC 16575 Seismic Guided Drilling: Near Real Time 3D Updating of Subsurface Images and Pore Pressure Model Chuck Peng, John Dai and Sherman Yang, Schlumberger WesternGeco Copyright 2013, International

More information

Geohazards have a direct impact on the drilling and

Geohazards have a direct impact on the drilling and SPECIAL Geohazards SECTION: G e o h a z a r d s A new, fully integrated method for seismic geohazard prediction ahead of the bit while drilling CENGIZ ESMERSOY, ARTURO RAMIREZ, SHARON TEEBENNY, YANGJUN

More information

Exploration _Advanced geophysical methods. Research Challenges. Séverine Pannetier-Lescoffit and Ute Mann. SINTEF Petroleum Research

Exploration _Advanced geophysical methods. Research Challenges. Séverine Pannetier-Lescoffit and Ute Mann. SINTEF Petroleum Research Exploration _Advanced geophysical methods * Research Challenges Séverine Pannetier-Lescoffit and Ute Mann SINTEF Petroleum Research 1 Exploration and Reservoir Characterization * Research Challenges 29%

More information

A multigrid integral equation method for large-scale models with inhomogeneous backgrounds

A multigrid integral equation method for large-scale models with inhomogeneous backgrounds IOP PUBLISHING JOURNAL OF GEOPHYSICS AND ENGINEERING J. Geophys. Eng. (28) 438 447 doi:1.188/1742-2132//4/7 A integral equation method for large-scale models with inhomogeneous backgrounds Masashi Endo,

More information

F003 Geomodel Update Using 4-D Petrophysical Seismic Inversion on the Troll West Field

F003 Geomodel Update Using 4-D Petrophysical Seismic Inversion on the Troll West Field F003 Geomodel Update Using 4-D Petrophysical Seismic Inversion on the Troll West Field K. Gjerding* (Statoil), N. Skjei (Statoil), A. Norenes Haaland (Statoil), I. Machecler (CGGVeritas Services) & T.

More information

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Reservoir properties estimation from marine broadband seismic without a-priori well information: A powerful de-risking workflow Cyrille Reiser*, Matt Whaley and Tim Bird, PGS Reservoir Limited Summary

More information

Uncertainty analysis for the integration of seismic and CSEM data Myoung Jae Kwon & Roel Snieder, Center for Wave Phenomena, Colorado School of Mines

Uncertainty analysis for the integration of seismic and CSEM data Myoung Jae Kwon & Roel Snieder, Center for Wave Phenomena, Colorado School of Mines Myoung Jae Kwon & Roel Snieder, Center for Wave Phenomena, Colorado School of Mines Summary Geophysical inverse problems consist of three stages: the forward problem, optimization, and appraisal. We study

More information

Simultaneous Inversion of Clastic Zubair Reservoir: Case Study from Sabiriyah Field, North Kuwait

Simultaneous Inversion of Clastic Zubair Reservoir: Case Study from Sabiriyah Field, North Kuwait Simultaneous Inversion of Clastic Zubair Reservoir: Case Study from Sabiriyah Field, North Kuwait Osman Khaled, Yousef Al-Zuabi, Hameed Shereef Summary The zone under study is Zubair formation of Cretaceous

More information

Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story

Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story Petr Kolinsky 1, Leo Eisner 1, Vladimir Grechka 2, Dana Jurick 3, Peter Duncan 1 Summary Shear

More information

Experience is crucial to expanding CSEM use

Experience is crucial to expanding CSEM use Defining Technology for Exploration, Drilling and Production September 2006 Experience is crucial to expanding CSEM use www.worldoil.com Gulf Publishing Company Gulf Publishing Company 90th Anniversary

More information

Use of Seismic and EM Data for Exploration, Appraisal and Reservoir Characterization

Use of Seismic and EM Data for Exploration, Appraisal and Reservoir Characterization Use of Seismic and EM Data for Exploration, Appraisal and Reservoir Characterization Anton Ziolkowski and Folke Engelmark Petroleum Geo-Services CSEG, Calgary, 6 May 2009 Outline Exploration, appraisal,

More information

Inductive source induced polarization David Marchant, Eldad Haber and Douglas W. Oldenburg, University of British Columbia

Inductive source induced polarization David Marchant, Eldad Haber and Douglas W. Oldenburg, University of British Columbia David Marchant, Eldad Haber and Douglas W. Oldenburg, University of British Columbia Downloaded /9/3 to 37.8.7.. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

More information

RockLab Details. Rock Physics Testing

RockLab Details. Rock Physics Testing Rock Physics Testing Seismic velocity and electrical resistivity of rock samples are varying, as the stress/strain (and its orientation), temperature and fluid of the formation of interest are changing

More information

Estimating the hydrocarbon volume from elastic and resistivity data: A concept

Estimating the hydrocarbon volume from elastic and resistivity data: A concept INTERPRETER S CORNER Coordinated by Rebecca B. Latimer Estimating the hydrocarbon volume from elastic and resistivity data: A concept CARMEN T. GOMEZ, JACK DVORKIN, and GARY MAVKO, Stanford University,

More information

P1488 DECC Relinquishment Report OMV (U.K.) Ltd.

P1488 DECC Relinquishment Report OMV (U.K.) Ltd. 1. Synopsis: P1488 DECC Relinquishment Report OMV (U.K.) Ltd. UK offshore Licence P1488 was awarded to OMV, Dana Petroleum and Rocksource in the 24 th Licence Round on the 24 th of January 2007 as a frontier

More information

OTC OTC PP. Abstract

OTC OTC PP. Abstract OTC OTC-19977-PP Using Modern Geophysical Technology to Explore for Bypassed Opportunities in the Gulf of Mexico R.A. Young/eSeis; W.G. Holt, G. Klefstad/ Fairways Offshore Exploration Copyright 2009,

More information

KMS Technologies KJT Enterprises, Inc. Novel Marine Electromagnetics: from Deep into Shallow Water

KMS Technologies KJT Enterprises, Inc. Novel Marine Electromagnetics: from Deep into Shallow Water KMS Technologies KJT Enterprises, Inc. Novel Marine Electromagnetics: from Deep into Shallow Water Thomsen, L., Meaux, D., Li, S., Weiss, C., Sharma, A., Allegar, N., and Strack, K.-M. Recent Advances

More information

Multiple horizons mapping: A better approach for maximizing the value of seismic data

Multiple horizons mapping: A better approach for maximizing the value of seismic data Multiple horizons mapping: A better approach for maximizing the value of seismic data Das Ujjal Kumar *, SG(S) ONGC Ltd., New Delhi, Deputed in Ministry of Petroleum and Natural Gas, Govt. of India Email:

More information