Uneven aftershock distribution of Wenchuan Ms 8. 0 earthquake and possible mechanism

Size: px
Start display at page:

Download "Uneven aftershock distribution of Wenchuan Ms 8. 0 earthquake and possible mechanism"

Transcription

1 Geodesy and Geodynamics 211,2(2) : jgg9. com Doi:1.3724/SP.J Uneven aftershock distribution of Wenchuan Ms 8. earthquake and possible mechanism Li Zhixiong 1,Chen Zhangli 2, Zhao Cuiping 1, Shao Zhigang 1,Hua Wei 1, Wang Qincai 1 and He Ping 1 1 lnstituje of Eart/upuJJre Science, Chma Eart/upuJJre Administration, Beijing 136, China ' China Earthquake Administration, Beijing 136, Chma Abstract:The aftershock activity ofwenchuan Ms8. earthquake showed different spatial and temporal distributions along two different segments of the Longmenshan fault. This difference was likely the result of segmentation of the earthquake rupture process, which in turn may be the result of the fault ' s segmentation in its long-term geotectonic condition. Key words: Wenchuan earthquake ; aftershock activities; spatial and temporal unevenness ; mechanism study ; inheritance movement 1 Introduction The Ms8. Wenchuan earthquake occurred on May 12,28 along Longmenshan fault ( 31. N, E) in seismically-active Sichuan Province 32 years after the occurrence of a pair of Ms7. Songpan-Pingwu earthquakes in When examining the aftershocks of this earthquake, we found unevenness in their spatial and temporal distributions. In this paper, we show the aftershock data for a period of about 3 months after the earthquake, and discuss a possible mechanism for the observed unevenness. 2 Uneven aftershock distributions 2. 1 Spatial distribution Figure 1 shows the spatial distribution of the aftershocks from catslogue of China Earthquake Networks Received: ; Accepted: Corresponding author: Tel: lzx638@ seis. ac. en This work was supported by the Earthguak:e Science Joint Foundation ( A77 ) ond The Projret of China Eanthguake Adminititon ( ) Center and their frequency-of-occurrence distribution along a rupture-parallel cross-section. From figure 1 (a) and (b), we may see that the aftershocks of Ms;;. 2. extended from SW to NE for about 3 km along Longmenshan fault, and that the stronger aftershocks of Ms;;. 5. congregated mainly in two segments divided by a gap near Mianyang. Figure 1 ( c) and (d) show the same congregation of Ms;;.3. and Ms;;.4. aftershocks, respectively, near Wenchuan-Beichuan and Qingchuao Temporal distribution Figure 2 shows the time series of Ms ;;.5. aftershocks, from which we may see that the stronger aftershocks of Ms ;;.5. occurred frequently during a one-month period after the main shock, but became quiescent for a bout one month, and then became active again Spatial distribution of b-values Figure 3 shows the spatial distribution of Ml ;;.2. aftershocks and the spatially scanned result of b-values of the aftershocks. It may be seen that the b-values displayed a regional difference, being less than. 6 to the SW of Mianzhu and more than. 6 to the NE.

2 8 Geodesy and Geodynamics Vol. 2 Legend 33'N 'N Legend l~~. \ 'N ~ \ \.. ~ 1. ~ 2..;3 3. g A Dujiangyan 14'E 15'E 12'E 14'E 16'E (a) aftershocks (Ms;;.2.) (b) aftershocks (Ms;;.5.) Wenchuan Mianzhu 15. Beichuan Pingwu Qingchuan (c) frequency of Ms;;.3. aftershocks along cross-sectiona-b (using 1 krn statistical radius, and 1 krn step); B km (d) frequency of Ms;;.4. aftershocks. Figure 1 Spatial distribution of aftershocks and the frequency distribution ( up to August 5, 28 ) 2. 4 Difference between SW and NE segments of the earthquake-rupture zone Based on the above-mentioned distribution, we divided the rupture zone into two segments[!], namely, Dujingyan-Wenchuan segment to the SW of Mianyang and Beichuan -Qingchuan segment to the NE. The time series of decay coefficient ( P value ) calculated with Omori formula for these sections ( up to August 5, 28) are shown in figure ~ Time (day) Figure 2 Time series of aftershocks with magnitude equal or above 5. ( up to August 5, 28) Figure 3 Spatial distribution of b-values (scanning radius is 5 km, spatial sliding step is. 1, up to August 5, 28)

3 No.2 Li Zhixiong, et al. Uneven aftershock distribution of W enchuan M s 8. earthquake and possible mechanism Beichuan Mianzhu Wenchuan Dujiangyan I sw ~.8 ~.., A-EN sequence -----SW sequence ~ -5 ]-! ~-15 t-2 c:::l OL---L---~--~---L--~ L L ~_ ()6..() {) Day/Month Figure 4 Decay coefficient (P-value) of Wenchuan aftershock sequence As shown in this figure, the aftershocks in the SW segment decreased rapidly until June 1, when the P value reached 1. 1; subsequently the P value stayed around This result means that these aftershocks reached normal attenuation at that time, and they had the feature of main-aftershock type. On the other hand, the P value of the NE segment increased relatively slowly, remaining below 1. until August 5. This means that these aftershocks had the feature of an earthquake swarm. 3 Possible mechanism for the uneven aftershock distribution The above-mentioned uneven spatial distribution of aftershocks was possibly due to the earthquake-rupture process and its stress-field background, as discussed below. 3.1 Mainshock rupture The rupture process of the mainshock was studied by Zhao, et al [ 4 J, using teleseismic P-wave and SH-wave data recorded by 32 stations from the IRIS data center. Their inversion results showed that the earthquake was composed of five sub-events ( Ms7. 3, 7. 6, 7. 4, 7. 5, and 7. 4), and it had an obvious segmentation feature in the rupture movement with a borderline near Mianzhu. As shown in figure 5, the rupture began at the hypocenter and extended northeastward for about 3 km to southwestern part of Yinxiu-Beichuan fault, causing a surface rupture of about 25 km in the northern part. The rupture had two distinct segments: From the initial thrust displacement in the southwestern part of Distance along the strike (N231 E) on the plane of fault Figure 5 Distribution of static slips on rupture plane of W enchuan earthquake ( The star indicates the hypocenter) Yinxiu-Beichuan fault, it turned into right-lateral slip towards NE near Mianzhu and continued to Beichuan and Qingchuan with a maximum displacement of 6. 5 m in Dujingyan-Mianzhu. The SW segment ruptured to a depth of about 3 km with a fault displacement of up to 8. m; the displacement was completely upthrust at a depth less than 15 km, but was upthrust and right-lateral at a depth more than 15 km. In contrast, the NE segment ruptured only to a depth of 1 km with a maximal displacement of 6. m. The energy released by the SW segment of the earthquake was larger than that by the NE segment Regional stress background and the earthquake rupture' s effect on aftershock occurrence We calculated the earthquake-related static stress changes both with and without considering the background stress field, using Coulomb stress method by Okada [SJ and average stress data provided by Professor Xie Furen ( Fig. 6). By comparing the spatial distributions shown in figure 6 ( a) and ( b), we found that the results of calculated range of influence of the earthquake were different: H the background was not considered, the stress change was only positive in Yingxiu Wenchuan-Lixian-Heishui area and should have almost no influence on the NE segment ; this result cannot account for the aftershock of M s5. or above that occurred there ( Fig. 6 ( b ) ). However, if the background -stress field was considered ( Fig. 6 ( a ) ), the stress change showed a distinct spatial segmentation pattern, being positive ( having loading effect ) in W enchuan-maoxian -Songpan-Heishui-Lixian, Beichuan Pingwu-Qingchuan, and Yingxiu-baoxing areas, and negative (unloading) in Maoxian-Huya-Nanping Wenx-

4 1 Geodesy and Geodynamics Vol. 2 A BIMPa N ' ' (a) with consideration of average stress-field background 29N ' '---' (b) without consideration of average stress-field background -.2 Figure 6 Coulomb static stress and distribution of Ml ;l!: 5. aftershocks ian-pingwu and Maoxian -Chengdu-Anxian-Beichuan areas. The positive stress change here was more than. 5MPa, which is much more than. OlMPa needed to cause aftershock occurrence, as estimated in several previous papers[?-jol_ Thus we may attribute the observed aftershock occurrence in the NE segment to the stress-field adjustment caused by stress-field adjustment induced by the main shock Segmentation shown by larger aftershocks The same segmentation was also observed by Wang, et al [ ll] who estimated the stress field along the rupture zone by using FMSI[ 12 ' 13 l inversion method based on the moment-tensor solution inversion for aftershocks above Ms4.. Their calculated maximum principle stress directions shown in figure 7 are different between the same two segments as ours. confined to shallower depth ( Fig. 8 ( b) and ( c ) ). Figure 9 shows the temporal distribution of stress drops of the aftershocks along the entire fault [ 14 l. In the NE segment, most aftershock energy was released 4 days after the main shock Tectonic background The uneven slip distribution of the earthquake rupture might be related to the tectonic background of Longmenshan fault, which extends from Songpan -Ganzi orogenic belt northeastward to Y angzi block ( Fig. 1 ). The fault ' s movement was influenced increasingly by themotion of Indian plate since the Quaternary period Rupture-related uneven aftershock activity Figure 8 shows hypocenters of Ms ~ 3. aftershocks during a total period of 6 days after the earthquake ( determined with a precision of 2 km vertically and 1. 2 km horizontally). During the first 2 days, many aftershocks concentrated in the southwestern segment of the rupture zone around the hypocenter to a depth of 2 km ( Fig. 8 ( a) ) ; many aftershocks also occurred along the NE segment where co-seismic fault movement was smaller. During the subsequent two 2-day periods, the aftershocks along the NE segment tended to be deeper, while those along the SW segment tended to be 12E 13E 14E 15E 16E 17"E Figure 7 Spatial distribution of Ms ;l!:4. aftershocks and stress background

5 No.2 Li Zhixiong, et al. Uneven aftershock distribution of W enchuan M s 8. earthquake and possible mechanism 11 Dujiangyan Wenchuan Mianzhu Beichuan ~1.,9 il'... >.. 2. "' (a) Distribution ofm1;,.3. aftershocks within 2 days after main shock (Distance along the strike (231 o ) (ian) ) ~ 1 t Dujiangyan Wenchuan Mianzhu Beichuan Qingchuan I I I I I time (day),--,--~-,~~~~~--~~---,--~-,_l~~~~~,-~--,--, ~ 2 I_. o al9 4 1o 8 4 l ea o cf~ d' eo 1:9~ I \ ' ~,.,l " & a "'-~.;' t :.,~ :~.,._~ o ~ "' a. Il l+.~ ~ ~ ' ~ ' ~ :.. ~o~ :~ o ~: o o e o e o 1P ~~...,;. I fb ~ 8 a OJ G l&io., ' t C» (b) Distribution of Ml;,.3. aftershocks from 2-4 days after the main shock (Distance along the strike (ian) ) Dujiangyan Wenchuan Mianzhu Beichuan Qingchuan I I I I I time (day).. 6 o. ac ~. o : ;.. 81 ~... o ~.le ~a..,}ij-* ~~ Q>Q a. i.. IP o i T a ~ %.~ o ~ ~~ : ::: 55 o ~ ~ e ~. 1.., ~ 3> a.?," 5.,9 <> II II. ~ G II Q il' (c) Distribution of Ml;:.3. aftershocks during 41-6 days after the main shock (Distance along the strike (km) ) 4 Figure 8 Distribution of Ml~3. aftershocks along the strike for three different periods However, the level of activity in different regions has been different. Based on analysis on topography, geological structure, Bouguer gravity anomaly, and earthquake activity, etc., we found that the SW and NE segments were divided by Huya and Leidong faults. The movement activity was strong in the SW segment since late Pleistocene epoch, but a little weaker in the NE segment. During the earthquake, the rupture started from the hypocenter in the SW segment, where the tectonic energy might be more completely released; it propagated towards NE and might be hindered by Huya and Leidong faults, resulting a relatively incomplete energy release in the NE segment, which was subsequently made up by the aftershocks. Thus, the uneven spatial distribution of Wenchuan aftershocks was consistent with the segmentation of Longmenshan fault m its long-term geotectonic environment. 4 Conclusions Based on the above-mentioned observations and analysis, we tentatively conclude : 35rr~~-.~~~-.~~~-.~~~-.~ A2 3.. I I. ~ 25 ] ';; 2 ~ 15 a AI Cb Time/day Stress drop (MPa) Figure 9 -Beichuan.4 -Qingchuan -Wenchuan -Yingxiu Temporal distribution of stress drops of the aftershocks along the entire rupture

6 12 Geodesy and Geodynamics Vol. 2 References 33"N 32"N 31"N Figure 1 Heishui 13"E 14"E 15"E Legend ~ Quaternary l's:...:..ll rifted basin ~ uplift j:;g fault 16"E Geological setting of Longmenshan fault (Chen, et al[is]) 6km 1 ) Mtershocks of W enchuan earthquake during the initial two months showed different spatial and temporal distributions along two different segments of Longmenshan fault located, respectively, to the SW and NE of Mianzhu. 2 ) This segmentation of aftershock activity may be the result of a similar segmentation of the mainshock rupture process. 3) The segmentation of the rupture process, in turn, may be the result of a similar segmentation of the fault in its long-term geotectonic environment. Acknowledgments We are grateful to Wan Huimin and Lii Meimei coming from China Earthquake Networks Center for providing earthquake catalogue. We thank Professor Jiang Haikun for his help in the calculation of decay coefficient P value of earthquake sequence. Meanwhile we also thank the anonymous reviewers for their constructive comments for improving our manuscript. [ 1 ] Li Zhixiong, Shao Zhigang, Zhao Cui ping, et al. A segmentation study on the activity of Wenchuan Ms8. earthquake sequence. Earthquake, 29,29 ( 1) : (in Chinese) [ 2] Utsu T. A statistical study on the occurrence of aftershocks. Geophys Mag., 1961, 3: [ 3 ] Utsu T and Matsu' ura R. The centenary of the Omori formula for a decay law of aftershock activity. J Phys Earth., 1995, 45 : [ 4] Zhao Cuiping, Chen Zhangli,Zhou Lianqing,et al. A study on focus rupture processing and segmentation feature of W enchuan Mw8. earthquake. Scientia Sinica, 29,54(22) : [ 5] Okada T. Internal deformation due to shear and tensile faults in half-space. Bull Seism Soc Amer., 1992,82: [ 6] Wei Hua, Chen Zhangli, Li Zhixiong, et al. A study on Wenchuan M s8. earthquake triggering and spatial distribution of its aftershock activity.earthquake,29,29(1): (in Chinese) [ 7] Hardebeck J L, Nazareth J J and Hauksson E. The static stress change triggering model : Constraints from two southern California aftershock sequences. J Geophys Res., 1998, 13: [ 8] Reasenberg P A and Simpson R W. Respone of regional seismicity to the static stress change produced by the Lorna Prieta earthquake. Science, 1992,255: [ 9 ] Harris R A. Introduction to special section: Stress triggering, stress shadows, and implications for seismic hazard. J Geophys Res., 1998,13 : [ 1 ] Stein R S. The role of stress transfer in earthquake occurrence. Nature,1999,42: [ 11] Wang Qincai, Chen Zhangli and Zheng Sihua. Spatial segmentation feature of focus mechanism and stress direction in W enchuan earthquake aftershock sequence. Science Bulletin, 54 ( 16) : [ 12] Gephart J W and Forsyth D W. An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to San Fernando earthquake. J Geophys Res., 1984, 89: [ 13] Gephart J W. Stress and the direction of slip on fault plane. Tectonics, 1994,(4) : [ 14] Wei Hua, Chen Zhangli and Zheng Sihua. A study on segmentation feature of focus parameter of W enchuan M s8. earthquake sequence in 28. Acta Geophysica Sinica, 29, 52 ( 2) : [ 15 ] Chen Guoguang, Ji Fengju, Zhou Rongjun, et al. Preliminary study on segmentation feature of Longmenshan fault activity in late quaternary. Seimology and Geology,27,29(3) :

Relocation of aftershocks of the Wenchuan M S 8.0 earthquake and its implication to seismotectonics

Relocation of aftershocks of the Wenchuan M S 8.0 earthquake and its implication to seismotectonics Earthq Sci (2011)24: 107 113 107 doi:10.1007/s11589-011-0774-6 Relocation of aftershocks of the Wenchuan M S 8.0 earthquake and its implication to seismotectonics Bo Zhao Yutao Shi and Yuan Gao Institute

More information

SCIENCE CHINA Earth Sciences

SCIENCE CHINA Earth Sciences SCIENCE CHINA Earth Sciences RESEARCH PAPER September 2011 Vol.54 No.9: 1386 1393 doi: 10.1007/s11430-011-4177-2 Crustal P-wave velocity structure of the Longmenshan region and its tectonic implications

More information

Songlin Li 1, Xiaoling Lai 1 Zhixiang Yao 2 and Qing Yang 1. 1 Introduction

Songlin Li 1, Xiaoling Lai 1 Zhixiang Yao 2 and Qing Yang 1. 1 Introduction Earthq Sci (2009)22: 417 424 417 Doi: 10.1007/s11589-009-0417-3 Fault zone structures of northern and southern portions of the main central fault generated by the 2008 Wenchuan earthquake using fault zone

More information

Source rupture process inversion of the 2013 Lushan earthquake, China

Source rupture process inversion of the 2013 Lushan earthquake, China Geodesy and Geodynamics 2013,4(2) :16-21 http://www. jgg09. com Doi:10.3724/SP.J.1246.2013.02016 Source rupture process inversion of the 2013 Lushan earthquake, China Zhang Lifen 1 ' 2, lman Fatchurochman

More information

Research Article Seismic Structure of Local Crustal Earthquakes beneath the Zipingpu Reservoir of Longmenshan Fault Zone

Research Article Seismic Structure of Local Crustal Earthquakes beneath the Zipingpu Reservoir of Longmenshan Fault Zone International Geophysics Volume 11, Article ID 773, pages doi:.11/11/773 Research Article Seismic Structure of Local Crustal Earthquakes beneath the Zipingpu Reservoir of Longmenshan Fault Zone Haiou Li,

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L02304, doi: /2009gl041835, 2010

GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L02304, doi: /2009gl041835, 2010 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2009gl041835, 2010 Seismic structure of the Longmen Shan region from S wave tomography and its relationship with the Wenchuan

More information

Three-dimensional numerical simulation on the coseismic deformation of the 2008 M S 8.0 Wenchuan earthquake in China

Three-dimensional numerical simulation on the coseismic deformation of the 2008 M S 8.0 Wenchuan earthquake in China Earthq Sci (2010)23: 191 200 191 Doi: 10.1007/s11589-009-0091-5 Three-dimensional numerical simulation on the coseismic deformation of the 2008 M S 8.0 Wenchuan earthquake in China Feng Li and Jinshui

More information

Is the deformation rate of the Longmenshan fault zone really small? Insight from seismic data at the two-decade time scale

Is the deformation rate of the Longmenshan fault zone really small? Insight from seismic data at the two-decade time scale LETTER Earth Planets Space, 62, 887 891, 2010 Is the deformation rate of the Longmenshan fault zone really small? Insight from seismic data at the two-decade time scale Yizhe Zhao 1, Zhongliang Wu 1,2,

More information

CAP M S Wallace. Vol. 27 No. 2 Jun EARTHQUAKE RESEARCH IN CHINA M S 4. 8 CAP. 3km - - P315

CAP M S Wallace. Vol. 27 No. 2 Jun EARTHQUAKE RESEARCH IN CHINA M S 4. 8 CAP. 3km - - P315 27 2 207 ~ 214 2011 6 EARTHQUAKE RESEARCH IN CHINA Vol. 27 No. 2 Jun. 2011 2011 CAP 4. 8 27 2 207 ~ 214 CAP 4. 8 1 2 1 2 3 1 1 1 558 230031 2 96 230026 3 100081 CAP 2011 1 19 M S 4. 8 M W = 4. 1 I 16 74

More information

Slip model of the 2008 M w 7.9 Wenchuan (China) earthquake derived from co-seismic GPS data

Slip model of the 2008 M w 7.9 Wenchuan (China) earthquake derived from co-seismic GPS data LETTER Earth Planets Space, 6, 869 87, 1 Slip model of the 8 M w 7.9 Wenchuan (China) earthquake derived from co-seismic GPS data Faqi Diao 1,, Xiong Xiong 1, Rongjiang Wang 3, Yong Zheng 1, and Houtse

More information

Are reservoir earthquakes man-made?

Are reservoir earthquakes man-made? Water and Society II 273 Are reservoir earthquakes man-made? Y. L. Shi, H. H. Cheng, B. Zhang, L. Zheng, Y. J. Sun & H. Zhang Key Laboratory of Computational Geodynamics of Chinese Academy of Sciences,

More information

COULOMB STRESS CHANGES DUE TO RECENT ACEH EARTHQUAKES

COULOMB STRESS CHANGES DUE TO RECENT ACEH EARTHQUAKES COULOMB STRESS CHANGES DUE TO RECENT ACEH EARTHQUAKES Madlazim Physics Department, Faculty Mathematics and Sciences of Surabaya State University (UNESA) Jl. Ketintang, Surabaya 60231, Indonesia. e-mail:

More information

SCIENCE CHINA Earth Sciences

SCIENCE CHINA Earth Sciences SCIENCE CHINA Earth Sciences RESEARCH PAPER September 2014 Vol.57 No.9: 2036 2044 doi: 10.1007/s11430-014-4827-2 A rupture blank zone in middle south part of Longmenshan Faults: Effect after Lushan M s

More information

Focal Mechanism Solutions of the 2008 Wenchuan earthquake sequence from P-wave polarities and SH/P amplitude ratios: new results and implications

Focal Mechanism Solutions of the 2008 Wenchuan earthquake sequence from P-wave polarities and SH/P amplitude ratios: new results and implications Earthq Sci (2013) 26(6):357 372 DOI 10.1007/s11589-014-0067-y RESEARCH PAPER Focal Mechanism Solutions of the 2008 Wenchuan earthquake sequence from P-wave polarities and SH/P amplitude ratios: new results

More information

Synthetic Seismicity Models of Multiple Interacting Faults

Synthetic Seismicity Models of Multiple Interacting Faults Synthetic Seismicity Models of Multiple Interacting Faults Russell Robinson and Rafael Benites Institute of Geological & Nuclear Sciences, Box 30368, Lower Hutt, New Zealand (email: r.robinson@gns.cri.nz).

More information

Coulomb stress changes due to Queensland earthquakes and the implications for seismic risk assessment

Coulomb stress changes due to Queensland earthquakes and the implications for seismic risk assessment Coulomb stress changes due to Queensland earthquakes and the implications for seismic risk assessment Abstract D. Weatherley University of Queensland Coulomb stress change analysis has been applied in

More information

The 20 April 2013 Lushan, Sichuan, mainshock, and its aftershock sequence: tectonic implications

The 20 April 2013 Lushan, Sichuan, mainshock, and its aftershock sequence: tectonic implications Earthq Sci (2014) 27(1):15 25 DOI 10.1007/s11589-013-0045-9 RESEARCH PAPER The 20 April 2013 Lushan, Sichuan, mainshock, and its aftershock sequence: tectonic implications Jianshe Lei Guangwei Zhang Furen

More information

INTRODUCTION AND PRELIMINARY ANALYSIS OF STRONG MOTION RECORDINGS FROM THE 12 MAY 2005 Ms8.0 WENCHUAN EARTHQUAKE OF CHINA

INTRODUCTION AND PRELIMINARY ANALYSIS OF STRONG MOTION RECORDINGS FROM THE 12 MAY 2005 Ms8.0 WENCHUAN EARTHQUAKE OF CHINA INTRODUCTION AND PRELIMINARY ANALYSIS OF STRONG MOTION RECORDINGS FROM THE 12 MAY 2005 Ms8.0 WENCHUAN EARTHQUAKE OF CHINA Li Xiaojun 1, Zhou Zhenghua 1, Huang Moh 3, Wen Ruizhi 1, Yu Haiyin 1, Lu Dawei

More information

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE Paulino C. FEITIO* Supervisors: Nobuo HURUKAWA** MEE07165 Toshiaki YOKOI** ABSTRACT

More information

Characteristics of seismic activity before the M S 8.0 Wenchuan earthquake

Characteristics of seismic activity before the M S 8.0 Wenchuan earthquake Earthq Sci (2009)22: 519 529 519 Doi: 10.1007/s11589-009-0519-4 Characteristics of seismic activity before the M S 8.0 Wenchuan earthquake Yan Xue 1,2, Jie Liu 2 Shirong Mei 3 and Zhiping Song 4 1 Institute

More information

Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard. Earthquake Environment

Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard. Earthquake Environment Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard Ultimately what we want is a seismic intensity measure that will allow us to quantify effect of an earthquake on a structure. S a

More information

Rotation of the Principal Stress Directions Due to Earthquake Faulting and Its Seismological Implications

Rotation of the Principal Stress Directions Due to Earthquake Faulting and Its Seismological Implications Bulletin of the Seismological Society of America, Vol. 85, No. 5, pp. 1513-1517, October 1995 Rotation of the Principal Stress Directions Due to Earthquake Faulting and Its Seismological Implications by

More information

Waveform inversion of the rupture process of the 2008 Wenchuan earthquake based on the near field strong motions and surface rupture data

Waveform inversion of the rupture process of the 2008 Wenchuan earthquake based on the near field strong motions and surface rupture data Waveform inversion of the rupture process of the 2008 Wenchuan earthquake based on the near field strong motions and surface rupture data Qifang Liu and Tianyun Wang Istitue of Eengineering Mechanics,

More information

Preparatory mechanism of Ms8. 0 Wenchuan earthquake evidenced by crust-deformation data

Preparatory mechanism of Ms8. 0 Wenchuan earthquake evidenced by crust-deformation data Geodesy and Geodynamics 2011,2(2) :23-28 http://www. jgg09. com Doi:10.3724/SP.J.1246.2011.00023 Preparatory mechanism of Ms8. 0 Wenchuan earthquake evidenced by crust-deformation data Bo Wanju, Yang Guohua,

More information

Relationships between ground motion parameters and landslides induced by Wenchuan earthquake

Relationships between ground motion parameters and landslides induced by Wenchuan earthquake Earthq Sci (2010)23: 233 242 233 Doi: 10.1007/s11589-010-0719-5 Relationships between ground motion parameters and landslides induced by Wenchuan earthquake Xiuying Wang 1, Gaozhong Nie 2 and Dengwei Wang

More information

Seismic Characteristics and Energy Release of Aftershock Sequences of Two Giant Sumatran Earthquakes of 2004 and 2005

Seismic Characteristics and Energy Release of Aftershock Sequences of Two Giant Sumatran Earthquakes of 2004 and 2005 P-168 Seismic Characteristics and Energy Release of Aftershock Sequences of Two Giant Sumatran Earthquakes of 004 and 005 R. K. Jaiswal*, Harish Naswa and Anoop Singh Oil and Natural Gas Corporation, Vadodara

More information

Earthquake patterns in the Flinders Ranges - Temporary network , preliminary results

Earthquake patterns in the Flinders Ranges - Temporary network , preliminary results Earthquake patterns in the Flinders Ranges - Temporary network 2003-2006, preliminary results Objectives David Love 1, Phil Cummins 2, Natalie Balfour 3 1 Primary Industries and Resources South Australia

More information

Insights gained from the injection-induced seismicity in the southwestern Sichuan Basin, China

Insights gained from the injection-induced seismicity in the southwestern Sichuan Basin, China 6 th Int. Symp. on In-Situ Rock Stress RS03 RS03-078 0- August 03, Sendai, Japan Insights gained from the injection-induced seismicity in the southwestern Sichuan Basin, China Xinglin Lei a * and Shengli

More information

Evidence that the 2008 M w 7.9 Wenchuan Earthquake Could Not Have Been Induced by the Zipingpu Reservoir

Evidence that the 2008 M w 7.9 Wenchuan Earthquake Could Not Have Been Induced by the Zipingpu Reservoir Bulletin of the Seismological Society of America, Vol. 100, No. 5B, pp. 2805 2814, November 2010, doi: 10.1785/0120090222 Evidence that the 2008 M w 7.9 Wenchuan Earthquake Could Not Have Been Induced

More information

A GLOBAL MODEL FOR AFTERSHOCK BEHAVIOUR

A GLOBAL MODEL FOR AFTERSHOCK BEHAVIOUR A GLOBAL MODEL FOR AFTERSHOCK BEHAVIOUR Annemarie CHRISTOPHERSEN 1 And Euan G C SMITH 2 SUMMARY This paper considers the distribution of aftershocks in space, abundance, magnitude and time. Investigations

More information

The relationship between large reservoirs and seismicity

The relationship between large reservoirs and seismicity The relationship between large reservoirs and seismicity 08 February 2010 Following the 12 May 2008 Wenchuan earthquake in China, Chen Houqun, Xu Zeping and Li Ming discuss the question of whether large

More information

Seth Stein and Emile Okal, Department of Geological Sciences, Northwestern University, Evanston IL USA. Revised 2/5/05

Seth Stein and Emile Okal, Department of Geological Sciences, Northwestern University, Evanston IL USA. Revised 2/5/05 Sumatra earthquake moment from normal modes 2/6/05 1 Ultra-long period seismic moment of the great December 26, 2004 Sumatra earthquake and implications for the slip process Seth Stein and Emile Okal,

More information

Ground motion attenuation relations of small and moderate earthquakes in Sichuan region

Ground motion attenuation relations of small and moderate earthquakes in Sichuan region Earthq Sci (2009)22: 277 282 277 Doi: 10.1007/s11589-009-0277-x Ground motion attenuation relations of small and moderate earthquakes in Sichuan region Lanchi Kang 1, and Xing Jin 1,2 1 Fuzhou University,

More information

Brief introduction to recovery and reconstruction

Brief introduction to recovery and reconstruction Brief introduction to recovery and reconstruction of Wenchuan earthquake stricken region He Yongnian China Earthquake Administration May 2011 Major parameters of Wenchuan earthquake Original time: 14:28,

More information

3D MODELING OF EARTHQUAKE CYCLES OF THE XIANSHUIHE FAULT, SOUTHWESTERN CHINA

3D MODELING OF EARTHQUAKE CYCLES OF THE XIANSHUIHE FAULT, SOUTHWESTERN CHINA 3D MODELING OF EARTHQUAKE CYCLES OF THE XIANSHUIHE FAULT, SOUTHWESTERN CHINA Li Xiaofan MEE09177 Supervisor: Bunichiro Shibazaki ABSTRACT We perform 3D modeling of earthquake generation of the Xianshuihe

More information

Tidal triggering of earthquakes in Longmen Shan region: the relation to the fold belt and basin structures

Tidal triggering of earthquakes in Longmen Shan region: the relation to the fold belt and basin structures LETTER Earth Planets Space, 64, 771 776, 2012 Tidal triggering of earthquakes in Longmen Shan region: the relation to the fold belt and basin structures Qiang Li and Gui-Ming Xu Research Center for Earthquake

More information

RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING

RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 1359 RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING Shusaku INOUE 1,

More information

The Size and Duration of the Sumatra-Andaman Earthquake from Far-Field Static Offsets

The Size and Duration of the Sumatra-Andaman Earthquake from Far-Field Static Offsets The Size and Duration of the Sumatra-Andaman Earthquake from Far-Field Static Offsets P. Banerjee, 1 F. F. Pollitz, 2 R. Bürgmann 3 * 1 Wadia Institute of Himalayan Geology, Dehra Dun, 248001, India. 2

More information

of other regional earthquakes (e.g. Zoback and Zoback, 1980). I also want to find out

of other regional earthquakes (e.g. Zoback and Zoback, 1980). I also want to find out 4. Focal Mechanism Solutions A way to investigate source properties of the 2001 sequence is to attempt finding well-constrained focal mechanism solutions to determine if they are consistent with those

More information

ON NEAR-FIELD GROUND MOTIONS OF NORMAL AND REVERSE FAULTS FROM VIEWPOINT OF DYNAMIC RUPTURE MODEL

ON NEAR-FIELD GROUND MOTIONS OF NORMAL AND REVERSE FAULTS FROM VIEWPOINT OF DYNAMIC RUPTURE MODEL 1 Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear ON NEAR-FIELD GROUND MOTIONS OF NORMAL AND REVERSE FAULTS FROM VIEWPOINT OF DYNAMIC RUPTURE MODEL Hideo AOCHI

More information

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source Nevada Bureau of Mines and Geology Special Publication 36 Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source by Mendoza, C. 1 and Hartzell S. 2 1 Centro de Geociencias, Universidad

More information

Contemporary tectonic stress field in China

Contemporary tectonic stress field in China Earthq Sci (2010)23: 377 386 377 Doi: 10.1007/s11589-010-0735-5 Contemporary tectonic stress field in China Yongge Wan 1,2, 1 Institute of Disaster-Prevention Science and Technology, Yanjiao, Sanhe 065201,

More information

Study on the feature of surface rupture zone of the west of Kunlunshan pass earthquake ( M S 811) with high spatial resolution satellite images

Study on the feature of surface rupture zone of the west of Kunlunshan pass earthquake ( M S 811) with high spatial resolution satellite images 48 2 2005 3 CHINESE JOURNAL OF GEOPHYSICS Vol. 48, No. 2 Mar., 2005,,. M S 811.,2005,48 (2) :321 326 Shan X J, Li J H, Ma C. Study on the feature of surface rupture zone of the West of Kunlunshan Pass

More information

Short Note Source Mechanism and Rupture Directivity of the 18 May 2009 M W 4.6 Inglewood, California, Earthquake

Short Note Source Mechanism and Rupture Directivity of the 18 May 2009 M W 4.6 Inglewood, California, Earthquake Bulletin of the Seismological Society of America, Vol. 100, No. 6, pp. 3269 3277, December 2010, doi: 10.1785/0120100087 Short Note Source Mechanism and Rupture Directivity of the 18 May 2009 M W 4.6 Inglewood,

More information

Specific gravity field and deep crustal structure of the Himalayas east structural knot

Specific gravity field and deep crustal structure of the Himalayas east structural knot 49 4 2006 7 CHINESE JOURNAL OF GEOPHYSICS Vol. 49, No. 4 Jul., 2006,,.., 2006, 49 (4) :1045 1052 Teng J W, Wang Q S, Wang GJ, et al. Specific gravity field and deep crustal structure of the Himalayas east

More information

Research on the Spatial Distribution Characteristics of b-value in Southwest Yunnan

Research on the Spatial Distribution Characteristics of b-value in Southwest Yunnan International Symposium on Computers & Informatics (ISCI 2015) Research on the Spatial Distribution Characteristics of b-value in Southwest Yunnan XIE ZHUOJUAN1, a, LU YUEJUN1, b 1Institute of Crustal

More information

SCIENCE CHINA Earth Sciences. Preseismic deformation in the seismogenic zone of the Lushan M S 7.0 earthquake detected by GPS observations

SCIENCE CHINA Earth Sciences. Preseismic deformation in the seismogenic zone of the Lushan M S 7.0 earthquake detected by GPS observations SCIENCE CHINA Earth Sciences RESEARCH PAPER September 2015 Vol.58 No.9: 1592 1601 doi: 10.1007/s11430-015-5128-0 Preseismic deformation in the seismogenic zone of the Lushan M S 7.0 earthquake detected

More information

Modeling of co- and post-seismic surface deformation and gravity changes of M W 6.9 Yushu, Qinghai, earthquake

Modeling of co- and post-seismic surface deformation and gravity changes of M W 6.9 Yushu, Qinghai, earthquake Earthq Sci (2011)24: 177 183 177 doi:10.1007/s11589-010-0782-y Modeling of co- and post-seismic surface deformation and gravity changes of M W 6.9 Yushu, Qinghai, earthquake Chengli Liu 1,2 Bin Shan 1,2

More information

Chapter 2. Earthquake and Damage

Chapter 2. Earthquake and Damage EDM Report on the Chi-Chi, Taiwan Earthquake of September 21, 1999 2.1 Earthquake Fault 2.1.1 Tectonic Background The island of Taiwan is located in the complex junction where the Eurasian and Philippine

More information

A BROADBAND SEISMIC EXPERIMENT IN YUNNAN, SOUTHWEST CHINA. Sponsored by Defense Threat Reduction Agency. Contract No.

A BROADBAND SEISMIC EXPERIMENT IN YUNNAN, SOUTHWEST CHINA. Sponsored by Defense Threat Reduction Agency. Contract No. A BROADBAND SEISMIC EXPERIMENT IN YUNNAN, SOUTHWEST CHINA Wenjie Jiao, 1 Winston Chan, 1 and Chunyong Wang 2 Multimax Inc., 1 Institute of Geophysics, China Seismological Bureau 2 Sponsored by Defense

More information

I. Locations of Earthquakes. Announcements. Earthquakes Ch. 5. video Northridge, California earthquake, lecture on Chapter 5 Earthquakes!

I. Locations of Earthquakes. Announcements. Earthquakes Ch. 5. video Northridge, California earthquake, lecture on Chapter 5 Earthquakes! 51-100-21 Environmental Geology Summer 2006 Tuesday & Thursday 6-9:20 p.m. Dr. Beyer Earthquakes Ch. 5 I. Locations of Earthquakes II. Earthquake Processes III. Effects of Earthquakes IV. Earthquake Risk

More information

The Centenary of the Omori Formula for a Decay Law of Aftershock Activity

The Centenary of the Omori Formula for a Decay Law of Aftershock Activity The Centenary of the Omori Formula for a Decay Law of Aftershock Activity Author; Tokuji Utsu, Yosihiko Ogata, and Ritsuko S. Matsu'ura Presentater; Okuda Takashi 8. p Values from Superposed Sequences

More information

The 2003, M W 7.2 Fiordland Earthquake, and its nearsource aftershock strong motion data

The 2003, M W 7.2 Fiordland Earthquake, and its nearsource aftershock strong motion data The 2003, M W 7.2 Fiordland Earthquake, and its nearsource aftershock strong motion data P. McGinty Institute of Geological & Nuclear Sciences, PO Box 30-368, Lower Hutt, New Zealand 2004 NZSEE Conference

More information

Lecture 20: Slow Slip Events and Stress Transfer. GEOS 655 Tectonic Geodesy Jeff Freymueller

Lecture 20: Slow Slip Events and Stress Transfer. GEOS 655 Tectonic Geodesy Jeff Freymueller Lecture 20: Slow Slip Events and Stress Transfer GEOS 655 Tectonic Geodesy Jeff Freymueller Slow Slip Events From Kristine Larson What is a Slow Slip Event? Slip on a fault, like in an earthquake, BUT

More information

Internal Layers of the Earth

Internal Layers of the Earth Lecture #4 notes Geology 3950, Spring 2006; CR Stern Seismic waves, earthquake magnitudes and location, and internal earth structure (pages 28-95 in the 4 th edition and 28-32 and 50-106 in the 5 th edition)

More information

Earthquake stress drop estimates: What are they telling us?

Earthquake stress drop estimates: What are they telling us? Earthquake stress drop estimates: What are they telling us? Peter Shearer IGPP/SIO/U.C. San Diego October 27, 2014 SCEC Community Stress Model Workshop Lots of data for big earthquakes (rupture dimensions,

More information

THE issue of reservoir-triggered seismicity (RTS) received. The relationship between large reservoirs and seismicity

THE issue of reservoir-triggered seismicity (RTS) received. The relationship between large reservoirs and seismicity The relationship between large reservoirs and seismicity Zipingpu dam Following the 2 May 28 Wenchuan earthquake in China, Chen Houqun, Xu Zeping and Li Ming discuss the question of whether large reservoirs

More information

Strong aftershocks in the northern segment of the Wenchuan earthquake rupture zone and their seismotectonic implications

Strong aftershocks in the northern segment of the Wenchuan earthquake rupture zone and their seismotectonic implications LETTER Earth Planets Space, 62, 881 886, 2010 Strong aftershocks in the northern segment of the Wenchuan earthquake rupture zone and their seismotectonic implications Yong Zheng 1,5, Sidao Ni 2, Zujun

More information

Fault Specific, Dynamic Rupture Scenarios for Strong Ground Motion Prediction

Fault Specific, Dynamic Rupture Scenarios for Strong Ground Motion Prediction Fault Specific, Dynamic Rupture Scenarios for Strong Ground Motion Prediction H. Sekiguchi Disaster Prevention Research Institute, Kyoto University, Japan Blank Line 9 pt Y. Kase Active Fault and Earthquake

More information

The Kangding earthquake swarm of November, 2014

The Kangding earthquake swarm of November, 2014 Earthq Sci (2015) 28(3):197 207 DOI 10.1007/s11589-015-0-2 RESEARCH PAPER The Kangding earthquake swarm of November, 2014 Wen Yang. Jia Cheng. Jie Liu. Xuemei Zhang Received: 9 April 2015 / Accepted: 19

More information

Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data

Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data LETTER Earth Planets Space, 56, 311 316, 2004 Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data Yuji Yagi International

More information

Aftershocks are well aligned with the background stress field, contradicting the hypothesis of highly heterogeneous crustal stress

Aftershocks are well aligned with the background stress field, contradicting the hypothesis of highly heterogeneous crustal stress JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010jb007586, 2010 Aftershocks are well aligned with the background stress field, contradicting the hypothesis of highly heterogeneous crustal stress

More information

Statistical Analysis on the Characteristics of Normalized Response Spectra of Ground Motion Records from Wenchuan Earthquake

Statistical Analysis on the Characteristics of Normalized Response Spectra of Ground Motion Records from Wenchuan Earthquake Statistical Analysis on the Characteristics of Normalized Response Spectra of Ground Motion Records from Wenchuan Earthquake Y.Q. Yang, J.J. Hu, L.L. Xie, J.W. Dai, H.Y. Yu Key Laboratory of Earthquake

More information

Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation.

Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation. Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation. In the process zone, stress amplitudes are poorly determined and much

More information

Separating Tectonic, Magmatic, Hydrological, and Landslide Signals in GPS Measurements near Lake Tahoe, Nevada-California

Separating Tectonic, Magmatic, Hydrological, and Landslide Signals in GPS Measurements near Lake Tahoe, Nevada-California Separating Tectonic, Magmatic, Hydrological, and Landslide Signals in GPS Measurements near Lake Tahoe, Nevada-California Geoffrey Blewitt, Corné Kreemer, William C. Hammond, & Hans-Peter Plag NV Geodetic

More information

Seismic Activity near the Sunda and Andaman Trenches in the Sumatra Subduction Zone

Seismic Activity near the Sunda and Andaman Trenches in the Sumatra Subduction Zone IJMS 2017 vol. 4 (2): 49-54 International Journal of Multidisciplinary Studies (IJMS) Volume 4, Issue 2, 2017 DOI: http://doi.org/10.4038/ijms.v4i2.22 Seismic Activity near the Sunda and Andaman Trenches

More information

Earthquake Doublet Sequences: Evidence of Static Triggering in the Strong Convergent Zones of Taiwan

Earthquake Doublet Sequences: Evidence of Static Triggering in the Strong Convergent Zones of Taiwan Terr. Atmos. Ocean. Sci., Vol. 19, No. 6, 589-594, December 2008 doi: 10.3319/TAO.2008.19.6.589(PT) Earthquake Doublet Sequences: Evidence of Static Triggering in the Strong Convergent Zones of Taiwan

More information

Tomographic imaging of P wave velocity structure beneath the region around Beijing

Tomographic imaging of P wave velocity structure beneath the region around Beijing 403 Doi: 10.1007/s11589-009-0403-9 Tomographic imaging of P wave velocity structure beneath the region around Beijing Zhifeng Ding Xiaofeng Zhou Yan Wu Guiyin Li and Hong Zhang Institute of Geophysics,

More information

A viscoelastic model for time-dependent simulating analysis of the Wenchuan earthquake fault Cheng Hua, Jin Cheng and Qi-fu Chen

A viscoelastic model for time-dependent simulating analysis of the Wenchuan earthquake fault Cheng Hua, Jin Cheng and Qi-fu Chen Journal of Math-for-Industry, Vol. 4 (2012A-10), pp. 79 83 A viscoelastic model for time-dependent simulating analysis of the Wenchuan earthquake fault Cheng Hua, Jin Cheng and Qi-fu Chen Received on February

More information

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Kazuki Koketsu 1, Hiroe Miyake 2, Srinagesh Davuluri 3 and Soma Nath Sapkota 4 1. Corresponding

More information

Earthquake Stress Drops in Southern California

Earthquake Stress Drops in Southern California Earthquake Stress Drops in Southern California Peter Shearer IGPP/SIO/U.C. San Diego September 11, 2009 Earthquake Research Institute Lots of data for big earthquakes (rupture dimensions, slip history,

More information

Once you have opened the website with the link provided choose a force: Earthquakes

Once you have opened the website with the link provided choose a force: Earthquakes Name: Once you have opened the website with the link provided choose a force: Earthquakes When do earthquakes happen? On the upper left menu, choose number 1. Read What is an Earthquake? Earthquakes happen

More information

Earth Tides Can Trigger Shallow Thrust Fault Earthquakes

Earth Tides Can Trigger Shallow Thrust Fault Earthquakes Earth Tides Can Trigger Shallow Thrust Fault Earthquakes Elizabeth S. Cochran, 1 * John E. Vidale, 1 Sachiko Tanaka 2 1 Department of Earth and Space Sciences and Institute of Geophysics and Planetary

More information

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies BROADBAND NETWORK OPERATION AND SHEAR VELOCITY STRUCTURE BENEATH THE XIUYAN AREA, NE CHINA Rong-Mao Zhou 1,2, Brian W. Stump 2, Zhi-Xian Yang 3,Yun-Tai Chen 3, Robert B. Herrmann 4, Relu Burlacu 5, Christopher

More information

Ground displacement in a fault zone in the presence of asperities

Ground displacement in a fault zone in the presence of asperities BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA VOL. 40, N. 2, pp. 95-110; JUNE 2000 Ground displacement in a fault zone in the presence of asperities S. SANTINI (1),A.PIOMBO (2) and M. DRAGONI (2) (1) Istituto

More information

Overview of Seismic Source Characterization for the Diablo Canyon Power Plant

Overview of Seismic Source Characterization for the Diablo Canyon Power Plant Overview of Seismic Source Characterization for the Diablo Canyon Power Plant Steve Thompson (LCI and SSC TI Team), for SWUS GMC Workshop 1, March 19, 2013 Questions from TI Team Summarize tectonic setting.

More information

Source parameters of the 2011 Yellow Sea earthquake (M L 5.3): Different features from earthquakes on the Korean Peninsula

Source parameters of the 2011 Yellow Sea earthquake (M L 5.3): Different features from earthquakes on the Korean Peninsula Earth lanets pace, 64, 379 388, 2012 ource parameters of the 2011 Yellow ea earthquake (M L 5.3): Different features from earthquakes on the Korean eninsula un-cheon ark, Min-Kyung Kong, Eun Hee ark, Won

More information

A study on crustal structures of Changbaishan2Jingpohu volcanic area using receiver functions

A study on crustal structures of Changbaishan2Jingpohu volcanic area using receiver functions 48 2 2005 3 CHINESE JOURNAL OF GEOPHYSICS Vol. 48, No. 2 Mar., 2005,,..,2005,48 (2) :352 358 Duan Y H, Zhang X K, Liu Z,et al. A study on crustal structures of Changbaishan2Jingpohu volcanic area using

More information

Simulation of surface displacement and strain field of the 2011 Japan Mw9. 0 earthquake

Simulation of surface displacement and strain field of the 2011 Japan Mw9. 0 earthquake Geodesy and Geodynamics 211,2(4) :28-32 http://www. jgg9. com Doi:1.3724/SP.J.1246.211.5 Simulation of surface displacement and strain field of the 211 Japan Mw9. earthquake 12 12 12 12 12 Ch en Sh UJUn.,

More information

Gutenberg-Richter Relationship: Magnitude vs. frequency of occurrence

Gutenberg-Richter Relationship: Magnitude vs. frequency of occurrence Quakes per year. Major = 7-7.9; Great = 8 or larger. Year Major quakes Great quakes 1969 15 1 1970 20 0 1971 19 1 1972 15 0 1973 13 0 1974 14 0 1975 14 1 1976 15 2 1977 11 2 1978 16 1 1979 13 0 1980 13

More information

Case Study 1: 2014 Chiang Rai Sequence

Case Study 1: 2014 Chiang Rai Sequence Case Study 1: 2014 Chiang Rai Sequence Overview Mw 6.1 earthquake on 5 May 2014 at 11:08:43 UTC Largest recorded earthquake in Thailand Fault Orientation How does the orientation of the fault affect the

More information

Inversion of Earthquake Rupture Process:Theory and Applications

Inversion of Earthquake Rupture Process:Theory and Applications Inversion of Earthquake Rupture rocess:theory and Applications Yun-tai CHEN 12 * Yong HANG 12 Li-sheng XU 2 1School of the Earth and Space Sciences, eking University, Beijing 100871 2Institute of Geophysics,

More information

Lab 9: Satellite Geodesy (35 points)

Lab 9: Satellite Geodesy (35 points) Lab 9: Satellite Geodesy (35 points) Here you will work with GPS Time Series data to explore plate motion and deformation in California. This lab modifies an exercise found here: http://www.unavco.org:8080/cws/pbonucleus/draftresources/sanandreas/

More information

ON STRONG GROUND MOTION AND MACRO-SEISMIC INTENSITY OF LUSHAN MS7.0 EARTHQUAKE

ON STRONG GROUND MOTION AND MACRO-SEISMIC INTENSITY OF LUSHAN MS7.0 EARTHQUAKE ON STRONG GROUND MOTION AND MACRO-SEISMIC INTENSITY OF LUSHAN MS7. EARTHQUAKE Yushi WANG, Xiaojun LI 2 ABSTRACT We analyzed the strong-motion records and macro-seismic intensity of Lushan Ms7. (Mw6.6 by

More information

Di#erences in Earthquake Source and Ground Motion Characteristics between Surface and Buried Crustal Earthquakes

Di#erences in Earthquake Source and Ground Motion Characteristics between Surface and Buried Crustal Earthquakes Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2+,**0 pp.,/3,00 Di#erences in Earthquake Source and Ground Motion Characteristics between Surface and Buried Crustal Earthquakes Paul Somerville* and Arben Pitarka

More information

THE VERTICAL COSEISMIC DEFORMATION FIELD OF THE WENCHUAN EARTHQUAKE BASED ON THE COMBINATION OF GPS AND INSAR

THE VERTICAL COSEISMIC DEFORMATION FIELD OF THE WENCHUAN EARTHQUAKE BASED ON THE COMBINATION OF GPS AND INSAR THE VERTICAL COSEISMIC DEFORMATION FIELD OF THE WENCHUAN EARTHQUAKE BASED ON THE COMBINATION OF GPS AND INSAR SHAN Xin-jian (1), QU Chun-yan (1), GUO Li-min (1,2), ZHANG Guo-hong (1), SONG Xiao-gang (1),

More information

Earthquakes in Barcelonnette!

Earthquakes in Barcelonnette! Barcelonnette in the Ubaye valley : the landscape results of large deformations during the alpine orogene (40 5 Myr in this area) and the succession of Quaternary glaciations. The sedimentary rocks are

More information

Rate and State-Dependent Friction in Earthquake Simulation

Rate and State-Dependent Friction in Earthquake Simulation Rate and State-Dependent Friction in Earthquake Simulation Zac Meadows UC Davis - Department of Physics Summer 2012 REU September 3, 2012 Abstract To better understand the spatial and temporal complexity

More information

Earthquake. What is it? Can we predict it?

Earthquake. What is it? Can we predict it? Earthquake What is it? Can we predict it? What is an earthquake? Earthquake is the vibration (shaking) and/or displacement of the ground produced by the sudden release of energy. Rocks under stress accumulate

More information

X-2 HIKIMA AND KOKETSU: THE 2004 CHUETSU, JAPAN, EARTHQUAKE We relocated the hypocenters of the 2004 Chuetsu earthquake sequence, Niigata, Japan, usin

X-2 HIKIMA AND KOKETSU: THE 2004 CHUETSU, JAPAN, EARTHQUAKE We relocated the hypocenters of the 2004 Chuetsu earthquake sequence, Niigata, Japan, usin GEOPHYSICAL RESEARCH LETTERS, VOL. 32, XXXX, DOI:1029/2005GL023588, Rupture processes of the 2004 Chuetsu (mid-niigata prefecture) earthquake, Japan: A series of events in a complex fault system Kazuhito

More information

Does Aftershock Duration Scale With Mainshock Size?

Does Aftershock Duration Scale With Mainshock Size? GEOPHYSICAL RESEARCH LETTERS, VOL.???, NO., PAGES 1 16, Does Aftershock Duration Scale With Mainshock Size? A. Ziv A. Ziv, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel. (e-mail: zival@bgu.ac.il)

More information

EARTHQUAKE PREDICTION RESEARCH IN CHINA: STATUS AND PROSPECTS

EARTHQUAKE PREDICTION RESEARCH IN CHINA: STATUS AND PROSPECTS J. Phys. Earth, 34, Suppl., S1-S11, 1 986 EARTHQUAKE PREDICTION RESEARCH IN CHINA: STATUS AND PROSPECTS Zhangli CHEN State Seismological Bureau, Beijing, China (Received June 22, 1985; Revised May 22,

More information

Simulated and Observed Scaling in Earthquakes Kasey Schultz Physics 219B Final Project December 6, 2013

Simulated and Observed Scaling in Earthquakes Kasey Schultz Physics 219B Final Project December 6, 2013 Simulated and Observed Scaling in Earthquakes Kasey Schultz Physics 219B Final Project December 6, 2013 Abstract Earthquakes do not fit into the class of models we discussed in Physics 219B. Earthquakes

More information

EARTHQUAKE SOURCE PARAMETERS FOR SUBDUCTION ZONE EVENTS CAUSING TSUNAMIS IN AND AROUND THE PHILIPPINES

EARTHQUAKE SOURCE PARAMETERS FOR SUBDUCTION ZONE EVENTS CAUSING TSUNAMIS IN AND AROUND THE PHILIPPINES EARTHQUAKE SOURCE PARAMETERS FOR SUBDUCTION ZONE EVENTS CAUSING TSUNAMIS IN AND AROUND THE PHILIPPINES Joan Cruz SALCEDO Supervisor: Tatsuhiko HARA MEE09186 ABSTRACT We have made a set of earthquake source

More information

Negative repeating doublets in an aftershock sequence

Negative repeating doublets in an aftershock sequence LETTER Earth Planets Space, 65, 923 927, 2013 Negative repeating doublets in an aftershock sequence X. J. Ma and Z. L. Wu Institute of Geophysics, China Earthquake Administration, 100081 Beijing, China

More information

2/8/2016 Magnitude-6.3 earthquake near Tainan, Taiwan, highlights the danger of blind thrust faults around the world

2/8/2016 Magnitude-6.3 earthquake near Tainan, Taiwan, highlights the danger of blind thrust faults around the world Temblor.net Earthquake News & Blog Magnitude-6.3 earthquake near Tainan, Taiwan, highlights the danger of blind thrust faults around the world 6 February 2016 Quake Insight Revised The 5 Feb 2016 M=6.3

More information

Seismic Quiescence before the 1999 Chi-Chi, Taiwan, M w 7.6 Earthquake

Seismic Quiescence before the 1999 Chi-Chi, Taiwan, M w 7.6 Earthquake Bulletin of the Seismological Society of America, Vol. 96, No. 1, pp. 321 327, February 2006, doi: 10.1785/0120050069 Seismic Quiescence before the 1999 Chi-Chi, Taiwan, M w 7.6 Earthquake by Yih-Min Wu

More information

MODELING OF HIGH-FREQUENCY WAVE RADIATION PROCESS ON THE FAULT PLANE FROM THE ENVELOPE FITTING OF ACCELERATION RECORDS

MODELING OF HIGH-FREQUENCY WAVE RADIATION PROCESS ON THE FAULT PLANE FROM THE ENVELOPE FITTING OF ACCELERATION RECORDS MODELING OF HIGH-FREQUENCY WAVE RADIATION PROCESS ON THE FAULT PLANE FROM THE ENVELOPE FITTING OF ACCELERATION RECORDS Yasumaro KAKEHI 1 SUMMARY High-frequency (higher than 1 Hz) wave radiation processes

More information

Earthquake and Volcano Clustering at Mono Basin (California)

Earthquake and Volcano Clustering at Mono Basin (California) Excerpt from the Proceedings of the COMSOL Conference 2010 Paris Earthquake and Volcano Clustering at Mono Basin (California) D. La Marra *,1, A. Manconi 2,3 and M. Battaglia 1 1 Dept of Earth Sciences,

More information

Seismogenic structure of 1935 Hsinchu-Taichung (M GR =7.1) earthquake, Miaoli, western Taiwan 1935 (M GR =7.1)

Seismogenic structure of 1935 Hsinchu-Taichung (M GR =7.1) earthquake, Miaoli, western Taiwan 1935 (M GR =7.1) Seismogenic structure of 1935 Hsinchu-Taichung (M GR =7.1) earthquake, Miaoli, western Taiwan 1935 (M GR =7.1) Y.N. Nina Lin; Y.G. Chen; Y.M. Wu (Inst. of Geosciences, NTU); K.M. Yang (Exploration and

More information