Using seismic guided EM inversion to explore a complex geological area: An application to the Kraken and Bressay heavy oil discoveries, North Sea

Size: px
Start display at page:

Download "Using seismic guided EM inversion to explore a complex geological area: An application to the Kraken and Bressay heavy oil discoveries, North Sea"

Transcription

1 Using seismic guided EM inversion to explore a complex geological area: An application to the Kraken and Bressay heavy oil discoveries, North Sea Zhijun Du*, PGS Summary The integrated analysis of controlled source electromagnetic (CSEM) with seismic data can provide valuable information on reservoir characteristics. We introduce in this paper a method for integrating Towed Streamer EM and dual-sensor seismic data and refer to it as seismic guided EM inversion. The inversion workflow is initiated by adopting a sparse-layer depth model defined by the dual-sensor seismic data to suggest resistivity boundaries without a rigid constraint. This makes good sense when considering the uncertainties in the seismic data from the time to depth conversion, and more importantly, the fact that a reservoir can be hydrocarbon-charged to an unknown degree corresponding to the spill-point or less. The anisotropic resistivity variations within the layers are accommodated by the lower and upper boundaries, which can be estimated by the unconstrained 2.5D anisotropic inversions. To demonstrate the workflow, we apply it to a dataset acquired in an area with complex geology resulting in challenging imaging issues of the Kraken and Bressay fields. The two heavy oil reservoirs are rich in injectites, located in close proximity to other high resistivity settings, such as the shallow gas pockets in the overburden, the regional Balder Tuff and a few granite intrusions. Introduction The ideal companion to high quality marine CSEM data is 3D seismic data, and the application of joint interpretation of seismic and marine CSEM in de-risking exploration prospects has led to a significant number of success stories since 2000 (e.g. Karman, et al., 2013). When assessing the prospectivity in complex geological regions, where seismic provides a high resolution structural image of the subsurface, marine EM estimates the resistivity of assumed reservoirs, and as such is more sensitive to the presence of hydrocarbons. The integration of seismic with CSEM data can thus provide subsurface information that is either unreliable or simply unavailable when only a single data type is used. While several methods for joint interpretation of multiple geophysical data exist, we discuss here a possible way to make the inversion-based EM and seismic integration process more data and information-driven and less a priori model driven. The methods that involve the use of structural properties, i.e. boundaries of geological targets, where the EM inversion is regularized by the structural information from the higher resolution of the seismic imaging (e.g., Morten et al. 2013). The workflow for conducting such constrained EM inversions is generally initialized by dividing the background resistivity model into large volumes of homogeneous regions. The regularization process requires reliable a priori resistivity information to populate the seismically defined volumes. However, this is only possible if the study area displays homogeneous stratigraphy, in other situations, i. e., existence of lateral strata variation and anisotropy, it is difficult or impossible to build the required a priori model from limited available information. In this paper, we introduce and test a different approach for integrating Towed EM and dual-sensor seismic data. Our approach is based on the concept of guidance. The workflow is initiated by adopting a sparse-layer depth model defined by high resolution seismic to suggest resistivity boundaries for the EM inversion without a rigid constraint, whereas the resistivity variations within the layers are set by plausible lower and upper boundaries. We show the workflow for integrating the towed streamer EM and dual-sensor seismic data by applying the method to an area with complex geology and challenging imaging issues of the Kraken and Bressay fields. The BBK region and Towed EM data In 2012 PGS conducted a towed streamer EM survey over Bressay, Bentley and Kraken (BBK) heavy oil fields in the North Sea using the newly developed controlled-source Towed Streamer EM acquisition system (Figure 1). The BBK discoveries were considered to pose several challenges to conventional CSEM surveying. The very shallow depth of water, m, dampen the EM anomalies due to airwave coupling. The formation within the block consists of coarse clastics, which lead to the further formation of a prograding delta compound. The reservoirs are to a large extent injectites, located in close depth proximity to other high resistivity settings, such as the regional Balder Tuff, and granite intrusions. The geology in the region is thus complex resulting in challenging imaging issues. The heavy oil charge means there is no direct hydrocarbon indication in the seismic data, due to the low acoustic impedance contrast between the reservoir and its surrounding shale. The Towed EM system for the BBK survey consisted of a ~7.7 km receiver cable deployed at m water depth, and a powerful (1,500 A) 800 m long bipole source towed at 10 m depth. Using a 4-knot towing speed, the acquisition pattern was based on a source signal every 250 m and 44 unique receiver positions for each shot. Compared to a conventional node-based marine controlled-source Page 781

2 electromagnetic (CSEM) system, where the receivers are very sparsely placed on the seafloor in a line or areal pattern, approximately 1 km apart, the highly sensitive receiver electrodes housed in the streamer of the towed EM system are able to densely sample the subsurface with an average offset interval of ~160 m over offset ranges of ~800 to 7595 m. The Towed Streamer EM system thus provides the dense sampling, data quality and signal-tonoise ratio required for imaging challenging targets in a shallow water environment. inversion takes no account of complex or higher dimensional structures, it allows the class of structures to which the data are most sensitive, and variations in these structures to be assessed. By overlaying the retrieved resistivity model on the top of the coincident 2D seismic sections, the co-rendered images confirm the inversions have recovered the resistive basements. It has also revealed several large localized significant increases in resistivity between depth range of 0-1km (Figure 2).. S N SW NE Bressay Kraken Bentley Figure 1: The Towed Streamer EM BBK survey area, where the red lines indicate the towed streamer EM lines. The well log, 3/28A-06, is located approximately at the central of Bressay, as indicated by the big black dot. The unconstrained inversion The final processed BBK towed streamer EM data set consists of six discrete transmission frequencies (0.2, 0.4, 0.6, 0.8, 1, 1.2 Hz). The dataset was inverted using the MARE2DEM codes, which is an Occam based 2.5D inversion build around a parallel adaptive finite element algorithm (Key, 2012). We parameterized the model domain with a dense grid of around 15,000-20,000 unknown resistivity parameters (depending on the profile length) from the seafloor to a depth of 2 km. We set a 1% error floor to the data and found that most of the survey profiles could be fit to a root-mean-squared (RMS) misfit of about 1.0 to 1.5 percent within Occam iterations. The unconstrained blind (without considering field geology) inversion for anisotropic resistivities started from an isotropic 1.0 Ωm half space. Figure 2 shows the inversion results (vertical resistivities only, and horizontal resistivities are not shown for brevity) from two towed streamer EM lines: BK043 and BK014 (Figure 1). The unconstrained inversion seeks the best model to fit the data that is also the smoothest model in the first derivative sense (Constable et al., 1987). Although the unconstrained Figure 2: The results of the 2.5D unconstrained anisotropic inversion. The vertical resistivities are co-rendered with the coincident depth converted seismic sections. Top, for line BK043, and bottom, for line BK014. The black dotted line indicates the location of the Bressay 3/28A-6 well. We calibrate the resistivity model recovered from the inversion of towed streamer EM line BK014 with the Bressay well-log, 3/28A-06, located close to the middle of the reservoir (Figure 2). The result of the unconstrained inversion is in good agreement with the shallow high resistivity volumes seen close to the well (Figure 3), and the inversion has also captured their relative lateral variations. The Bressay reservoir is seen in the well data as a thin but high resistivity anomaly at a depth of ~1.2 km (Figure 3), The unconstrained inversion is supposed to highlight only the large scale features in terms of depths to major stratigraphic boundaries, therefore, the result of the inversion will not resolve thinner resistors. It is intended to Page 782

3 find a slowly varying model that best fits the data. The EM line of BK043 is crossing the Kraken heavy oil field (Figure 1). The reservoir is situated close to the top of the basement with a distance of separation less than ~150 m. The diffusive nature of EM field means that depth is often poorly constrained using CSEM data alone. In practice this is a typical situations that the EM inversion needs seismic structures to help to improve the depth resolution of the mapping. Here we see the unconstrained inversion has smoothed the resistivity contrast between the reservoir and the basement, whereas only a resistivitythickness product was returned, means the high dimension features, such as the Kraken reservoir, will not be resolved in the final model. estimated smallest and the largest values between the horizontal and vertical boundaries in each layer to form only one set of the lower and upper boundaries for both vertical and horizontal resistivity inversions. In this way, we maximize the inversion-searching domain to ensure the use of the seismic and the unconstrained inversion results as a guide, which, at the mean time, provide the appropriate regularizations that the inversion requires. The seismic guided inversion Our proposed EM data integration workflow is aiming to facilitate an optimal procedure to combine the complementary information from the Towed EM and dualsensor seismic data. The higher resolution of the seismic image makes it possible to determine the most appropriate locations of potential resistivity contrasts. We describe here the workflow how it incorporates information obtained from seismic data into an inversion of EM to improve the results of the unconstrained inversions presented above. We setup line BK014 seismic guided inversion to have an isotropic 1Ωm half-space background, as shown in Figure 3. While the boundaries between the inter-bedded sands and shales in the overburden of Bressay were defined by the post-stack dual-sensor seismic data, the anisotropic resistivity variations within the layers above the top reservoir (indicated by the star) were accommodated by the lower and upper boundaries, i.e., the lowest and highest average resistivities, as constrained by the previous unconstrained anisotropic 2.5D inversions, whilst the remaining regions are all set as free parameter space for inversion. Note the seismic boundaries adopted here are free (not fixed) parameters, and been adopted only for the purpose of guiding and to inform the EM inversion these geological interfaces mapped by seismic may be also be potential EM boundaries. Well logs provide a higher resolution measurement of the properties of a reservoir and the overburden strata at the location of the well. We upscale the log data using the arithmetic and harmonic average to approximate the vertical and horizontal resistivity with each layer. We tied the up-scaled log, 3/28A-6, vertical and horizontal resistivities, with the lowest and highest average resistivities, as constrained by the unconstrained anisotropic inversion, to estimate the lower and upper anisotropic resistivity inversion boundaries, respectively. However, in practice, we further extend the estimated inversion boundaries. We used the Figure 3 Top shows the seismic horizons adopted for guiding the inversion of line BK014, where the star indicates the seismically defined top reservoir interface. Bottom, seismic guided inversion results (vertical resistivities) for line BK014 (left), and well 3/28A6 resistivity log (right). The thick black dotted line indicates the well location. In Figure 3, the final result of the seismic guided inversion is shown. A prominent high resistivity anomaly is shown at the depth and lateral location of the known reservoir of Bressay. By comparing to the results obtained by the unconstrained inversion, as shown in Figure 2, both inversions consistently reveal a lateral extent of a large shallow resistive body in the overburden, in the depth range of ~ m. The existence of high resistivity materials in the overburden is also evidenced by well-log data (Figure 3). The body seems due to a chimney-like intrusion where the seismic display the cross-cutting the primary reflections. The body might possibly be formed by gas leakage from the top of the reservoir (Figure 3). Compared to unconstrained inversion, the boundary between the overburden and the underlying formation constrained by the seismic guided inversion is much more consistent with the seismic image. Page 783

4 We conducted seismic guided inversion for line BK043 following similar procedures as the line BK014 inversion, described above. In addition, for this inversion, we have adopted a seismic horizon that define the top of the Heimdal sand as a cut to break the Occam smooth regularization at the top of the reservoir (a sharp contrast in resistivity is allowed here). Figure 4 shows the final inversion retrieved model, indicating that the cut is helpful to constrain the reservoir, but has no effect on other parts of the horizon where was cut but the surface of body seismically defined sand (none resistive). The cut also has little effect on the inversion for retrieving the background structure, as evidenced by comparing the two final models, obtained by the unconstrained (the top panel of Figure 2), to the seismic guided inversion (Figure 4). Figure 4 Same as Figure 2 but showing the seismic guided inversion result (vertical resistivities) for line BK043. In Figure 4, the result of line BK043 seismic guided inversion result displays a localized strong EM anomaly corresponding to the main Heimdal sand body, as constrained by seismic, coincident with the location of the known Kraken reservoir. The inversion was able to vertically separate the reservoir from the below basement, while retrieving the basement boundary with lateral resistivity variations following more closely the amplitude of seismic reflections, as compared to the unconstrained inversions (Figure 2). We investigate here further the lateral variation in resistivity in the overburden (depths between ~ m), as shown by the results from inversion of lines of BK014 and BK043. By focusing on the seismically constrained sub-surface structures of interest, we stitched the two sections together at the location where they cross to form an arbitrary line (see the line path footprint given by blue line in Figure 1). The resistivity profile for this newly formed arbitrary line, achieved simply by laying the two individual seismic guided inversion results side by side, is shown in Figure 5. What we observe here is a consistent seamless link of the two independently obtained models. The model displays an overall picture of the regional geology, however, it also reflects the structural complexities. In particular, it has highlighted the resistivity variations in the shallow structure and their close correlations with seismic variations (Figure 5). From the above joint BBK towed streamer EM and seismic data analysis, we may summarize some of the BBK regional main structural features. There is a zone of higher resistivity in the shallow structure. One of the prominent features that anisotropic inversion shows (horizontal resistivities are not shown for brevity) is the existence of the overburden anisotropy at the same depth, while it recovers an isotropic resistive basement. Kerry et al. (2014) have studied in some detail the nature of the BBK anisotropy. Whereas anisotropic inversion clearly recovered these shallow anisotropic resistors in the overburden, isotropic inversion resulted in some strong artificial alternating stripes of resistive and conductive layers creating a final meaningless model that presented no plausible geological scenario. They have thus concluded that in the BBK region anisotropic inversion is mandatory. Conclusions We have presented a method of the seismic guided EM inversion, and it has been applied in the inversion of a towed streamer EM dataset acquired over a complex geological area of the BBK to illuminate the Bressay and Kraken heavy oil reservoirs. The data processing examples demonstrate the workflow can be used for exploring complex geological regions, and is applicable in a frontier exploration where CSEM and 3D seismic data co-exist. Acknowledgements Figure 5 shows seismic guided inversion result (vertical resistivities) for the arbitrary line, obtained by stitching the two inversion results together from the line BK043 (Figure 4) and BK013 (Figure 3), as indicated in blue in Figure 1. The author would like to thank PGS for allowing the publication of this work, and to BlueGreen Geophysics for providing the MARE2DEM 2.5 D inversion code for data processing. Page 784

5 EDITED REFERENCES Note: This reference list is a copy-edited version of the reference list submitted by the author. Reference lists for the 2014 SEG Technical Program Expanded Abstracts have been copy edited so that references provided with the online metadata for each paper will achieve a high degree of linking to cited sources that appear on the Web. REFERENCES Constable, S. C., R. L. Parker, and C. G. Constable, 1987, Occam's inversion A practical algorithm for generating smooth models from electromagnetic sounding data: Geophysics, 52, , Karman, G. P., D. Ramirez, J. Voon, and L. M. Rosenquist, 2013, More than a decade of CSEM in Shell Insights from a global look back: 2nd International CSEM Conference, Geological Society of Norway, Keynote Address. Key, K., 2012, Marine EM inversion using unstructured grids: A 2D parallel adaptive finite element algorithm: 82nd Annual International Meeting, SEG, Expanded Abstracts, doi: /segam Key, K., Z. Du, J. Mattsson, A. McKay, and J. Midgley, 2014, Anisotropic inversion of towed EM data from Bentley, Bressay and Kraken using parallel adaptive finite elements: 76th Conference & Exhibition, EAGE, Extended Abstracts, / Morten, P., C. Twarz, V. Valente Ricoy-Paramo, and S. Sun, 2013, Improved resolution salt imaging from 3D CSEM anisotropic inversion: 75th Conference & Exhibition, EAGE, Extended Abstracts, Th Page 785

Anisotropic 2.5D Inversion of Towed Streamer EM Data from Three North Sea Fields Using Parallel Adaptive Finite Elements

Anisotropic 2.5D Inversion of Towed Streamer EM Data from Three North Sea Fields Using Parallel Adaptive Finite Elements Anisotropic 2.5D Inversion of Towed Streamer EM Data from Three North Sea Fields Using Parallel Adaptive Finite Elements K. Key (Scripps Institution of Oceanography), Z. Du* (PGS), J. Mattsson (PGS), A.

More information

Case study: North Sea heavy oil reservoir characterization from integrated analysis of towed-streamer EM and dual-sensor seismic data

Case study: North Sea heavy oil reservoir characterization from integrated analysis of towed-streamer EM and dual-sensor seismic data Case study: North Sea heavy oil reservoir characterization from integrated analysis of towed-streamer EM and dual-sensor seismic data Zhijun Du 1 and Kerry Key 2 Downloaded 09/29/18 to 67.247.58.89. Redistribution

More information

Towed Streamer EM data from Barents Sea, Norway

Towed Streamer EM data from Barents Sea, Norway Towed Streamer EM data from Barents Sea, Norway Anwar Bhuiyan*, Eivind Vesterås and Allan McKay, PGS Summary The measured Towed Streamer EM data from a survey in the Barents Sea, undertaken in the Norwegian

More information

Modeling and interpretation of CSEM data from Bressay, Bentley and Kraken area of East Shetland Platform, North Sea

Modeling and interpretation of CSEM data from Bressay, Bentley and Kraken area of East Shetland Platform, North Sea from Bressay, Bentley and Kraken area of East Shetland Platform, North Sea Anwar Bhuiyan*, Rune Sakariassen, Øystein Hallanger and Allan McKay, PGS Summary The heavy oil reservoirs of the Bentley, Bressay

More information

Estimating vertical and horizontal resistivity of the overburden and the reservoir for the Alvheim Boa field. Folke Engelmark* and Johan Mattsson, PGS

Estimating vertical and horizontal resistivity of the overburden and the reservoir for the Alvheim Boa field. Folke Engelmark* and Johan Mattsson, PGS Estimating vertical and horizontal resistivity of the overburden and the reservoir for the Alvheim Boa field. Folke Engelmark* and Johan Mattsson, PGS Summary Towed streamer EM data was acquired in October

More information

SEG Houston 2009 International Exposition and Annual Meeting

SEG Houston 2009 International Exposition and Annual Meeting The role of EM rock physics and seismic data in integrated 3D CSEM data analysis I. Brevik*, StatoilHydro, Pål T. Gabrielsen, Vestfonna and Jan Petter Morten, EMGS Summary An extensive 3D CSEM dataset

More information

2011 SEG SEG San Antonio 2011 Annual Meeting 771. Summary. Method

2011 SEG SEG San Antonio 2011 Annual Meeting 771. Summary. Method Geological Parameters Effecting Controlled-Source Electromagnetic Feasibility: A North Sea Sand Reservoir Example Michelle Ellis and Robert Keirstead, RSI Summary Seismic and electromagnetic data measure

More information

Detection, Delineation and Characterization of Shallow Anomalies Using Dual Sensor Seismic and Towed Streamer EM data

Detection, Delineation and Characterization of Shallow Anomalies Using Dual Sensor Seismic and Towed Streamer EM data Detection, Delineation and Characterization of Shallow Anomalies Using Dual Sensor Seismic and Towed Streamer EM data A.J. McKay* (Petroleum Geo-Services ASA), M. Widmaier (Petroleum Geo- Services ASA),

More information

Vertical and horizontal resolution considerations for a joint 3D CSEM and MT inversion

Vertical and horizontal resolution considerations for a joint 3D CSEM and MT inversion Antony PRICE*, Total E&P and Don WATTS, WesternGeco Electromagnetics Summary To further explore the potential data content and inherent limitations of a detailed 3D Controlled Source ElectroMagnetic and

More information

Rock physics integration of CSEM and seismic data: a case study based on the Luva gas field.

Rock physics integration of CSEM and seismic data: a case study based on the Luva gas field. Rock physics integration of CSEM and seismic data: a case study based on the Luva gas field. Peter Harris*, Zhijun Du, Harald H. Soleng, Lucy M. MacGregor, Wiebke Olsen, OHM-Rock Solid Images Summary It

More information

Downloaded 10/29/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/29/15 to Redistribution subject to SEG license or copyright; see Terms of Use at CSEM based Anisotropy trends in the Barents Sea. Slim Bouchrara *, Lucy MacGregor, Amanda Alvarez, Michelle Ellis, Rolf Ackermann, Paola Newton, Robert Keirstead, Alburto Rusic,Yijie Zhou and Hung-Wen

More information

Towed Streamer EM Integrated interpretation for accurate characterization of the sub-surface. PETEX, Tuesday 15th of November 2016

Towed Streamer EM Integrated interpretation for accurate characterization of the sub-surface. PETEX, Tuesday 15th of November 2016 Towed Streamer EM Integrated interpretation for accurate characterization of the sub-surface. PETEX, Tuesday 15th of November 2016 Joshua May Sales and Marketing Manager Agenda Introduction to Towed Streamer

More information

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Reservoir properties estimation from marine broadband seismic without a-priori well information: A powerful de-risking workflow Cyrille Reiser*, Matt Whaley and Tim Bird, PGS Reservoir Limited Summary

More information

Reducing Uncertainty through Multi-Measurement Integration: from Regional to Reservoir scale

Reducing Uncertainty through Multi-Measurement Integration: from Regional to Reservoir scale Reducing Uncertainty through Multi-Measurement Integration: from Regional to Reservoir scale Efthimios Tartaras Data Processing & Modeling Manager, Integrated Electromagnetics CoE, Schlumberger Geosolutions

More information

SEG Houston 2009 International Exposition and Annual Meeting

SEG Houston 2009 International Exposition and Annual Meeting : The Santos Basin Project - Brazil Andrea Zerilli * and Tiziano Labruzzo, WesternGeco EM, Marco Polo Buonora, Paulo de Tarso Luiz Menezes and Luiz Felipe Rodrigues, Petrobras E&P/GEOF/MP Summary The Santos

More information

G008 Advancing Marine Controlled Source Electromagnetics in the Santos Basin, Brazil

G008 Advancing Marine Controlled Source Electromagnetics in the Santos Basin, Brazil G008 Advancing Marine Controlled Source Electromagnetics in the Santos Basin, Brazil M.P. Buonora* (Petrobras), A. Zerilli (WesternGeco Electromagnetics), T. Labruzzo (WesternGeco Electromagnetics) & L.F.

More information

Summary. Introduction

Summary. Introduction Noel Black*, Glenn A. Wilson, TechnoImaging, Alexander V. Gribenko and Michael S. Zhdanov, TechnoImaging and The University of Utah Summary Recent studies have inferred the feasibility of time-lapse controlled-source

More information

Summary. (a) (b) Introduction

Summary. (a) (b) Introduction er well in AC 818, Gulf of Mexico Cam Kanhalangsy, Nick Golubev, Jurgen Johann Zach, Daniel Baltar*, EMGS Americas Summary We present anisotropic 2.5D inversion examples illustrating the possibility to

More information

IPTC PP Challenges in Shallow Water CSEM Surveying: A Case History from Southeast Asia

IPTC PP Challenges in Shallow Water CSEM Surveying: A Case History from Southeast Asia IPTC-11511-PP Challenges in Shallow Water CSEM Surveying: A Case History from Southeast Asia Sandeep K. Chandola*, Rashidah Karim, Amy Mawarni, Russikin Ismail, Noreehan Shahud, Ramlee Rahman, Paul Bernabe

More information

Integrating seismic, CSEM, and well-log data for reservoir characterization

Integrating seismic, CSEM, and well-log data for reservoir characterization H o n o r a r y L e c t u r e Integrating seismic, CSEM, and well-log data for reservoir characterization Lucy MacGregor, RSI S urely seismic tells you everything you need to know about the Earth? This

More information

Exploring with Controlled Source Electro- Magnetic (CSEM) methods: from 2D profiling to 3D multi-azimuth surveying

Exploring with Controlled Source Electro- Magnetic (CSEM) methods: from 2D profiling to 3D multi-azimuth surveying Exploring with Controlled Source Electro- Magnetic (CSEM) methods: from 2D profiling to 3D multi-azimuth surveying M. Darnet, P. Van Der Sman, R.E. Plessix, J.L. Johnson, M. Rosenquist ( 1 ) ( 1 ) Shell

More information

23855 Rock Physics Constraints on Seismic Inversion

23855 Rock Physics Constraints on Seismic Inversion 23855 Rock Physics Constraints on Seismic Inversion M. Sams* (Ikon Science Ltd) & D. Saussus (Ikon Science) SUMMARY Seismic data are bandlimited, offset limited and noisy. Consequently interpretation of

More information

Keywords. CSEM, Inversion, Resistivity, Kutei Basin, Makassar Strait

Keywords. CSEM, Inversion, Resistivity, Kutei Basin, Makassar Strait Noor Jehan Ashaari Muhamad* (EMGS Asia Pacific), Ritesh Mohan Joshi (EMGS Asia Pacific), Muhamad Afifie Chan Mahadie Chan (EMGS Asia Pacific) mmuhamad@emgs.com Keywords CSEM, Inversion, Resistivity, Kutei

More information

Downloaded 08/29/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 08/29/13 to Redistribution subject to SEG license or copyright; see Terms of Use at New approach to 3D inversion of MCSEM and MMT data using multinary model transform Alexander V. Gribenko and Michael S. Zhdanov, University of Utah and TechnoImaging SUMMARY Marine controlled-source electromagnetic

More information

X004 3D CSEM Inversion Strategy - An Example Offshore West of Greenland

X004 3D CSEM Inversion Strategy - An Example Offshore West of Greenland X004 3D CSEM Inversion Strategy - An Example Offshore West of Greenland A. Lovatini* (WesternGeco EM - Geosystem), M.D. Watts (WesternGeco EM - Geosystem), K. Umbach (EnCana Corp.) & A. Ferster (EnCana

More information

Seismic processing of numerical EM data John W. Neese* and Leon Thomsen, University of Houston

Seismic processing of numerical EM data John W. Neese* and Leon Thomsen, University of Houston Seismic processing of numerical EM data John W. Neese* and Leon Thomsen, University of Houston Summary The traditional methods for acquiring and processing CSEM data are very different from those for seismic

More information

Downloaded 09/16/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/16/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Data Using a Facies Based Bayesian Seismic Inversion, Forties Field, UKCS Kester Waters* (Ikon Science Ltd), Ana Somoza (Ikon Science Ltd), Grant Byerley (Apache Corp), Phil Rose (Apache UK) Summary The

More information

Tu B3 15 Multi-physics Characterisation of Reservoir Prospects in the Hoop Area of the Barents Sea

Tu B3 15 Multi-physics Characterisation of Reservoir Prospects in the Hoop Area of the Barents Sea Tu B3 15 Multi-physics Characterisation of Reservoir Prospects in the Hoop Area of the Barents Sea P. Alvarez (RSI), F. Marcy (ENGIE E&P), M. Vrijlandt (ENGIE E&P), K. Nichols (RSI), F. Bolivar (RSI),

More information

Downloaded 09/16/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/16/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Ehsan Zabihi Naeini*, Ikon Science & Russell Exley, Summit Exploration & Production Ltd Summary Quantitative interpretation (QI) is an important part of successful Central North Sea exploration, appraisal

More information

Downloaded 03/06/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 03/06/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Integration of seismic, CSEM and well data in the Perdido basin, Gulf of Mexico Philippe Nivlet, Luis Sánchez Pérez, EMGS Services México, José Antonio Escalera Alcocer, José Trinidad Martínez Vázquez,

More information

A11 Planning Time-lapse CSEM-surveys for Joint Seismic-EM Monitoring of Geological Carbon Dioxide Injection

A11 Planning Time-lapse CSEM-surveys for Joint Seismic-EM Monitoring of Geological Carbon Dioxide Injection A11 Planning Time-lapse CSEM-surveys for Joint Seismic-EM Monitoring of Geological Carbon Dioxide Injection T. Norman* (NTNU Trondheim and EMGS ASA), H. Alnes (StatoilHydro Research Trondheim), O. Christensen

More information

We A Multi-Measurement Integration Case Study from West Loppa Area in the Barents Sea

We A Multi-Measurement Integration Case Study from West Loppa Area in the Barents Sea We-16-12 A Multi-Measurement ntegration Case Study from West Loppa Area in the Barents Sea. Guerra* (WesternGeco), F. Ceci (WesternGeco), A. Lovatini (WesternGeco), F. Miotti (WesternGeco), G. Milne (WesternGeco),

More information

Summary. Tomography with geological constraints

Summary. Tomography with geological constraints : an alternative solution for resolving of carbonates Olga Zdraveva*, Saeeda Hydal, and Marta Woodward, WesternGeco Summary Carbonates are often present in close proximity to salt in the sedimentary basins

More information

Interpretation and Reservoir Properties Estimation Using Dual-Sensor Streamer Seismic Without the Use of Well

Interpretation and Reservoir Properties Estimation Using Dual-Sensor Streamer Seismic Without the Use of Well Interpretation and Reservoir Properties Estimation Using Dual-Sensor Streamer Seismic Without the Use of Well C. Reiser (Petroleum Geo-Services), T. Bird* (Petroleum Geo-Services) & M. Whaley (Petroleum

More information

Downloaded 10/29/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/29/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Electrical anisotropy drivers in the Snøhvit region of the Barents Sea Michelle Ellis*, Lucy MacGregor, Rolf Ackermann, Paola Newton, Robert Keirstead, Alberto Rusic, Slim Bouchrara, Amanda Geck Alvarez,

More information

Downloaded 11/02/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Summary.

Downloaded 11/02/16 to Redistribution subject to SEG license or copyright; see Terms of Use at   Summary. in thin sand reservoirs William Marin* and Paola Vera de Newton, Rock Solid Images, and Mario Di Luca, Pacific Exploración y Producción. Summary Rock Physics Templates (RPTs) are useful tools for well

More information

A Broadband marine CSEM demonstration survey to map the Uranus salt structure

A Broadband marine CSEM demonstration survey to map the Uranus salt structure A Broadband marine CSEM demonstration survey to map the Uranus salt structure M. Vöge ( 1 ), A. A. Pfaffhuber ( 1 ), K. Hokstad ( 2 ), B. Fotland( 2 ) ( 1 ) Norwegian Geotechnical Institute, Sognsveien

More information

Time vs depth in a North Sea case study of the ugly truth Abstract

Time vs depth in a North Sea case study of the ugly truth Abstract Time vs depth in a North Sea case study of the ugly truth Thomas Massip 1, Lauren Braidwood 1, Juergen Fruehn 1, Owen Isaac 1, Jonathan Denly 1, Robert Richardson 2, Phil Mollicone 3 1 ION Geophysical;

More information

Marine CSEM of the Scarborough gas field, Part 2: 2D inversion

Marine CSEM of the Scarborough gas field, Part 2: 2D inversion GEOPHYSICS, VOL. 8, NO. (MAY-JUNE 5); P. E87 E96, FIGS..9/GEO4-48. Downloaded 4/7/5 to 7..9.. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/ Marine CSEM

More information

Improved Exploration, Appraisal and Production Monitoring with Multi-Transient EM Solutions

Improved Exploration, Appraisal and Production Monitoring with Multi-Transient EM Solutions Improved Exploration, Appraisal and Production Monitoring with Multi-Transient EM Solutions Folke Engelmark* PGS Multi-Transient EM, Asia-Pacific, Singapore folke.engelmark@pgs.com Summary Successful as

More information

Downloaded 09/10/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/10/15 to Redistribution subject to SEG license or copyright; see Terms of Use at The role of legacy seismic in exploring new offshore hydrocarbon provinces or can you teach old data new tricks (technologies)? Howard Nicholls, Lauren Penn, Anna Marszalek, Paolo Esestime, Karyna Rodriguez,

More information

Velocity Update Using High Resolution Tomography in Santos Basin, Brazil Lingli Hu and Jianhang Zhou, CGGVeritas

Velocity Update Using High Resolution Tomography in Santos Basin, Brazil Lingli Hu and Jianhang Zhou, CGGVeritas Lingli Hu and Jianhang Zhou, CGGVeritas Summary The exploration interest in the Santos Basin offshore Brazil has increased with the large deep water pre-salt discoveries, such as Tupi and Jupiter. As the

More information

B033 Improving Subsalt Imaging by Incorporating MT Data in a 3D Earth Model Building Workflow - A Case Study in Gulf of Mexico

B033 Improving Subsalt Imaging by Incorporating MT Data in a 3D Earth Model Building Workflow - A Case Study in Gulf of Mexico B033 Improving Subsalt Imaging by Incorporating MT Data in a 3D Earth Model Building Workflow - A Case Study in Gulf of Mexico E. Medina* (WesternGeco), A. Lovatini (WesternGeco), F. Golfré Andreasi (WesternGeco),

More information

Elastic full waveform inversion for near surface imaging in CMP domain Zhiyang Liu*, Jie Zhang, University of Science and Technology of China (USTC)

Elastic full waveform inversion for near surface imaging in CMP domain Zhiyang Liu*, Jie Zhang, University of Science and Technology of China (USTC) Elastic full waveform inversion for near surface imaging in CMP domain Zhiyang Liu*, Jie Zhang, University of Science and Technology of China (USTC) Summary We develop an elastic full waveform inversion

More information

The effect of anticlines on seismic fracture characterization and inversion based on a 3D numerical study

The effect of anticlines on seismic fracture characterization and inversion based on a 3D numerical study The effect of anticlines on seismic fracture characterization and inversion based on a 3D numerical study Yungui Xu 1,2, Gabril Chao 3 Xiang-Yang Li 24 1 Geoscience School, University of Edinburgh, UK

More information

D034 On the Effects of Anisotropy in Marine CSEM

D034 On the Effects of Anisotropy in Marine CSEM D034 On the Effects of Anisotropy in Marine CSEM L.O. Løseth* (Statoil ASA, formerly Dept. of Physics, NTNU), B. Ursin (Dept. of Appl. Geophys., NTNU) & L. Amundsen (Statoil ASA) SUMMARY In marine CSEM

More information

P125 Method for Calibrating Seismic Imaging Velocities

P125 Method for Calibrating Seismic Imaging Velocities P125 Method for Calibrating Seismic Imaging Velocities P.C. Docherty* (Fairfield Industries Inc.) SUMMARY Anisotropy can cause large depth errors in images obtained with isotropic velocity analysis and

More information

Enhancing the resolution of CSEM inversion using seismic constraints Peter Harris*, Rock Solid Images AS Lucy MacGregor, OHM Surveys Ltd

Enhancing the resolution of CSEM inversion using seismic constraints Peter Harris*, Rock Solid Images AS Lucy MacGregor, OHM Surveys Ltd Enhancing the resolution of CSEM inversion using seismic constraints Peter Harris*, Rock Solid Images AS Lucy MacGregor, OHM Surveys Ltd Summary The vertical resolution of inverted CSEM data remains an

More information

Main Menu RC 1.5. SEG/Houston 2005 Annual Meeting 1315

Main Menu RC 1.5. SEG/Houston 2005 Annual Meeting 1315 : Onshore Nigeria Processing, Interpretation and Drilling Case History. Charles Ojo, Piero Licalsi, and Serafino Gemelli, Nigerian Agip Oil Company, Mike Atkins* and Tue Larsen, Veritas DGC Summary During

More information

Downloaded 11/20/12 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 11/20/12 to Redistribution subject to SEG license or copyright; see Terms of Use at AVO crossplot analysis in unconsolidated sediments containing gas hydrate and free gas: Green Canyon 955, Gulf of Mexico Zijian Zhang* 1, Daniel R. McConnell 1, De-hua Han 2 1 Fugro GeoConsulting, Inc.,

More information

Determination of reservoir properties from the integration of CSEM and seismic data

Determination of reservoir properties from the integration of CSEM and seismic data Determination of reservoir properties from the integration of CSEM and seismic data Peter Harris, 1 Rock Solid Images, and Lucy MacGregor, 2 Offshore Hydrocarbons Mapping, discuss the advantages in reservoir

More information

Downloaded 10/02/18 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/02/18 to Redistribution subject to SEG license or copyright; see Terms of Use at Multi-scenario, multi-realization seismic inversion for probabilistic seismic reservoir characterization Kester Waters* and Michael Kemper, Ikon Science Ltd. Summary We propose a two tiered inversion strategy

More information

2010 SEG SEG Denver 2010 Annual Meeting

2010 SEG SEG Denver 2010 Annual Meeting Anisotropic model building with wells and horizons: Gulf of Mexico case study comparing different approaches Andrey Bakulin*, Olga Zdraveva, Yangjun (Kevin) Liu, Kevin Lyons, WesternGeco/Schlumberger Summary

More information

Modeling of 3D MCSEM and Sensitivity Analysis

Modeling of 3D MCSEM and Sensitivity Analysis PIERS ONLINE, VOL. 3, NO. 5, 2007 641 Modeling of 3D MCSEM and Sensitivity Analysis Zhanxiang He 1, 2, Zhigang Wang 2, Gang Yu 3, Kurt Strack 3, and Haiying Liu 2 1 Department of Geosciences, University

More information

Cross-well seismic modelling for coal seam delineation

Cross-well seismic modelling for coal seam delineation P-134 Sanjeev Rajput, CSIRO, P. Prasada Rao*, N. K. Thakur, NGRI Summary Finite-difference analyses is attempted to simulate a multi layered complex coal seam model in order to differentiate top and bottom

More information

Full-waveform inversion application in different geological settings Denes Vigh*, Jerry Kapoor and Hongyan Li, WesternGeco

Full-waveform inversion application in different geological settings Denes Vigh*, Jerry Kapoor and Hongyan Li, WesternGeco Full-waveform inversion application in different geological settings Denes Vigh*, Jerry Kapoor and Hongyan Li, WesternGeco Summary After the synthetic data inversion examples, real 3D data sets have been

More information

Seismic characterization of Montney shale formation using Passey s approach

Seismic characterization of Montney shale formation using Passey s approach Seismic characterization of Montney shale formation using Passey s approach Ritesh Kumar Sharma*, Satinder Chopra and Amit Kumar Ray Arcis Seismic Solutions, Calgary Summary Seismic characterization of

More information

Summary. Surface-wave analysis and inversion

Summary. Surface-wave analysis and inversion Building a near-surface velocity model in the South Ghadames basin: surface-wave inversion to solve complex statics D. Boiero*, P. Marsden, V. Esaulov, A. Zarkhidze, and P. Vermeer, WesternGeco Summary

More information

3D VTI traveltime tomography for near-surface imaging Lina Zhang*, Jie Zhang, Wei Zhang, University of Science and Technology of China (USTC)

3D VTI traveltime tomography for near-surface imaging Lina Zhang*, Jie Zhang, Wei Zhang, University of Science and Technology of China (USTC) Downloaded 01/03/14 to 16.01.198.34. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/ 3D VTI traveltime tomography for near-surface imaging Lina Zhang*, Jie

More information

RWE Dea UK SNS Limited (50%), Faroe Petroleum (UK) Limited

RWE Dea UK SNS Limited (50%), Faroe Petroleum (UK) Limited 1. Licence information Licence Number P1975 Licence Round 27 th (2012) Licence Type Traditional Blocks 3/28c & 9/3e Licensees Work Programme 2. Synopsis RWE Dea UK SNS Limited (50%), Faroe Petroleum (UK)

More information

Improved Interpretability via Dual-sensor Towed Streamer 3D Seismic - A Case Study from East China Sea

Improved Interpretability via Dual-sensor Towed Streamer 3D Seismic - A Case Study from East China Sea Improved Interpretability via Dual-sensor Towed Streamer 3D Seismic - A Case Study from East China Sea S. Rongfu (CNOOC Shanghai), C. Hua (CNOOC Shanghai), W. Yun (CNOOC Shanghai), Z. Yabin (CNOOC Shanghai),

More information

Reservoir properties prediction using CSEM, pre-stack seismic and well log data: Case Study in the Hoop Area, Barents Sea, Norway

Reservoir properties prediction using CSEM, pre-stack seismic and well log data: Case Study in the Hoop Area, Barents Sea, Norway Reservoir properties prediction using CSEM, pre-stack seismic and well log data: Case Study in the Hoop Area, Barents Sea, Norway ABSTRACT We present an example from the Hoop area of the Barents Sea showing

More information

Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc.

Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc. Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc. Summary Rock physics establishes the link between reservoir properties,

More information

THE USE OF SEISMIC ATTRIBUTES AND SPECTRAL DECOMPOSITION TO SUPPORT THE DRILLING PLAN OF THE URACOA-BOMBAL FIELDS

THE USE OF SEISMIC ATTRIBUTES AND SPECTRAL DECOMPOSITION TO SUPPORT THE DRILLING PLAN OF THE URACOA-BOMBAL FIELDS THE USE OF SEISMIC ATTRIBUTES AND SPECTRAL DECOMPOSITION TO SUPPORT THE DRILLING PLAN OF THE URACOA-BOMBAL FIELDS Cuesta, Julián* 1, Pérez, Richard 1 ; Hernández, Freddy 1 ; Carrasquel, Williams 1 ; Cabrera,

More information

C031 Quantifying Structural Uncertainty in Anisotropic Depth Imaging - Gulf of Mexico Case Study

C031 Quantifying Structural Uncertainty in Anisotropic Depth Imaging - Gulf of Mexico Case Study C031 Quantifying Structural Uncertainty in Anisotropic Depth Imaging - Gulf of Mexico Case Study K. Osypov* (WesternGeco), D. Nichols (WesternGeco), Y. Yang (WesternGeco), F. Qiao (WesternGeco), M. O'Briain

More information

Integration of seismic and fluid-flow data: a two-way road linked by rock physics

Integration of seismic and fluid-flow data: a two-way road linked by rock physics Integration of seismic and fluid-flow data: a two-way road linked by rock physics Abstract Yunyue (Elita) Li, Yi Shen, and Peter K. Kang Geologic model building of the subsurface is a complicated and lengthy

More information

Fluid contacts and net-pay identification in three phase reservoirs using seismic data

Fluid contacts and net-pay identification in three phase reservoirs using seismic data Fluid contacts and net-pay identification in three phase reservoirs using seismic data José Gil*; Fusion Petroleum Technologies, Richard Pérez; Julian Cuesta; Rosa Altamar, María Sanabria; Petrodelta.

More information

Value of broadband seismic for interpretation, reservoir characterization and quantitative interpretation workflows

Value of broadband seismic for interpretation, reservoir characterization and quantitative interpretation workflows Value of broadband seismic for interpretation, reservoir characterization and quantitative interpretation workflows Cyrille Reiser, 1* Tim Bird, 1 Folke Engelmark, 1 Euan Anderson 1 and Yermek Balabekov

More information

2012 SEG SEG Las Vegas 2012 Annual Meeting Page 1

2012 SEG SEG Las Vegas 2012 Annual Meeting Page 1 3D full-waveform inversion at Mariner a shallow North Sea reservoir Marianne Houbiers 1 *, Edward Wiarda 2, Joachim Mispel 1, Dmitry Nikolenko 2, Denes Vigh 2, Bjørn-Egil Knudsen 1, Mark Thompson 1, and

More information

Earth models for early exploration stages

Earth models for early exploration stages ANNUAL MEETING MASTER OF PETROLEUM ENGINEERING Earth models for early exploration stages Ângela Pereira PhD student angela.pereira@tecnico.ulisboa.pt 3/May/2016 Instituto Superior Técnico 1 Outline Motivation

More information

Feasibility and design study of a multicomponent seismic survey: Upper Assam Basin

Feasibility and design study of a multicomponent seismic survey: Upper Assam Basin P-276 Summary Feasibility and design study of a multicomponent seismic survey: Upper Assam Basin K.L.Mandal*, R.K.Srivastava, S.Saha, Oil India Limited M.K.Sukla, Indian Institute of Technology, Kharagpur

More information

Imaging complex structure with crosswell seismic in Jianghan oil field

Imaging complex structure with crosswell seismic in Jianghan oil field INTERPRETER S CORNER Coordinated by Rebecca B. Latimer Imaging complex structure with crosswell seismic in Jianghan oil field QICHENG DONG and BRUCE MARION, Z-Seis, Houston, Texas, U.S. JEFF MEYER, Fusion

More information

TIV Contrast Source Inversion of mcsem data

TIV Contrast Source Inversion of mcsem data TIV Contrast ource Inversion of mcem data T. Wiik ( ), L. O. Løseth ( ), B. Ursin ( ), K. Hokstad (, ) ( )epartment for Petroleum Technology and Applied Geophysics, Norwegian University of cience and Technology

More information

stress direction are less stable during both drilling and production stages (Zhang et al., 2006). Summary

stress direction are less stable during both drilling and production stages (Zhang et al., 2006). Summary Inversion and attribute-assisted hydraulically-induced microseismic fracture prediction: A North Texas Barnett Shale case study Xavier E. Refunjol *, Katie M. Keranen, and Kurt J. Marfurt, The University

More information

P1645 Fig 1: Licence P1645 Introduction

P1645 Fig 1: Licence P1645 Introduction Licence Number: P.1645 commenced 12 th November 2008 Licence Round: 25 th Licence Type: Traditional Block Number: 9/8b Operator: EnQuest (60%) Partners: Norwegian Energy Company (Noreco) UK Ltd 40% Work

More information

FloatSeis Technologies for Ultra-Deep Imaging Seismic Surveys

FloatSeis Technologies for Ultra-Deep Imaging Seismic Surveys FloatSeis Technologies for Ultra-Deep Imaging Seismic Surveys 25 th January, 2018 Aleksandr Nikitin a.nikitin@gwl-geo.com Geology Without Limits Overview 2011-2016 GWL Acquired over 43000 km 2D seismic

More information

Special Section Marine Control-Source Electromagnetic Methods

Special Section Marine Control-Source Electromagnetic Methods GEOPHYSICS, VOL. 7, NO. MARCH-APRIL 7 ; P. WA63 WA7, FIGS. 9/43647 Special Section Marine Control-Source Electromagnetic Methods D marine controlled-source electromagnetic modeling: Part The effect of

More information

Pluto 1.5 2D ELASTIC MODEL FOR WAVEFIELD INVESTIGATIONS OF SUBSALT OBJECTIVES, DEEP WATER GULF OF MEXICO*

Pluto 1.5 2D ELASTIC MODEL FOR WAVEFIELD INVESTIGATIONS OF SUBSALT OBJECTIVES, DEEP WATER GULF OF MEXICO* Pluto 1.5 2D ELASTIC MODEL FOR WAVEFIELD INVESTIGATIONS OF SUBSALT OBJECTIVES, DEEP WATER GULF OF MEXICO* *This paper has been submitted to the EAGE for presentation at the June 2001 EAGE meeting. SUMMARY

More information

We apply a rock physics analysis to well log data from the North-East Gulf of Mexico

We apply a rock physics analysis to well log data from the North-East Gulf of Mexico Rock Physics for Fluid and Porosity Mapping in NE GoM JACK DVORKIN, Stanford University and Rock Solid Images TIM FASNACHT, Anadarko Petroleum Corporation RICHARD UDEN, MAGGIE SMITH, NAUM DERZHI, AND JOEL

More information

Integrated interpretation of multimodal geophysical data for exploration of geothermal resources Case study: Yamagawa geothermal field in Japan

Integrated interpretation of multimodal geophysical data for exploration of geothermal resources Case study: Yamagawa geothermal field in Japan Integrated interpretation of multimodal geophysical data for exploration of geothermal resources Case study: Yamagawa geothermal field in Japan Masashi Endo*(TechnoImaging), Alex Gribenko (TechnoImaging

More information

TOM 1.7. Sparse Norm Reflection Tomography for Handling Velocity Ambiguities

TOM 1.7. Sparse Norm Reflection Tomography for Handling Velocity Ambiguities SEG/Houston 2005 Annual Meeting 2554 Yonadav Sudman, Paradigm and Dan Kosloff, Tel-Aviv University and Paradigm Summary Reflection seismology with the normal range of offsets encountered in seismic surveys

More information

SEG Houston 2009 International Exposition and Annual Meeting SUMMARY

SEG Houston 2009 International Exposition and Annual Meeting SUMMARY Simultaneous joint inversion of MT and CSEM data using a multiplicative cost function Aria Abubakar, Maokun Li, Jianguo Liu and Tarek M. Habashy, Schlumberger-Doll Research, Cambridge, MA, USA SUMMARY

More information

2012 SEG SEG Las Vegas 2012 Annual Meeting Page 1

2012 SEG SEG Las Vegas 2012 Annual Meeting Page 1 Wei Huang *, Kun Jiao, Denes Vigh, Jerry Kapoor, David Watts, Hongyan Li, David Derharoutian, Xin Cheng WesternGeco Summary Since the 1990s, subsalt imaging in the Gulf of Mexico (GOM) has been a major

More information

We Improved Salt Body Delineation Using a new Structure Extraction Workflow

We Improved Salt Body Delineation Using a new Structure Extraction Workflow We-08-08 Improved Salt Body Delineation Using a new Structure Extraction Workflow A. Laake* (WesternGeco) SUMMARY Current salt imaging workflows require thorough geological understanding in the selection

More information

The Alba Field: Improved Reservoir Characterisation using 4D Seismic Data. Elaine Campbell Oliver Hermann Steve Dobbs Andrew Warnock John Hampson

The Alba Field: Improved Reservoir Characterisation using 4D Seismic Data. Elaine Campbell Oliver Hermann Steve Dobbs Andrew Warnock John Hampson The Alba Field: Improved Reservoir Characterisation using 4D Seismic Data Elaine Campbell Oliver Hermann Steve Dobbs Andrew Warnock John Hampson Chevron 2005 Alba Field Location Equity: Chevron 23% (operator)

More information

We N Geophysical Near-surface Characterization for Static Corrections: Multi-physics Survey in Reggane Field, Algeria

We N Geophysical Near-surface Characterization for Static Corrections: Multi-physics Survey in Reggane Field, Algeria We N114 01 Geophysical Near-surface Characterization for Static Corrections: Multi-physics Survey in Reggane Field, Algeria A. Pineda* (Repsol), S. Gallo (CGG) & H. Harkas (GRN Sonatrach) SUMMARY We are

More information

RC 1.3. SEG/Houston 2005 Annual Meeting 1307

RC 1.3. SEG/Houston 2005 Annual Meeting 1307 from seismic AVO Xin-Gong Li,University of Houston and IntSeis Inc, De-Hua Han, and Jiajin Liu, University of Houston Donn McGuire, Anadarko Petroleum Corp Summary A new inversion method is tested to directly

More information

We LHR3 06 Detecting Production Effects and By-passed Pay from 3D Seismic Data Using a Facies Based Bayesian Seismic Inversion

We LHR3 06 Detecting Production Effects and By-passed Pay from 3D Seismic Data Using a Facies Based Bayesian Seismic Inversion We LHR3 06 Detecting Production Effects and By-passed Pay from 3D Seismic Data Using a Facies Based Bayesian Seismic Inversion K.D. Waters* (Ikon Science Ltd), A.V. Somoza (Ikon Science Ltd), G. Byerley

More information

3D geological model for a gas-saturated reservoir based on simultaneous deterministic partial stack inversion.

3D geological model for a gas-saturated reservoir based on simultaneous deterministic partial stack inversion. first break volume 28, June 2010 special topic A New Spring for Geoscience 3D geological model for a gas-saturated reservoir based on simultaneous deterministic partial stack inversion. I. Yakovlev, Y.

More information

Geophysical model response in a shale gas

Geophysical model response in a shale gas Geophysical model response in a shale gas Dhananjay Kumar and G. Michael Hoversten Chevron USA Inc. Abstract Shale gas is an important asset now. The production from unconventional reservoir like shale

More information

Model Building Complexity in the Presence of a Rugose Water Bottom Gippsland Basin Australia

Model Building Complexity in the Presence of a Rugose Water Bottom Gippsland Basin Australia Model Building Complexity in the Presence of a Rugose Water Bottom Gippsland Basin Australia Paul Bouloudas, Apache Energy, Juergen Fruehn, ION GX Technology Introduction Situated offshore south-eastern

More information

P1488 DECC Relinquishment Report OMV (U.K.) Ltd.

P1488 DECC Relinquishment Report OMV (U.K.) Ltd. 1. Synopsis: P1488 DECC Relinquishment Report OMV (U.K.) Ltd. UK offshore Licence P1488 was awarded to OMV, Dana Petroleum and Rocksource in the 24 th Licence Round on the 24 th of January 2007 as a frontier

More information

DHI Analysis Using Seismic Frequency Attribute On Field-AN Niger Delta, Nigeria

DHI Analysis Using Seismic Frequency Attribute On Field-AN Niger Delta, Nigeria IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 1, Issue 1 (May. Jun. 2013), PP 05-10 DHI Analysis Using Seismic Frequency Attribute On Field-AN Niger

More information

QUANTITATIVE INTERPRETATION

QUANTITATIVE INTERPRETATION QUANTITATIVE INTERPRETATION THE AIM OF QUANTITATIVE INTERPRETATION (QI) IS, THROUGH THE USE OF AMPLITUDE ANALYSIS, TO PREDICT LITHOLOGY AND FLUID CONTENT AWAY FROM THE WELL BORE This process should make

More information

Porosity. Downloaded 09/22/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Porosity. Downloaded 09/22/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Geostatistical Reservoir Characterization of Deepwater Channel, Offshore Malaysia Trisakti Kurniawan* and Jahan Zeb, Petronas Carigali Sdn Bhd, Jimmy Ting and Lee Chung Shen, CGG Summary A quantitative

More information

Tu G Mapping of Sand Injectites from Colourprocessed Multimeasurement Seismic Data

Tu G Mapping of Sand Injectites from Colourprocessed Multimeasurement Seismic Data Tu G107 08 Mapping of Sand Injectites from Colourprocessed Multimeasurement Seismic Data A. Laake* (Schlumberger) SUMMARY In a PSDM data set from the Central North Sea we found sand injectite structures

More information

Petroleum Prospectivity in the Namibe and Southern Benguela Basins, Offshore Angola

Petroleum Prospectivity in the Namibe and Southern Benguela Basins, Offshore Angola Petroleum Prospectivity in the Namibe and Southern Benguela Basins, Offshore Angola C. Koch* (PGS), F. Pepe (PGS), R. Vasconcelos (PGS), F. Mathew (PGS), R. Borsato (PGS) & M.P.C. de Sá (Sonangol) SUMMARY

More information

Tu N Fault Shadow Removal over Timor Trough Using Broadband Seismic, FWI and Fault Constrained Tomography

Tu N Fault Shadow Removal over Timor Trough Using Broadband Seismic, FWI and Fault Constrained Tomography Tu N118 05 Fault Shadow Removal over Timor Trough Using Broadband Seismic, FWI and Fault Constrained Tomography Y. Guo* (CGG), M. Fujimoto (INPEX), S. Wu (CGG) & Y. Sasaki (INPEX) SUMMARY Thrust-complex

More information

PETROLEUM GEOSCIENCES GEOLOGY OR GEOPHYSICS MAJOR

PETROLEUM GEOSCIENCES GEOLOGY OR GEOPHYSICS MAJOR PETROLEUM GEOSCIENCES GEOLOGY OR GEOPHYSICS MAJOR APPLIED GRADUATE STUDIES Geology Geophysics GEO1 Introduction to the petroleum geosciences GEO2 Seismic methods GEO3 Multi-scale geological analysis GEO4

More information

Unconventional reservoir characterization using conventional tools

Unconventional reservoir characterization using conventional tools Ritesh K. Sharma* and Satinder Chopra Arcis Seismic Solutions, TGS, Calgary, Canada Summary Shale resources characterization has gained attention in the last decade or so, after the Mississippian Barnett

More information