GEOL- 270: Issues in Oceanography Developed by Jessica Kleiss, Lewis & Clark College

Size: px
Start display at page:

Download "GEOL- 270: Issues in Oceanography Developed by Jessica Kleiss, Lewis & Clark College"

Transcription

1 GEOL- 270: Issues in Oceanography Developed by Jessica Kleiss, Lewis & Clark College Lab 02: Ocean floor bathymetry. Material for students to bring: A calculator A ruler Pens and pencils Objectives: Interpret 2D bathymetric maps as a 3D physical model. Construct a 3- dimensional model of a feature of the ocean floor Simulate the experience of gathering depth data from an ocean vessel Construct a contour map from individual depth soundings The ocean floor was once thought to be a featureless, flat terrain, due to the constant rain of marine snow. Ships originally determined the depth of water by lowering a weighted line, capturing a bit of sediment as proof that they hit bottom, and marking the length of line needed to reach bottom. In the 1950 s, scientists and naval officers started using sonar to determine the depth of water. They would send a ping of sound from a transmitter, and measure the time for the sound pulse to echo off the ocean bottom, and return to the receiver. This dramatically decreased the time needed to obtain a depth sounding! Later technological developments resulted in the side- scan sonar, which allowed a boat to determine a swath of ocean bottom contours to the side of the vessel. This created a more descriptive picture of the ocean floor than single point measurements could offer. This lab will consist of a bit of puzzle- making, and puzzle- reconstruction, where the puzzle is the shape of the ocean floor! Part I: Making the 3D model Materials: One rigid small stowaway box with holes punctured through the lid Many sheets of corrugated cardboard, of uniform thickness Heavy- duty scissors, razor blade, or exact- o knife. Glue or double- sided tape Tracing paper Masking tape and scotch tape sharpie marker Each group will be provided with a bathymetric map of a seafloor feature. Your job is to convert this map into a properly scaled, 3- dimensional model of this sea floor feature inside of your shoebox.

2 The NOAA maps provide a great deal of detail! I suggest that you use the tracing paper to make your job easier. Choose some sub- set of contours, and trace them onto your tracing paper. Then cut these shapes out of the cardboard, and glue them into your model. I recommend shooting for about 10 layers of cardboard in your model. The NOAA maps also cover a great deal of terrain. I suggest that you focus on a small region that strikes you as particularly interesting. Add horizontal and vertical scales to your model. Be as accurate and precise as possible. You ll need to determine a vertical scale for your model: each centimeter of height corresponds to how many meters of depth in the real world? You ll want to make a scale, and tape it to the outside of your box. Note that the scale of your seafloor feature will not be the same as the scale of the distance from the box lid (eg. ocean surface), since you can t adjust the height of the lid. Try taking a couple sample soundings with your box lid closed, and indicate the depth of the ocean to the top of your scale for your bathymetric feature. Also be sure to include the horizontal scale of your map, which you can obtain directly from your NOAA chart. Indicate the Latitude & Longitude of your model and a simple compass rose. Write this clearly on the top of your shoebox. Just identify a single Lat / Lon at approximately the center of your model. TIPS: Sometimes the bathymetric charts have contours that are not regularly spaced. Make sure that you select around 10 contours to trace that are equally spaced in depth. You ll certainly want to divide labor for this lab, but have everyone do each job at least once. That way everyone gets to experience the different parts of the lab. 1 degree of Latitude is equal to roughly 111km. There is no such relationship for Longitude. (Why?) Checklist for 3D model construction: Layers of cardboard correspond to contour layers in the bathymetric map Lat / Lon written on box Horizontal scale attached (and double- checked for accuracy) Vertical scale attached (and double- checked for accuracy) Distance to ocean surface attached Lid closed! Names included on inside of box, as well as the seafloor feature name.

3 Part II: probing the sea floor Materials: A couple skewers or wooden dowels Graph paper (the same kind that is on the shoebox lid). A global map, with labeled Latitude & Longitude (in the classroom) Now exchange boxes with another group. Be sure to keep the lid closed! Imagine you are steaming across the ocean in a research vessel and you want to know the topography (shape) of the seafloor below your boat. Your boat does not have the latest technology for continuous mapping of the seafloor, but you can make echo- soundings to measure the water depth at some discrete points. Address the following prompts in your write up (see the ANSWER SHEET below) 1) Determine your research vessel navigation plan. Ship time is expensive: a fully equipped research vessel such as Woods Hole s Oceanus costs $40,000 per day. Normal cruising speed is 7-12 knots. How do you propose to probe the ocean floor to determine the underlying bathymetry? How long will it take, and how much will it cost? Describe your ship track here. (include a sketch if desired) 2) Now follow your ship s research track, and take depth soundings at each drill hole opportunity. [Tip: Make sure your dowel is perpendicular! You may want to use a 90 o rigid corner to help, such as your ruler.] Record your measurements on graph paper as you go. Use a pencil! It s easy to make mistakes. After you have sampled the ocean, remove the grid paper from the box. You may wish to duplicate your sounding measurements, since creating a good contour map can sometimes take a couple tries. Draw contours on your graph paper, aspiring to re- create the terrain in your box. Draw contour lines directly on this grid paper. To be handed in: The sheet of graph paper indicating depth soundings at each sampled drill hole. Contours should be clearly labeled. Be sure to include units! (you don t need to write units for every number, but it needs to be clearly indicated.) Completed Answer Sheet

4 ANSWER SHEET Names: A. Hypothesis: Given the tools available to you, state below what you think you will need to do to create a two dimensional contour map of the object in your box without opening the box and looking inside. B. Ship time is expensive! Estimate how much your survey would cost, and how far your research vessel traveled. Use the following assumptions: Your research vessel is cruising along at 8 knots (the echo- soundings take no time) You work around the clock, 24- hour days. The ship costs $40,000 / day to run. Steaming out to the research location and back to port is magically accomplished, for free. Show your work CLEARLY. Be sure to check your units and conversions! (hint: do the work on a separate sheet of paper, and only include a neat write- up here) B.1) What is the distance between sampling locations, in nautical miles? B. 2) What is the total distance of your research track, in nautical miles? B. 3) How much would this expedition have cost?

5 Once you have created your contour map do the following: C. Without opening the box, guess at what type of seafloor feature is in your box? D. Using the coordinates written on your box, find your seafloor feature on the global map in the room, and/or using the internet. What type of seafloor feature was in your box? What is the name of your seafloor feature? E. Look in your box, and consult the NOAA bathymetric map from which your model was made. Are you surprised by what you see? F. Name at least three possible sources of error in this experiment. G. Name at least three sources of error in a real- world bathymetric survey. Indicate whether these errors are similar to the errors in our class exercise. E. Now that you ve seen your real sea floor feature, How many more data points would you have wanted to gather in order to see better? How would you have designed your ship s route?

6 E. Now go around to other groups and look at their contour maps, at the 3D models, and the original NOAA maps. Find out what coordinates are written on other boxes and find those sea floor features as well. Write down what each seafloor feature is H. Do any of the undersea features look like topography we see on land? Give an example? I. What geologic process do you think created each of the features? Reflections: Comment about your experience in this lab. This is free- writing, and you may address some subset of the questions below. Write on the back of this sheet of paper. Did you learn about how the seafloor is mapped during this lab? Do you have a better appreciation for oceanographic cruises, and echo- sounding data? Were you surprised at the scales and dimensions of the maps and the 3D model? What aspect of this lab was particularly challenging to you? How could you apply the concepts of this lab to other areas of your life and your studies? Did your group work effectively together?

Background Information

Background Information Oceanography LAB #1: Marine Charts and Navigation Background Information Latitude and Longitude A coordinate is an address a means of designating location. Most coordinate systems involve a network of

More information

Benioff Box. Original Source: Dr. Leslie Sautter, Department of Geology, College of Charleston

Benioff Box. Original Source: Dr. Leslie Sautter, Department of Geology, College of Charleston Original Source: Dr. Leslie Sautter, Department of Geology, College of Charleston Grade Level: SC Standards: National Standards: 8 th Grade 8 th IIIB3c,g,j Earth and Space Science - Content Standard D

More information

Name Class Date. The ocean floor has varied and distinct surfaces much like those found on land.

Name Class Date. The ocean floor has varied and distinct surfaces much like those found on land. 6 Explore the Seafloor BigIdeas The ocean floor has varied and distinct surfaces much like those found on land. Satellites orbiting Earth, as well as sonar technology, are used to map the seafloor. The

More information

Hess s Method. Teacher Instructions. Overview: Objectives: Materials: Activity Procedure:

Hess s Method. Teacher Instructions. Overview: Objectives: Materials: Activity Procedure: Teacher Instructions Overview: During the teacher demonstration, students will map the topography (or bathymetry, the submarine equivalent of topography) of a shoebox model of the ocean floor using a method

More information

At the Edge of the Continent

At the Edge of the Continent Islands in the Stream 2002: Exploring Underwater Oases At the Edge of the Continent FOCUS Bathymetry of the South Atlantic Bight continental shelf and upper shelf-edge GRADE LEVEL 9-12 (Earth Science)

More information

6. Mapping the Seafloor

6. Mapping the Seafloor 6. Mapping the Seafloor Centuries ago sailors ventured into unknown oceans to discover new lands. They had no accurate charts or maps to guide them to new places or back to home ports. Imagine how relieved

More information

Experimenting with Balloon Rockets Experiment Activity

Experimenting with Balloon Rockets Experiment Activity Experimenting with Balloon Rockets Materials (per group) string plastic straw 3 balloons (12'' long) safety goggles pencil 3 squares of index card metric ruler marker masking tape Advance Prep For each

More information

Activity #3 - Bathymetric Mapping

Activity #3 - Bathymetric Mapping Activity #3 - Bathymetric Mapping Concepts # 1, 2 #1 The floor of the ocean is composed of hills, plains, ridges, trenches, and seamounts. #2 Oceanographers have developed methods for mapping the ocean

More information

Ocean Currents Student Activity Book

Ocean Currents Student Activity Book Ocean Currents Student Activity Book I. Introduction Ocean currents influence the weather in coastal areas. They also influence sailing vessels. Though they visibly affect many people's lives, they are

More information

Topographic Maps and Landforms Geology Lab

Topographic Maps and Landforms Geology Lab Topographic Maps and Landforms Geology Lab Ray Rector: Instructor Today s Lab Activities 1) Discussion of Last Week s Lab 2) Lecture on Topo Maps and Elevation Contours 3) Construct Topographic Maps and

More information

Spectrometers. Materials: Easy Spectrometer. Old CD Razor Index card Cardboard tube at least 10 inches long

Spectrometers. Materials: Easy Spectrometer. Old CD Razor Index card Cardboard tube at least 10 inches long Spectrometers Overview: Spectrometers (spectroscopes) are used in chemistry and astronomy to measure light. In astronomy, we can find out about distant stars without ever traveling to them, because we

More information

Kids Garden Teacher s Guide: Grade 3

Kids Garden Teacher s Guide: Grade 3 Kids Garden Teacher s Guide: Grade 3 California Content Standards Grade 2 Science: 2a, 6a, 6c, 6d, 6e What s Going On? The Kids Garden gives children the opportunity to explore the natural community of

More information

Astro Navigation (i.e. Celestial Navigation)

Astro Navigation (i.e. Celestial Navigation) Name: Partner First Name: Astro Navigation (i.e. Celestial Navigation) Over the course of human lifetimes, the stars don t appear to change positions much. We can use that in order to determine locations

More information

Butte County Fire Department

Butte County Fire Department Butte County Fire Department Basic Land Navigation Verification Sheet I verify that Print Supervisor s name has completed the Print Employee s name Basic Land Navigation self study guide on. Date Attached

More information

WEATHER ON WHEELS Middle School Program

WEATHER ON WHEELS Middle School Program WEATHER ON WHEELS Middle School Program MAST ACADEMY OUTREACH Post-Site Activities Miami-Dade County Public Schools Miami, Florida MAST ACADEMY OUTREACH WEATHER ON WHEELS POST-SITE PACKAGE TABLE OF CONTENTS

More information

L ESSON P LAN:DETERMINING THE E FFECT OF D ISTANCE (PART 1) AND I NCLINATION (PART 2)

L ESSON P LAN:DETERMINING THE E FFECT OF D ISTANCE (PART 1) AND I NCLINATION (PART 2) L ESSON P LAN:DETERMINING THE E FFECT OF D ISTANCE (PART 1) AND I NCLINATION (PART 2) In the activity at the heart of this lesson, the students will measure the effect of distance and inclination on the

More information

OCN 201 LAB FALL 2003 POLYNESIAN AND WESTERN NAVIGATION

OCN 201 LAB FALL 2003 POLYNESIAN AND WESTERN NAVIGATION Name: OCN 201 LAB FALL 2003 POLYNESIAN AND WESTERN NAVIGATION INTRODUCTION People have been sailing the seas for thousands of years, during most of which time they relied on the sun and the stars to navigate

More information

***When doing the lab report write-up, be sure to follow the guidelines.***

***When doing the lab report write-up, be sure to follow the guidelines.*** Topographic Maps Lab Vocabulary: topography - study of the shapes and features of the earth's surface elevation - height above sea level bench mark - a point that has been accurately measured for its position

More information

Electric Fields and Equipotentials

Electric Fields and Equipotentials Electric Fields and Equipotentials Note: There is a lot to do in this lab. If you waste time doing the first parts, you will not have time to do later ones. Please read this handout before you come to

More information

AP Waves/Optics ~ Learning Guide

AP Waves/Optics ~ Learning Guide AP Waves/Optics ~ Learning Guide Name: Instructions: Using a pencil, answer the following questions. The guide is marked based on effort, completeness, thoughtfulness, and neatness (not accuracy). Do your

More information

Build a Model ANDRILL Site

Build a Model ANDRILL Site Activity 3A - Build a Model ANDRILL Site Build a Model ANDRILL Site Preview To understand and demonstrate how scientists drill and retrieve rock cores from beneath ice and seawater around Antarctica, you

More information

Mapping Earth. How are Earth s surface features measured and modeled?

Mapping Earth. How are Earth s surface features measured and modeled? Name Mapping Earth How are Earth s surface features measured and modeled? Before You Read Before you read the chapter, think about what you know about maps Record your thoughts in the first column Pair

More information

Relative and Absolute Directions

Relative and Absolute Directions Relative and Absolute Directions Purpose Learning about latitude and longitude Developing math skills Overview Students begin by asking the simple question: Where Am I? Then they learn about the magnetic

More information

Solar Energy Cooking with the Sun

Solar Energy Cooking with the Sun Student Handout: Experiment - Where is the sun? Name: Date: Measuring the current Solar Azimuth and Solar Angle 1. Use the level to find a section of concrete that is relatively level. Your instructor

More information

EARTH, PLANETARY, & SPACE SCIENCES 15 INTRODUCTION TO OCEANOGRAPHY. LABORATORY SESSION #1 Fall Introduction, Maps, Cross-Sections and Graphs

EARTH, PLANETARY, & SPACE SCIENCES 15 INTRODUCTION TO OCEANOGRAPHY. LABORATORY SESSION #1 Fall Introduction, Maps, Cross-Sections and Graphs EARTH, PLANETARY, & SPACE SCIENCES 15 INTRODUCTION TO OCEANOGRAPHY LABORATORY SESSION #1 Fall 2017 Introduction, Maps, Cross-Sections and Graphs READING ASSIGNMENT: This Handout and Appendices I-IV in

More information

1. Adjust your marble launcher to zero degrees. Place your marble launcher on a table or other flat surface or on the ground.

1. Adjust your marble launcher to zero degrees. Place your marble launcher on a table or other flat surface or on the ground. Conceptual Physics Mrs. Mills Your Name: Group members: Lab: Marble Launcher Purpose: In this lab you will be using the marble launchers in order to examine the path of a projectile. You will be using

More information

Distance From the Sun

Distance From the Sun Distance From the Sun Computer 32 Have you ever thought about what it would be like if you were on another planet looking back at the sun? In this activity, you will use the Light Probe to get an idea

More information

The complete lesson plan for this topic is included below.

The complete lesson plan for this topic is included below. Home Connection Parent Information: Magnets provide a simple way to explore force with children. The power of a magnet is somewhat like magic to them and requires exploration to understand. When forces

More information

EROSIONAL FEATURES. reflect

EROSIONAL FEATURES. reflect reflect Have you ever looked at the land around you and wondered what processes shaped what you see? Perhaps you see mountains, valleys, rivers, or canyons. Do you know how long these geologic features

More information

SITE SURVEY FOR SITE 410, AN EXAMPLE OF THE USE OF LONG-RANGE SIDE-SCAN SONAR (GLORIA)

SITE SURVEY FOR SITE 410, AN EXAMPLE OF THE USE OF LONG-RANGE SIDE-SCAN SONAR (GLORIA) 10. SITE SURVEY FOR SITE 410, AN EXAMPLE OF THE USE OF LONG-RANGE SIDE-SCAN SONAR (GLORIA) R. C. Searle and A. S. Laughton, Institute of Oceanographic Sciences, Wormley, GU8 5UB, UK and B. D. Loncarevic,

More information

Lab 7 Energy. What You Need To Know: Physics 225 Lab

Lab 7 Energy. What You Need To Know: Physics 225 Lab b Lab 7 Energy What You Need To Know: The Physics This lab is going to cover all of the different types of energy that you should be discussing in your lecture. Those energy types are kinetic energy, gravitational

More information

Exploring Magnetism, pp. 3-7 to 3-9, UC Berkeley (2004)

Exploring Magnetism, pp. 3-7 to 3-9, UC Berkeley (2004) Lesson Summary Students design an experiment to measure the magnetic field of the Earth using a bar magnet and compasses Prior Knowledge & Skills Completed the lesson: Learning about Space Weather AAAS

More information

ACTIVITY 3. Light and Waves. Goal We will look at a property of light and learn how scientists conclude that light behaves as a wave.

ACTIVITY 3. Light and Waves. Goal We will look at a property of light and learn how scientists conclude that light behaves as a wave. Name: WAVES of matter Class: Visual Quantum Mechanics ACTIVITY 3 Light and Waves Goal We will look at a property of light and learn how scientists conclude that light behaves as a wave. The light from

More information

Merrily we roll along

Merrily we roll along Merrily we roll along Name Period Date Lab partners Overview Measuring motion of freely falling objects is difficult because they acclerate so fast. The speed increases by 9.8 m/s every second, so Galileo

More information

Butte County Fire Department

Butte County Fire Department Butte County Fire Department Basic Land Navigation Verification Sheet I verify that Print Supervisor's name Print Employee's name has completed the Basic Land Navigation self study guide on Date Attached

More information

Topographic Maps Lab 1

Topographic Maps Lab 1 Topographic Maps Lab 1 I. Objectives 1. Construct a material model of typical terrain found in a landscape. 2. Construct a topographic map corresponding to the terrain model. 3. Learn how to interpret

More information

Weather Compass Webquest: Lab/Activity Edition

Weather Compass Webquest: Lab/Activity Edition Weather Compass Webquest: Lab/Activity Edition www.weathercompass.webs.com 1 Name: Date: Welcome to the Weather Compass Webquest: Activity/Lab Edition. This webquest was created by the National Oceanic

More information

Coordinates : A - of midpoint or summit : Lat., Long. } to. Description (kind of feature) : seachannel

Coordinates : A - of midpoint or summit : Lat., Long. } to. Description (kind of feature) : seachannel INTERNATIONAL HYDROGRAPHIC ORGANIZATION INTERGOVERNMENTAL OCEANOGRAPHIC COMMISSION (of UNESCO) IHO/IOC Form No. 1 UNDERSEA FEATURE NAME PROPOSAL (See NOTE overleaf) Ocean or Sea Japan Sea Name proposed

More information

Lab: Modeling Eclipses

Lab: Modeling Eclipses 2017 Eclipse: Research-Based Teaching Resources Lab: Modeling Eclipses Description: This hands-on, guided-inquiry activity helps students to understand the geometry of lunar and solar eclipses by creating

More information

These maps make the idea of elevations and contours more tangible follow any of the brown-line contours; they should form a level path.

These maps make the idea of elevations and contours more tangible follow any of the brown-line contours; they should form a level path. Geology 101 Name(s): Lab 1: Maps and geologic time Note: On all labs, you may work in small groups. You may turn in one lab for all of the group members; make sure that everyone who should get credit is

More information

Warm Up 1: Ocean Floors LT I can explain the concept of Pangea. I can describe how Ocean Ridges form and give examples of them.

Warm Up 1: Ocean Floors LT I can explain the concept of Pangea. I can describe how Ocean Ridges form and give examples of them. Warm Up 1: Ocean Floors 4-18-17 LT I can explain the concept of Pangea. I can describe how Ocean Ridges form and give examples of them. Q1. How do we get a diversity of birds? Q2. How did the breeds of

More information

Lab # - Ocean Bottom Topography. Background Information:

Lab # - Ocean Bottom Topography. Background Information: Name Lab Grade /10 Date Period Lab # - Ocean Bottom Topography Background Information: Ocean depth varies markedly from one location to another. Over large areas water depth is less than 200m (650 ft);

More information

Atoms. Grade Level: 4 6. Teacher Guidelines pages 1 2 Instructional Pages pages 3 5 Activity Pages pages 6 7 Homework Page page 8 Answer Key page 9

Atoms. Grade Level: 4 6. Teacher Guidelines pages 1 2 Instructional Pages pages 3 5 Activity Pages pages 6 7 Homework Page page 8 Answer Key page 9 Atoms Grade Level: 4 6 Teacher Guidelines pages 1 2 Instructional Pages pages 3 5 Activity Pages pages 6 7 Homework Page page 8 Answer Key page 9 Classroom Procedure: 1. Display the different items collected

More information

A Watered-down Topographic Map

A Watered-down Topographic Map Submarine Ring of Fire Expedition A Watered-down Topographic Map FOCUS Topographic and bathymetric maps GRADE LEVEL 6-8 FOCUS QUESTION How does one create a topographic map and what are the differences

More information

BI 101: Marine Biology

BI 101: Marine Biology WELCOME BI 101: Marine Biology Contact Info 1. Full Name 2. Student I.D. Number 3. Major 4. Email address 5. Preferred phone contact 6. Have you taken any other BI 101 courses at LBCC? 7. Why did you decide

More information

Topographic Maps Lab

Topographic Maps Lab Geoscience 190 Environmental Geoscience Topographic Maps Lab To represent mountain belts and landforms, geologists work extensively with maps. A very important type of map used for scientific, engineering,

More information

12/11/2013& egm502 seafloor mapping

12/11/2013& egm502 seafloor mapping egm502 seafloor mapping lecture 13 multi-beam echo-sounders The majority of the current charts of the ocean floors have been produced from single beam echo-sounder data. Even though these data have been

More information

Smart Survey Approach: Multibeam Echosounder and Integrated Water Column Data as an Added Value for Seep Hunting

Smart Survey Approach: Multibeam Echosounder and Integrated Water Column Data as an Added Value for Seep Hunting Smart Survey Approach: Multibeam Echosounder and Integrated Water Column Data as an Added Value for Seep Hunting HYDRO 2016 8 November 2016 Marco Filippone Introduction, Multibeam Sonars & water column

More information

NEW SEAFLOOR INSTALLATIONS REQUIRE ULTRA-HIGH RESOLUTION SURVEYS

NEW SEAFLOOR INSTALLATIONS REQUIRE ULTRA-HIGH RESOLUTION SURVEYS NEW SEAFLOOR INSTALLATIONS REQUIRE ULTRA-HIGH RESOLUTION SURVEYS Donald Hussong (Fugro Seafloor Surveys, Inc.) dhussong@fugro.com Fugro Seafloor Surveys, Inc., 1100 Dexter Avenue North (Suite 100), Seattle,

More information

EOS 102: Dynamic Oceans Exercise 1: Navigating Planet Earth

EOS 102: Dynamic Oceans Exercise 1: Navigating Planet Earth EOS 102: Dynamic Oceans Exercise 1: Navigating Planet Earth YOU MUST READ THROUGH THIS CAREFULLY! This exercise is designed to familiarize yourself with Google Earth and some of its basic functions while

More information

2 Electric Field Mapping Rev1/05

2 Electric Field Mapping Rev1/05 2 Electric Field Mapping Rev1/05 Theory: An electric field is a vector field that is produced by an electric charge. The source of the field may be a single charge or many charges. To visualize an electric

More information

Observation of Deep Seafloor by Autonomous Underwater Vehicle

Observation of Deep Seafloor by Autonomous Underwater Vehicle Observation of Deep Seafloor by Autonomous Underwater Vehicle Tamaki Ura 1 Underwater Technology Research Center Institute of Industrial Science, The University of Tokyo 4-6-1, Komaba, Minato, Tokyo, Japan

More information

Problem How can I find and mine valuable resources from a simulated moon surface?

Problem How can I find and mine valuable resources from a simulated moon surface? National Aeronautics and Space Administration MOON MINING Student Section Student Name Lesson Objective This lesson simulates the locating and the mining of ilmenite for oxygen on the moon. During this

More information

Observation of Deep Seafloor by Autonomous Underwater Vehicle

Observation of Deep Seafloor by Autonomous Underwater Vehicle Indian Journal of Geo-Marine Sciences Vol. 42 (8), December 2013,pp. 1028-1033 Observation of Deep Seafloor by Autonomous Underwater Vehicle Tamaki Ura 1 Underwater Technology Research Center, Institute

More information

Mapping Earth. Technology and Mapmaking

Mapping Earth. Technology and Mapmaking CHAPTER 1 LESSON 2 Mapping Earth Technology and Mapmaking Key Concepts What can a topographic map tell you about the shape of Earth s surface? What can you learn from geologic maps about the rocks near

More information

Build a Spectroscope 2005, 2004, 1994 by David A. Katz. All rights reserved. Permission for classroom use provided original copyright is included.

Build a Spectroscope 2005, 2004, 1994 by David A. Katz. All rights reserved. Permission for classroom use provided original copyright is included. Build a Spectroscope 2005, 2004, 1994 by David A. Katz. All rights reserved. Permission for classroom use provided original copyright is included. David A. Katz Chemist, Educator, Science Communicator,

More information

Title: The Ocean Floor: How Puzzling Can It Be?

Title: The Ocean Floor: How Puzzling Can It Be? Title: The Ocean Floor: How Puzzling Can It Be? (Ocean Floor Mapping) Grade Level(s): 6-8 Introduction: In 1804, an expedition led by Meriwether Lewis and William Clark, had one main purpose. It was to

More information

Learning Goals The particle model for a complex object: use the center of mass! located at the center of mass

Learning Goals The particle model for a complex object: use the center of mass! located at the center of mass PS 12A Lab 3: Forces Names: Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Measure the normal force

More information

ACTIVITY. Because the Earth Turns. Inquiry-Based Approach. Materials

ACTIVITY. Because the Earth Turns. Inquiry-Based Approach. Materials ACTIVITY Introduction Almost everywhere on Earth (except at the equar), objects moving horizontally and freely (unconstrained) across the Earth's surface travel in curved paths. Objects such as planes,

More information

Saturday Science Lesson Plan Fall 2008

Saturday Science Lesson Plan Fall 2008 Saturday Science Lesson Plan Fall 2008 LEARNING OBJECTIVES STANDARDS 1.1.1 Observe, describe, draw, and sort objects carefully to learn about them. 1.2.6 Describe and compare objects in terms of number,

More information

Vigyan Pratibha Learning Unit (Student version) Shadows

Vigyan Pratibha Learning Unit (Student version) Shadows Shadows Take a look around and you will notice that all things form shadows. You must have played in the ground on a bright sunny day and seen that shadow formed by your body runs around with you. Have

More information

Lab 4, part one: Electric and magnetic fields

Lab 4, part one: Electric and magnetic fields Astronomy 102 Name: Lab 4, part one: Electric and magnetic fields Learning outcome: Ultimately, to understand how a changing electric field induces a magnetic field, and how a changing magnetic field induces

More information

Global Positioning System (G.P.S.)

Global Positioning System (G.P.S.) Title: Global Positioning System (G.P.S.) (Navigation) Grade(s): 6-8 Introduction: The Global Positioning System (G.P.S.) Is a worldwide radio-navigation system formed from a constellation of 24 satellites

More information

Lesson 12: Position of an Accelerating Object as a Function of Time

Lesson 12: Position of an Accelerating Object as a Function of Time Lesson 12: Position of an Accelerating Object as a Function of Time 12.1 Hypothesize (Derive a Mathematical Model) Recall the initial position and clock reading data from the previous lab. When considering

More information

F = ma W = mg v = D t

F = ma W = mg v = D t Forces and Gravity Car Lab Name: F = ma W = mg v = D t p = mv Part A) Unit Review at D = f v = t v v Please write the UNITS for each item below For example, write kg next to mass. Name: Abbreviation: Units:

More information

UNIT 1C. USING TOPOGRAPHIC MAPS WHERE IN THE WORLD... ARE YOU?

UNIT 1C. USING TOPOGRAPHIC MAPS WHERE IN THE WORLD... ARE YOU? UNIT 1C. USING TOPOGRAPHIC MAPS WHERE IN THE WORLD... ARE YOU? TIME 60-90 minutes LEVEL All BENCHMARKS Next Generation Science Standards MS-LS1.D Science & Engineering Practices Developing and Using Models

More information

Topography and Bathymetry

Topography and Bathymetry Topography and Bathymetry Overview: Students are introduced to the concepts of bathymetry and topography, and build a model to demonstrate an understanding of both. Targeted Alaska Grade Level Expectations:

More information

Using Map and Compass Together

Using Map and Compass Together Using Map and Compass Together In situations where you foresee a potential evacuation on foot, where there are no roads, and no indication as to the direction of travel (i.e., road signs), it is recommended

More information

Erosional Features. What processes shaped this landscape?

Erosional Features. What processes shaped this landscape? Have you ever looked at the land around you and wondered what processes shaped what you see? Perhaps you see mountains, valleys, rivers, or canyons. Do you know how long these geologic features have been

More information

Submarine Ring of Fire Expedition A Watered-down Topographic Map

Submarine Ring of Fire Expedition A Watered-down Topographic Map Submarine Ring of Fire Expedition A Watered-down Topographic Map FOCUS GRADE LEVEL Topographic and bathymetric maps 6-8 TEACHING TIME One to two 45-minute periods SEATING ARRANGEMENT Cooperative groups

More information

LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS

LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS This laboratory allows you to continue the study of accelerated motion in more realistic situations. The cars you used in Laboratory I moved in only

More information

Activity Template. Drexel-SDP GK-12 ACTIVITY

Activity Template. Drexel-SDP GK-12 ACTIVITY Activity Template Drexel-SDP GK-12 ACTIVITY Subject Area(s): Sound Associated Unit: None Associated Lesson: None Activity Title: Density and Pitch, is there a relationship? Grade Level: 8 (7-9) Activity

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore BATHYMETRY For the complete encyclopedic entry with media resources,

More information

1 Weight, 100 g, with hook Measuring tape 1 Weight, 200 g, with hook Sandpaper, carpet, or other rough surface

1 Weight, 100 g, with hook Measuring tape 1 Weight, 200 g, with hook Sandpaper, carpet, or other rough surface Work and Friction That is why we labor and strive; because we have put our hope in the living God, who is the savior of all people, and especially of those of believe. 1 Timothy 4:10 Introduction In Physics,

More information

POLAR I.C.E. (Interactive Climate Education) REMOTE SENSING: USING RADAR TO LOOK THROUGH ICE

POLAR I.C.E. (Interactive Climate Education) REMOTE SENSING: USING RADAR TO LOOK THROUGH ICE POLAR I.C.E. (Interactive Climate Education) REMOTE SENSING: USING RADAR TO LOOK THROUGH ICE BUILD A 3D MODEL OF THE LANDSCAPE THAT LIES UNDER THE ICE! INTRODUCTION: It is hard to believe that melting

More information

Strange New Planet. Time Budget: 1 hour

Strange New Planet. Time Budget: 1 hour Strange New Planet Grade Range: 5-8 G.L.E Focus: Time Budget: 1 hour WASL Vocabulary: Overview: This activity develops insight into the processes involved in learning about planetary exploration. Students

More information

You will return this handout to the instructor at the end of the lab period. Experimental verification of Ampere s Law.

You will return this handout to the instructor at the end of the lab period. Experimental verification of Ampere s Law. PHY222 LAB 6 AMPERE S LAW Print Your Name Print Your Partners' Names Instructions Read section A prior to attending your lab section. You will return this handout to the instructor at the end of the lab

More information

CREATE A MOTION. Purpose Demonstrate your understanding of motion graphs by creating real-world motion(s) that match a graph(s) you ve been given.

CREATE A MOTION. Purpose Demonstrate your understanding of motion graphs by creating real-world motion(s) that match a graph(s) you ve been given. CREATE A MOTION Purpose Demonstrate your understanding of motion graphs by creating real-world motion(s) that match a graph(s) you ve been given. Materials Motion Detector, Interface, Dynamics Cart, Dynamics

More information

NEW TOOLS TO IMPROVE DESKTOP SURVEYS

NEW TOOLS TO IMPROVE DESKTOP SURVEYS NEW TOOLS TO IMPROVE DESKTOP SURVEYS Pablo Vengoechea (Telemediciones S.A.), Jorge O. García (Telemediciones S.A.), Email: Telemediciones S.A. / Cra. 46 94-17 Bogotá D.C.

More information

Introduction to Contour Maps

Introduction to Contour Maps Your web browser (Safari 7) is out of date. For more security, comfort and Activityengage the best experience on this site: Update your browser Ignore Introduction to Contour Maps What information does

More information

Newton Car. Rocket Activity

Newton Car. Rocket Activity Rocket Activity Newton Car Objective To investigate the relationship between mass, acceleration, and force as described in Newton s second law of motion. National Science Content Standards: Unifying Concepts

More information

Introduction to Oceanography Cabrillo College, Spring Semester, 2018 Instructors: David Schwartz & Lauren Hanneman

Introduction to Oceanography Cabrillo College, Spring Semester, 2018 Instructors: David Schwartz & Lauren Hanneman Introduction to Oceanography Cabrillo College, Spring Semester, 2018 Instructors: David Schwartz & Lauren Hanneman http://www.cabrillo.edu/~dschwartz/ LECTURE TOPICS Text Assignments Dates 1. Introduction

More information

ELECTRIC FIELD. 2. If you have an equipotential surface that means that the potential difference is zero, along that surface. a. true b.

ELECTRIC FIELD. 2. If you have an equipotential surface that means that the potential difference is zero, along that surface. a. true b. ELECTRIC FIELD Pre-Lab Questions Page Name: Class: Roster Number: Instructor: Multiply Choice: Circle the correct answer 1. Electric field lines are drawn from a. positive charges to negative charges b.

More information

It s true, these activities are all facets of marine science. But they represent a pretty small part of the picture.

It s true, these activities are all facets of marine science. But they represent a pretty small part of the picture. Welcome. Thanks for coming to CBNERR s Discovery Lab. I m Lisa Lawrence and I m a marine educator at VIMS. Tonight, I m going to give you just glimpse of what it s like to be a marine scientist and tell

More information

PS : ES Hurricane Tracking Lab

PS : ES Hurricane Tracking Lab PS : ES Hurricane Tracking Lab Copyright 1998, 2005 S.Kluge Name Period Companion Websites: http://weather.unisys.com/hurricane/index.html http://www.atwc.org http://stevekluge.com/geoscience/regentses/labs/hurricane1.html

More information

Newton s Laws of Motion Discovery

Newton s Laws of Motion Discovery Student handout Since the first caveman threw a rock at a sarer- toothed tiger, we ve been intrigued by the study of motion. In our quest to understand nature, we ve looked for simple, fundamental laws

More information

Projectiles: Target Practice Student Advanced Version

Projectiles: Target Practice Student Advanced Version Projectiles: Target Practice Student Advanced Version In this lab you will shoot a chopstick across the room with a rubber band and measure how different variables affect the distance it flies. You will

More information

Notes and Summary pages:

Notes and Summary pages: Topographic Mapping 8.9C Interpret topographical maps and satellite views to identify land and erosional features and predict how these shapes may be reshaped by weathering ATL Skills: Communication taking

More information

Physics 1BL Electric Potentials & Fields Summer Session II 2010

Physics 1BL Electric Potentials & Fields Summer Session II 2010 Pre-Lab Activity The diagram represents a contour map of a hilly island. Copy it into your lab notebook. The outer contour of the figure is at sea level. All points on any one particular contour line are

More information

Kyle Griebel NRS 509 Dr. August & Dr. Wang GIS and remote sensing in Seafloor mapping

Kyle Griebel NRS 509 Dr. August & Dr. Wang GIS and remote sensing in Seafloor mapping GIS and remote sensing in Seafloor mapping Introduction to seafloor mapping Seafloor maps have a wide variety of uses for scientists and coastal planning needs. Some of these uses include biological assessment

More information

GEOLOGY 101 LABORATORY LAB

GEOLOGY 101 LABORATORY LAB Student Name: College: Grade: GEOLOGY 101 LABORATORY LAB Isostasy and Plate Tectonics Understanding and Analyzing Vertical and Horizontal Plate Motion Part I. Density and Isostatic Equilibrium Introduction:

More information

Seismic Retrofit R-Us Laura Branch Earnest Righetti High School Grade Level: 9-12 Subject Area: Earth Science/Geology

Seismic Retrofit R-Us Laura Branch Earnest Righetti High School Grade Level: 9-12 Subject Area: Earth Science/Geology Seismic Retrofit R-Us Laura Branch Earnest Righetti High School Grade Level: 9-12 Subject Area: Earth Science/Geology Project Summary: The world is shaking!!! Why? Why is there so much damage to buildings

More information

Caution! Stick-slip motion should not be confused with strike-slip motions along lateral faults.

Caution! Stick-slip motion should not be confused with strike-slip motions along lateral faults. Lesson 5: Earthquake Machine As concluded in Lesson 4, earthquakes are associated with displacements on faults. Faults lock and a displacement occurs when the stress across the fault builds up to a sufficient

More information

GEOLOGY 101 LABORATORY LAB #2 Isostacy and Plate Tectonics How Density and Gravity Control Plate Dynamics

GEOLOGY 101 LABORATORY LAB #2 Isostacy and Plate Tectonics How Density and Gravity Control Plate Dynamics Name: Grade: GEOLOGY 101 LABORATORY LAB #2 Isostacy and Plate Tectonics How Density and Gravity Control Plate Dynamics Part I. Density and Isostatic Equilibrium Introduction: Why does the Earth have continental

More information

PROJECTIONS AND COORDINATES EXPLORED THROUGH GOOGLE EARTH EXERCISE (SOLUTION SHEET)

PROJECTIONS AND COORDINATES EXPLORED THROUGH GOOGLE EARTH EXERCISE (SOLUTION SHEET) PROJECTIONS AND COORDINATES EXPLORED THROUGH GOOGLE EARTH EXERCISE (SOLUTION SHEET) Name: Date: Period: Note: Correct answers on some problems are indicated with a yellow highlight. PROJECTIONS 1. Here

More information

Biology Activity: Science Process; Measurements; Tools; Data Presentation and Analysis Purpose Question Background

Biology Activity: Science Process; Measurements; Tools; Data Presentation and Analysis Purpose Question Background Biology Activity: Science Process; Measurements; Tools; Data Presentation and Analysis Purpose: Review scientific practices, the use of measuring tools and microscopes, data collection, and the proper

More information

Unit 3 Exploring Relationships: Lines and Curves of Best Fit

Unit 3 Exploring Relationships: Lines and Curves of Best Fit Unit 3 Exploring Relationships: Lines and Curves of Best Fit Lesson Outline BIG PICTURE Grade 9 Applied Students will: describe relationships between variables using graphical models; connect graphical

More information

TOPEX/POSEIDON in a Box

TOPEX/POSEIDON in a Box TOPEX/POSEIDON in a Box PURPOSE To demonstrate how information received from a satellite is collected and made into a useful product To demonstrate the relationship between El Nino and the TOPEX/POSEIDON

More information

Physics 1B ELECTRIC FIELDS AND POTENTIALS Rev. 3-AH. Introduction

Physics 1B ELECTRIC FIELDS AND POTENTIALS Rev. 3-AH. Introduction Introduction This material corresponds with Hecht, Chapters 15 and 16. In this lab you will focus on the concepts of electric fields, electric potential, and parallel-plate capacitors. It is a good idea

More information

GG710 Remote Sensing in Submarine Environments Sidescan Sonar

GG710 Remote Sensing in Submarine Environments Sidescan Sonar GG710 Remote Sensing in Submarine Environments Sidescan Sonar Harold Edgerton, a professor of electrical engineering at the Massachusetts Institute of Technology, developed sidescan sonar technology for

More information