OCN 201 LAB FALL 2003 POLYNESIAN AND WESTERN NAVIGATION

Size: px
Start display at page:

Download "OCN 201 LAB FALL 2003 POLYNESIAN AND WESTERN NAVIGATION"

Transcription

1 Name: OCN 201 LAB FALL 2003 POLYNESIAN AND WESTERN NAVIGATION INTRODUCTION People have been sailing the seas for thousands of years, during most of which time they relied on the sun and the stars to navigate the open ocean. It wasn't until the invention of the compass and the clock, along with other advances in the fields of geophysics and astronomy, that extremely accurate navigational techniques were utilized. This lab will provide an overview of both Polynesian and modern wayfinding. You will use computer simulation, a star compass, a magnetic compass, and a GPS unit to learn more about wayfinding techniques. During this lab you should accomplish the following objectives: 1. Use maps to identify Latitude and Longitude, magnetic and true north; 2. Find the coordinates of Oahu; and 3. Learn orientation skills based on a star chart and a compass. If you need further clarification after reading the sections below, please read Appendix 3 of the class textbook, Oceanography: An Invitation to Marine Science by Tom Garrison. POLYNESIAN NAVIGATION The required reading for this section is found on the Polynesian Voyaging Society (PVS) web site at Click on the Wayfinding link and then the Wayfinding Summary link. Interested students should review the rest of the site to learn more about PVS and traditional wayfinding techniques. MODERN NAVIGATION Instead of splitting the sky into star houses, modern navigators split the globe a system of quadrants formed by imaginary lines called latitude and longitude. Latitude lines run parallel to the equator and indicate North or South positions. Longitude lines run from pole to pole and indicate positions on meridians East and West of the Greenwich meridian (designated as the zero meridian). By convention, degrees (symbol o ) and minutes (symbol ) are the units used to describe position. This is based on 360 o in a circle and 60' in a degree. When writing coordinates, the latitude always goes first. For example, the coordinate "22 o 18.5 N 155 o 34.6 W" is read as "22 degrees, 18.5 minutes North and 155 degrees, 34.6 minutes West." The distance between each line of latitude is the same and one degree of latitude is equal to 60 nautical miles (1 nautical mile = 1.15 mile). In contrast, lines of longitude are not spaced evenly. At the poles, all lines of longitude converge. At the equator, lines of longitude have their greatest spacing, which is equal to the distance between lines of latitude. For the purposes of this lab, we will assume that one degree of longitude is equal to 60 nautical miles because Hawai'i is reasonably close to the equator. To find out location relative to the latitude/longitude coordinate system, modern navigators use equipment such as charts (nautical maps), a magnetic compass, and the Global Positioning System (GPS). The basis for the magnetic compass is discussed below, followed by a brief discussion of GPS.

2 The earth's magnetic field is probably caused by motions in the liquid outer core. This magnetic field has been moving around over the history of the earth, but also the poles have been flipping sides! They also drift to a small extent. Figure 1 illustrates the movement of the North magnetic pole over the past 100 years. Right now, it seems to be 8 degrees south of the geographic North Pole. This means that depending on where you are in the world, you have to be careful to correct the reading on your compass accordingly. Figure 1: The position of the magnetic North over time. As you can see, the magnetic North in the year 2000 was on 250 o in this strange projection. That is the same as 110 o West in the system we are familiar with. Figure courtesy of USGS: The difference between the magnetic and the geographic North Pole is referred to as the declination. The declination of a map changes from year to year, so if you use an old map, you will end up travelling off course. For this laboratory, we read on our map that if we are in the Hawai`ian Islands, the magnetic North lies 10 degrees east of the geographic North, as we look towards it. That means that we must subtract 10 degrees from our compass reading to see our direction in relation to the geographic North. This direction in relation to the geographic North is known as the bearing. For example, if our compass says that we are looking in a direction of 275 o, our bearing is 265 o. 2

3 GPS uses satellites that are orbiting the earth to transmit signals to a receiver on earth. Multiple satellites transmit signals to a single receiver. By analyzing the distances between you and each of the satellites, your GPS unit determines your location. This method is referred to as triangulation and your TA will explain it further during lab. EXERCISES I. Basic Navigation Tools The TA will bring groups of students onto the roof of MSB or out into the courtyard in front of the building and demonstrate the GPS and compass. 1. What are the latitude and longitude of UH Manoa? Lat Long 2. By walking with the GPS unit turned on estimate (using your stride to measure) what is the minimum distance that you need to walk to cause the GPS display to change by its minimum value? 3. From the assigned point outside the building or on the roof, what is the bearing of a) POST, b) HIG, c) Bilger Hall? II. Modern Navigation Methods 4. Using the assigned worksheet and the chart of the main Hawaiian Islands, draw a course on the chart using the erasable marker. For this exercise, refer to the table below. You will begin by determining the coordinates (position) of Hanauma Bay. Then, go 60 nautical miles at a bearing of 140 and write down your location and position in part B. For the position, give your coordinates to the nearest minute. For the location, write down the closest land- or sea-mark. If you are in the middle of a channel, which one? If you're right next to a point or cape, which one? You get the idea 3

4 Location Position Bearing Distance A. Hanauma Bay nautical miles B n miles C n miles D n miles E. You should now be at 21 N, 159 W. If that's where you ended up, good work! If not, you can recheck your route to see where you've made mistakes. Now, plot the bearing and distance to Nawiliwili Bay, Kau'ai. Put your answer in the space below. III. Polynesian Navigation Methods 5. Using the marked Hawaiian star compass rose (provided to you in class), give the direction for each of the bearings used above. Note that these legs correspond with the voyage that you plotted in the previous exercise. Also, calculate how much time would be spent on each leg of the journey if you were travelling at 15 knots (1 knot = 1 nautical mile per hour). Round to the nearest 1/4 hour. Note that this is a rather impossible speed if travelling on a vessel such as the Hokule'a when sailing in a multitude of directions, but we will use it anyhow. Degrees Hawai'ian Direction Name Distance (n miles) Time (hours) A nautical miles B nautical miles C nautical miles D nautical miles E. 4

5 6. Use the computer program "Starry Night Backyard" to identify the stars that can be used to hold the canoe's course during the above journey. Basic instructions for using Starry Night Backyard: 1) Open the program by clicking on the astronomical observatory icon on the launching dock. 2) Take a few minutes looking at the program, the menus and the clickable buttons. 3) At the top of the window with the view of the meadow you can see the following, from left to right: The date and time. You can change these by clicking on them and typing in the numbers. Speed with which time moves. You can speed time up 30 times, 300 times etc. VCR-like controls that can stop time, move time forwards or backwards etc. Elevation and location 4) Look at the menu on the left of the screen: Select View Options. To have the program label planets, stars and constellations, check the boxes marked Labels next to these items. 5) Place the computer mouse over the landscape, hold down the mouse button and move the mouse left or right. This way you can look around you in any direction you wish. 6a. Look at the menu on the top of the screen. Select View, and scroll down to Hide Daylight. Now you can see the stars and constellations obscured by daylight. Set the speed with which time moves at 3000x. Look in different directions and describe the motion of the stars as you face each direction. South East North West 6b. When facing the north, which star doesn t move? How could this star be useful in determining your bearing? 6c. (Before going on with this exercise, stop the progress of time. Go to the menu on the top of the screen, select View, and scroll down to Show Daylight. Set the time at 300x, and the hour and date mentioned below) Now, let s imagine that you are planning a voyage of the Hokule'a, with the legs used in exercises 1 and 5. The journey will commence at 7:30 PM on Friday, September 5 th, 2003 Knowing that each star can be used up to 30 degrees above the horizon, and that the stars rise and set by 1 every 4 minutes, each star can only be used for a maximum of 120 minutes. For each leg of the journey, look toward the rising stars (East) and list the stars that you could use to navigate this course. Also, list the time period for which you can use each star. Are there any time periods when you can't find one of the bright rising stars to use? If so, indicate those times (to the nearest minute). For this part, it will be useful if you change the time interval to seconds. Note that during daylight hours, you will not be able to use the stars and will have to use alternate navigation methods. 5

6 Leg Star/Constellation Time A. B. C. D. E. 7. Other than the celestial bodies (stars, moon, sun, etc.), list 3 aspects of your surroundings that could be used to determine your position and bearing while at sea (this information comes from the online reading). IV. Summary Questions 8. List 2 potential problems or sources of error that one might incur with each navigational system 9. If you were stuck in the middle of the Pacific, and had to get home as soon as possbile, which navigational system would you prefer to use? Why? 6

CHAPTER 2 SKILL SHEET 2: CELESTIAL NAVIGATION

CHAPTER 2 SKILL SHEET 2: CELESTIAL NAVIGATION CHAPTER 2 SKILL SHEET 2: CELESTIAL NAVIGATION Before the invention of GPS technology, how were people on ships far at sea, out of the sight of land, able to tell where they were? For thousands of years

More information

Stellarium Walk-through for First Time Users

Stellarium Walk-through for First Time Users Stellarium Walk-through for First Time Users Stellarium is the computer program often demonstrated during our planetarium shows at The MOST, Syracuse s science museum. It is our hope that visitors to our

More information

Assignment #0 Using Stellarium

Assignment #0 Using Stellarium Name: Class: Date: Assignment #0 Using Stellarium The purpose of this exercise is to familiarize yourself with the Stellarium program and its many capabilities and features. Stellarium is a visually beautiful

More information

Introduction to Astronomy Laboratory Exercise #1. Intro to the Sky

Introduction to Astronomy Laboratory Exercise #1. Intro to the Sky Introduction to Astronomy Laboratory Exercise #1 Partners Intro to the Sky Date Section Purpose: To develop familiarity with the daytime and nighttime sky through the use of Stellarium. Equipment: Computer

More information

Physics Lab #3:! Starry Night! Observations of the Sun and Moon!

Physics Lab #3:! Starry Night! Observations of the Sun and Moon! Physics 10293 Lab #3: Starry Night Observations of the Sun and Moon Introduction Today, we are going to use the Starry Night software to learn about motion of the stars, sun and moon on the celestial sphere.

More information

Physics Lab #5: Starry Night Observations of the Sun and Moon

Physics Lab #5: Starry Night Observations of the Sun and Moon Physics 10293 Lab #5: Starry Night Observations of the Sun and Moon Introduction Today, we are going to use the Starry Night software to learn about motion of the stars, sun and moon on the celestial sphere.

More information

Understanding Positional Astronomy Part 2 Celestial Co-ordinates Difficulty: Intermediate

Understanding Positional Astronomy Part 2 Celestial Co-ordinates Difficulty: Intermediate Exercise: Understanding Positional Astronomy Part 2 Celestial Co-ordinates Difficulty: Intermediate Objectives In Part 1 you learned about Celestial Sphere and how the stars appear to move across the night

More information

Astro 101 Lab #2. Start up the Stellarium program. If you do not remember how to use the user interface, please refer to Lab#1 or the user s guide.

Astro 101 Lab #2. Start up the Stellarium program. If you do not remember how to use the user interface, please refer to Lab#1 or the user s guide. Name: Astro 101 Lab #2 Lab objectives 1) Learn about how the Sun s path, through the sky, changes with the changing seasons. 2) Learn about how the Sun s path changes while viewing it at different locations

More information

1. Label a few examples of lines of latitude and lines of longitude on the globe above left.

1. Label a few examples of lines of latitude and lines of longitude on the globe above left. Oceanography 2 Location, Direction, and Distance on Nautical Charts Please read Appendix III in the textbook for reference. Learning Objectives for the first nautical chart Lab 1. Use the latitude-longitude

More information

Background Information

Background Information Oceanography LAB #1: Marine Charts and Navigation Background Information Latitude and Longitude A coordinate is an address a means of designating location. Most coordinate systems involve a network of

More information

COMPUTER ACTIVITY 3: THE SEASONS: LENGTH OF THE DAY

COMPUTER ACTIVITY 3: THE SEASONS: LENGTH OF THE DAY NAME ASTRONOMY 20 SECTION DAY/ S. V. LLOYD COMPUTER ACTIVITY 3: THE SEASONS: LENGTH OF THE DAY Overview Software Configuration The seasonal variation in temperature is due to two changes in the Sun's path

More information

HOW TO TRAVEL ON EARTH WITHOUT GETTING LOST

HOW TO TRAVEL ON EARTH WITHOUT GETTING LOST HOW TO TRAVEL ON EARTH WITHOUT GETTING LOST Using a globe to learn how a position on Earth can be described. Rui Dilão, Instituto Superior Técnico Curriculum topic latitude, longitude, coordinate system

More information

Astro Navigation (i.e. Celestial Navigation)

Astro Navigation (i.e. Celestial Navigation) Name: Partner First Name: Astro Navigation (i.e. Celestial Navigation) Over the course of human lifetimes, the stars don t appear to change positions much. We can use that in order to determine locations

More information

Section 2. Locating Astronomical Objects in the Night Sky What Do You See? What Do You See? Think About It. Investigate.

Section 2. Locating Astronomical Objects in the Night Sky What Do You See? What Do You See? Think About It. Investigate. Section 2 Locating Astronomical Objects in the Night Sky Section 2 Locating Astronomical Objects in the Night Sky What Do You See? What Do You See? Learning Outcomes In this section, you will Construct

More information

Charts and Chart Work with Poole Sailing

Charts and Chart Work with Poole Sailing with Poole Sailing Nautical charts are a mine of information but they need to be up to date. Corrections to charts are published by the Hydrographic Office monthly as Notices to Mariners both in print

More information

Celestial Sphere. Altitude [of a celestial object] Zenith. Meridian. Celestial Equator

Celestial Sphere. Altitude [of a celestial object] Zenith. Meridian. Celestial Equator Earth Science Regents Interactive Path of the Sun University of Nebraska Resources Copyright 2011 by Z. Miller Name Period COMPANION WEBSITES: http://www.analemma.com/ http://www.stellarium.org/ INTRODUCTION:

More information

Google Earth. Overview: Targeted Alaska Grade Level Expectations: Objectives: Materials: Grades 5-8

Google Earth. Overview: Targeted Alaska Grade Level Expectations: Objectives: Materials: Grades 5-8 Overview: Students become familiar with using the Google Earth interface to navigate around the planet. Using the zoom and tilt features, students practice moving around the planet with the navigation

More information

USING YOUR FIELD GUIDE AND STAR CHARTS PRELAB

USING YOUR FIELD GUIDE AND STAR CHARTS PRELAB USING YOUR FIELD GUIDE AND STAR CHARTS PRELAB 1. Explain the main differences between using a star wheel and a star chart to find things in the night sky. 2. Explain the terms Hour Angle, Meridian and

More information

Astronomy 101 Lab: Stellarium Tutorial

Astronomy 101 Lab: Stellarium Tutorial Name: Astronomy 101 Lab: Stellarium Tutorial Please install the Stellarium software on your computer using the instructions in the procedure. If you own a laptop, please bring it to class. You will submit

More information

Activities: Map and Compass

Activities: Map and Compass Activities: Map and Compass Determining General Directions Modified with permission from Outdoor Living Skills Series: Map and Compass, Missouri Department of Conservation Overview: Students use the sun

More information

Astro 101 Lab #1. To advance time forward and backward, click on the arrow toolbar. From left to right, the buttons will

Astro 101 Lab #1. To advance time forward and backward, click on the arrow toolbar. From left to right, the buttons will Name: Astro 101 Lab #1 Lab objectives 1) Learn how to use the Stellarium planetarium program, by becoming familiar with the user interface and configuring the planetarium to your present location on Earth.

More information

The Mass of Jupiter Student Guide

The Mass of Jupiter Student Guide The Mass of Jupiter Student Guide Introduction: In this lab, you will use astronomical observations of Jupiter and its satellites to measure the mass of Jupiter. We will use the program Stellarium to simulate

More information

Physics Lab #2: Learning Starry Night, Part 1

Physics Lab #2: Learning Starry Night, Part 1 Physics 10293 Lab #2: Learning Starry Night, Part 1 Introduction In this lab, we'll learn how to use the Starry Night software to explore the sky, and at the same time, you ll get a preview of many of

More information

CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM

CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM Name Partner(s) Section Date CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM You have had the opportunity to look at two different tools to display the night sky, the celestial sphere and the star chart.

More information

Geographers Tools: Location Systems Prof. Anthony Grande Hunter College Geography

Geographers Tools: Location Systems Prof. Anthony Grande Hunter College Geography 5 Geographers Tools: Location Systems Prof. Anthony Grande Hunter College Geography Lecture design, content and presentation AFG 0119 Individual images and illustrations may be subject to prior copyright.

More information

GPS Measurement Protocol

GPS Measurement Protocol GPS Measurement Protocol Purpose To determine the latitude, longitude, and elevation of your school and of all your GLOBE sites Overview The GPS receiver will be used to determine the latitude, longitude

More information

What is a map? A Map is a two or three-dimensional model or representation of the Earth s surface. 2-Dimensional map

What is a map? A Map is a two or three-dimensional model or representation of the Earth s surface. 2-Dimensional map What is a map? A Map is a two or three-dimensional model or representation of the Earth s surface. 2-Dimensional map What is a Map Projection? Planar Projection Projection A Projection is a mathematical

More information

Mapping Earth s Surface Chapter 2 Section 3

Mapping Earth s Surface Chapter 2 Section 3 Mapping Earth s Surface Chapter 2 Section 3 Day 1 Objective I will understand maps can be used to find locations on Earth and to represent information about features on Earth s Surface I will understand

More information

Computer Activity #3 SUNRISE AND SUNSET: THE SEASONS

Computer Activity #3 SUNRISE AND SUNSET: THE SEASONS NAME(S)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ASTRONOMY 25 Computer Activity #3 SUNRISE AND SUNSET: THE SEASONS SECTION DAY/TIME S. V. LLOYD Overview The seasonal variation in temperature is due to two changes

More information

Indoor Lab #2: The Starry Sky

Indoor Lab #2: The Starry Sky 17 Indoor Lab #2: The Starry Sky Objectives: To tour the sky and explore the way in which it moves, using the sky simulation program Starry Night Pro. Check out the information sheet on SN first, and try

More information

Physics Lab #6:! Mercury!

Physics Lab #6:! Mercury! Physics 10293 Lab #6: Mercury Introduction Today we will explore the motions in the sky of the innermost planet in our solar system: Mercury. Both Mercury and Venus were easily visible to the naked eye

More information

FYI. 0 You will need to take notes this information will come in handy when going through this unit and on the cok.

FYI. 0 You will need to take notes this information will come in handy when going through this unit and on the cok. FYI 0 You will need to take notes this information will come in handy when going through this unit and on the cok. One of the best ways to get started as a backyard astronomer is to learn the constellations.

More information

ASTRONOMICAL NAVIGATION

ASTRONOMICAL NAVIGATION Basic terms ASTRONOMICAL NAVIGATION *astronomical navigation *compilation *astronomical tabels *celestial observations *solution of a sight * Sun/Moon/star sight *spherical trigonometry *PZX triangle *celestial

More information

The Earth is a Rotating Sphere

The Earth is a Rotating Sphere The Earth is a Rotating Sphere The Shape of the Earth Earth s Rotation ( and relative movement of the Sun and Moon) The Geographic Grid Map Projections Global Time The Earth s Revolution around the Sun

More information

SkyGlobe Planetarium

SkyGlobe Planetarium SkyGlobe Planetarium Introduction: This exercise will simulate the night sky and demonstrate a number of principles of the celestial sphere and the motions of the Earth and planets. Getting Started: 1.

More information

PY 124: Terrestrial Position from Celestial Observations

PY 124: Terrestrial Position from Celestial Observations The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location. The linked image cannot be displayed. The file may

More information

STELLARIUM ACTIVITY #1: STARRISE AND STARSET

STELLARIUM ACTIVITY #1: STARRISE AND STARSET NAME(S) ASTRONOMY 20/25 SECTION DAY/TIME S. V. LLOYD STELLARIUM ACTIVITY #1: STARRISE AND STARSET Overview The sidereal day is the amount of time from starrise to the next starrise. In this activity, you

More information

Complete Sun Sight Reduction Procedure

Complete Sun Sight Reduction Procedure Caution...2 Usage...2 Conventions...2 Assumptions...2 Explanation...2 Sight #...2 DR Latitude/DR Longitude...2 Date...2 GMT/UT...3 Hs...3 D. R. I. P. S...3 Index Error...3 Complete Sun Sight Reduction

More information

CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM

CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM Name Partner(s) Section Date CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM You have had the opportunity to look at two different tools to display the night sky, the celestial sphere and the star chart.

More information

Chapter 1: The World of Geography

Chapter 1: The World of Geography Chapter 1: The World of Geography Chapter 1: What is Geography? *It is the study of our earth; our home. OR *Anything that can be mapped! *Geography mixes up the physical and human aspects of our world

More information

COORDINATE SYSTEMS: LOCATING YOURSELF ON A SPHERE

COORDINATE SYSTEMS: LOCATING YOURSELF ON A SPHERE NAME DATE PARTNER(S) COORDINATE SYSTEMS: LOCATING YOURSELF ON A SPHERE Activity 1: Getting Your Bearings 1. Close your eyes and point to the north. Did you point up? Why or why not? Up is the #1 answer.

More information

Astronomy 50. Lab Manual

Astronomy 50. Lab Manual Astronomy 50 Lab Manual Union College Spring 2008 Professor Koopmann Professor Wilkin 2 Astronomy 50 Lab Policies Spring 2008 Professor Koopmann, Professor Wilkin For this course, you are required to complete

More information

MiSP Astronomy - Seasons Worksheet #1 L2

MiSP Astronomy - Seasons Worksheet #1 L2 MiSP Astronomy - Seasons Worksheet #1 L2 Name Date Changing Hours of Daylight on Long Island (L 1, 2, 3) Introduction You sometimes hear people say, Days are longer in the summer and shorter in the winter.

More information

Physics Lab #4:! Starry Night Student Exercises I!

Physics Lab #4:! Starry Night Student Exercises I! Physics 10293 Lab #4: Starry Night Student Exercises I Introduction For today s lab, we are going to let the Starry Night software do much of the work for us. We re going to walk through some of the sample

More information

Chapter 3 Models of the Earth. 3.1 Finding Locations on the Earth. 3.1 Objectives

Chapter 3 Models of the Earth. 3.1 Finding Locations on the Earth. 3.1 Objectives Chapter 3 Models of the Earth 3.1 Finding Locations on the Earth 3.1 Objectives Explain latitude and longitude. How can latitude and longitude be used to find locations on Earth? How can a magnetic compass

More information

Astronomy 101: 9/18/2008

Astronomy 101: 9/18/2008 Astronomy 101: 9/18/2008 Announcements Pick up a golf ball at the front of the class or get one from Alex; you will need it for an in-class activity today. You will also need the question sheet from Alex.

More information

OCN 201. History of Oceanography and Polynesian voyaging

OCN 201. History of Oceanography and Polynesian voyaging OCN 201 History of Oceanography and Polynesian voyaging History of Settlement: Fiji by ~ 1300 BC Tonga by ~1100 BC Samoa and Marquesas by 500 BC By now there is a distinct Polynesian culture. Easter Island

More information

Downloaded from

Downloaded from I II III IV V VI Define the following terms:- a) Orbitb) Meteoroids c) Celestial bodies GEOGRAPHY ASSIGNMENTS The Earth In The Solar System d) Satellite e) Comets Give one word answers:- a) Blue planet

More information

5 - Seasons. Figure 1 shows two pictures of the Sun taken six months apart with the same camera, at the same time of the day, from the same location.

5 - Seasons. Figure 1 shows two pictures of the Sun taken six months apart with the same camera, at the same time of the day, from the same location. ASTR 110L 5 - Seasons Purpose: To plot the distance of the Earth from the Sun over one year and to use the celestial sphere to understand the cause of the seasons. What do you think? Write answers to questions

More information

EOS 102: Dynamic Oceans Exercise 1: Navigating Planet Earth

EOS 102: Dynamic Oceans Exercise 1: Navigating Planet Earth EOS 102: Dynamic Oceans Exercise 1: Navigating Planet Earth YOU MUST READ THROUGH THIS CAREFULLY! This exercise is designed to familiarize yourself with Google Earth and some of its basic functions while

More information

Students will explore Stellarium, an open-source planetarium and astronomical visualization software.

Students will explore Stellarium, an open-source planetarium and astronomical visualization software. page 22 STELLARIUM* OBJECTIVE: Students will explore, an open-source planetarium and astronomical visualization software. BACKGROUND & ACKNOWLEDGEMENTS This lab was generously provided by the Red Rocks

More information

Lab 2 Astronomical Coordinates, Time, Focal Length, Messier List and Open Clusters

Lab 2 Astronomical Coordinates, Time, Focal Length, Messier List and Open Clusters Lab 2 Astronomical Coordinates, Time, Focal Length, Messier List and Open Clusters Name: Partner(s): Boxes contain questions that you are expected to answer (in the box). You will also be asked to put

More information

Cartesian Coordinates Need two dimensional system 2 number lines perpendicular to each other X-axis is horizontal Y-axis is vertical Position relative

Cartesian Coordinates Need two dimensional system 2 number lines perpendicular to each other X-axis is horizontal Y-axis is vertical Position relative General Physical Science Chapter 15 Place and Time Space and Time Einstein Space and time related Single entity Time is the 4 th dimension! Cartesian Coordinates Need some system to tell us where something

More information

MiSP Astronomy Seasons Worksheet #1 L1

MiSP Astronomy Seasons Worksheet #1 L1 MiSP Astronomy Seasons Worksheet #1 L1 Name Date CHANGING HOURS OF DAYLIGHT ON LONG ISLAND Introduction You sometimes hear people say, Days are longer in the summer and shorter in the winter. That is a

More information

Chapter 6: Latitude by Noon Sight

Chapter 6: Latitude by Noon Sight Chapter 6: Latitude by oon ight When the sun is crossing the meridian of the boat, it is straight south or north of the boat and at its highest altitude over the horizon for the day. The local meridian

More information

Where in the World? Plotting Latitude & Longitude

Where in the World? Plotting Latitude & Longitude Where in the World? Plotting Latitude & Longitude Background Because our planet is a sphere, we need two types of reference lines to locate positions on the Earth and to make accurate maps. These imaginary

More information

Meridian Circle through Zenith, North Celestial Pole, Zenith Direction Straight Up from Observer. South Celestial Pole

Meridian Circle through Zenith, North Celestial Pole, Zenith Direction Straight Up from Observer. South Celestial Pole Chapter 3 How Earth and Sky Work- Effects of Latitude In chapters 3 and 4we will learn why our view of the heavens depends on our position on the Earth, the time of day, and the day of the year. We will

More information

Astron 104 Laboratory #4 Orbital Motion of a Planet

Astron 104 Laboratory #4 Orbital Motion of a Planet Name: Date: Section: Astron 104 Laboratory #4 Orbital Motion of a Planet Introduction The nature of the Solar System was first derived from careful measurements of the positions of the planets in the night

More information

5 - Seasons. Figure 1 shows two pictures of the Sun taken six months apart with the same camera, at the same time of the day, from the same location.

5 - Seasons. Figure 1 shows two pictures of the Sun taken six months apart with the same camera, at the same time of the day, from the same location. Name: Partner(s): 5 - Seasons ASTR110L Purpose: To measure the distance of the Earth from the Sun over one year and to use the celestial sphere to understand the cause of the seasons. Answer all questions

More information

CHAPTER 20 SIGHT REDUCTION

CHAPTER 20 SIGHT REDUCTION CHAPTER 20 SIGHT REDUCTION BASIC PRINCIPLES 2000. Introduction Reducing a celestial sight to obtain a line of position consists of six steps: 1. Correcting sextant altitude (hs) to obtain observed altitude

More information

Introduction to Geography

Introduction to Geography Introduction to Geography What is geography? Geography comes from the Greek word Geographia. Geo means earth and graphia means to describe or chart. Geographers study the earth in relation to space and

More information

Butte County Fire Department

Butte County Fire Department Butte County Fire Department Basic Land Navigation Verification Sheet I verify that Print Supervisor s name has completed the Print Employee s name Basic Land Navigation self study guide on. Date Attached

More information

Phys Lab #1: The Sun and the Constellations

Phys Lab #1: The Sun and the Constellations Phys 10293 Lab #1: The Sun and the Constellations Introduction Astronomers use a coordinate system that is fixed to Earth s latitude and longitude. This way, the coordinates of a star or planet are the

More information

Lesson 1 The View from Earth

Lesson 1 The View from Earth Lesson 1 The View from Earth Student Labs and Activities Page Launch Lab 8 Content Vocabulary 9 Lesson Outline 10 MiniLab 12 Content Practice A 13 Content Practice B 14 Math Skills 15 School to Home 16

More information

Gnomon (a thin, round stick at least a foot long and capable of being put into the ground or stood up vertically)

Gnomon (a thin, round stick at least a foot long and capable of being put into the ground or stood up vertically) Name: Partner(s): Lab #3 Celestial Navigation Due 7/2 Objectives In this lab you will take measurements of the sun s motion around noon and the north star s position in the sky. You will use this data

More information

DUMMIES guide to Astro-Navigation

DUMMIES guide to Astro-Navigation DUMMIES guide to Astro-Navigation The idea of this booklet is to give you the nuts and bolts in the process of gaining a position on your chart through celestial navigation without a deep understanding

More information

Cartography the art of making maps

Cartography the art of making maps Cartography the art of making maps A map is a drawing or a picture of the earths surface, showing how things are related to each other by distance, direction and size. Maps are used for: Navigation Distance

More information

GPS Mapping. Teacher Instructions. Overview: Objectives: Materials: Answers to Student Worksheets:

GPS Mapping. Teacher Instructions. Overview: Objectives: Materials: Answers to Student Worksheets: Overview: Scientists use Global Positioning System (GPS) receivers to map lava flows. GPS data are compiled by computer Geographic Information System (GIS) software into a digital map. Digital maps can

More information

THE EARTH AND ITS REPRESENTATION

THE EARTH AND ITS REPRESENTATION UNIT 7 THE EARTH AND ITS REPRESENTATION TABLE OF CONTENTS 1 THE EARTH AND THE SOLAR SYSTEM... 2 2 THE EARTH S MOVEMENTS... 2 2.1 Rotation.... 2 2.2 The revolution of the Earth: seasons of the year....

More information

APPENDIX A GLOSSARY. Appendix A.1

APPENDIX A GLOSSARY. Appendix A.1 APPENDIX A GLOSSARY Appendix A.1 Appendix A.2 Back Bearing A back bearing is measured from the object to your position. It is the exact opposite of a direct bearing. Base Line An imaginary line on the

More information

AST101: Our Corner of the Universe Lab 1: Stellarium and The Celestial Sphere

AST101: Our Corner of the Universe Lab 1: Stellarium and The Celestial Sphere AST101: Our Corner of the Universe Lab 1: Stellarium and The Celestial Sphere Name: Student number (SUID): Lab section: Group Members: 1 Introduction Following the prelab, you should be now acquainted

More information

Topic Guide: The Celestial Sphere. GCSE (9-1) Astronomy. Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0)

Topic Guide: The Celestial Sphere. GCSE (9-1) Astronomy. Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0) Topic Guide: The Celestial Sphere GCSE (9-1) Astronomy Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0) The Celestial Sphere Contents Specification Points 1 The Astronomy 2 Equatorial coordinates

More information

Topographic Maps and Landforms Geology Lab

Topographic Maps and Landforms Geology Lab Topographic Maps and Landforms Geology Lab Ray Rector: Instructor Today s Lab Activities 1) Discussion of Last Week s Lab 2) Lecture on Topo Maps and Elevation Contours 3) Construct Topographic Maps and

More information

Relative and Absolute Directions

Relative and Absolute Directions Relative and Absolute Directions Purpose Learning about latitude and longitude Developing math skills Overview Students begin by asking the simple question: Where Am I? Then they learn about the magnetic

More information

CHAPTER 24 THE SAILINGS

CHAPTER 24 THE SAILINGS CHAPTER 24 THE SAILINGS INTRODUCTION 2400. Introduction Dead reckoning involves the determination of one s present or future position by projecting the ship s course and distance run from a known position.

More information

2. What does the map scale tell the map reader? a ratio between the actual distance on the ground and the length given to that distance on a map

2. What does the map scale tell the map reader? a ratio between the actual distance on the ground and the length given to that distance on a map AP Human Geography - Damon Name Unit 1 - Intro to Human Geography Hour Map and Globe Skills Review Note: All links in this packet are found on our Wikispace under Map and Globe Skills Review First, read

More information

Celestial Sphere & Solar Motion Lab (Norton s Star Atlas pages 1-4)

Celestial Sphere & Solar Motion Lab (Norton s Star Atlas pages 1-4) Name: Date: Celestial Sphere & Solar Motion Lab (Norton s Star Atlas pages 1-4) Italicized topics below will be covered only at the instructor s discretion. 1.0 Purpose: To understand a) the celestial

More information

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 2 EXAMINATION Heavenly Mathematics: Cultural Astronomy

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 2 EXAMINATION Heavenly Mathematics: Cultural Astronomy 1 GEK1506 NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 2 EXAMINATION 2005 2006 GEK1506 Heavenly Mathematics: Cultural Astronomy April/May 2006 Time allowed: 2 hours 1. After taking

More information

Astronomy 101 Lab Manual. Victor Andersen Community College of Aurora

Astronomy 101 Lab Manual. Victor Andersen Community College of Aurora Astronomy 101 Lab Manual Victor Andersen Community College of Aurora victor.andersen@ccaurora.edu January 8, 2013 2 Contents 1 Angular Measures 5 1.1 Introduction............................ 5 1.1.1 Degrees,

More information

Into the Wide Blue Yonder HISTORY OF OCEAN EXPLORATION

Into the Wide Blue Yonder HISTORY OF OCEAN EXPLORATION Into the Wide Blue Yonder HISTORY OF OCEAN EXPLORATION 3 MAIN REASONS FOR SEAFARING Food Trade Discovery of new land ANCIENT SEAFARING Biblically Noah s Ark and similar stories of floods: Not really out

More information

Observing the Night Sky: Locating Objects

Observing the Night Sky: Locating Objects Observing the Night Sky: Locating Objects As I left the house this morning, there was a bright bluish light above and to the left of my neighbors house (approximately East) and a big very bright object

More information

Last Time on Survey of Astronomy

Last Time on Survey of Astronomy Last Time on Survey of Astronomy The big picture : The earth is: a single planet around a single star of hundreds of billions of stars. in a single galaxy of hundreds of billions of galaxies. The earth,

More information

Physics Lab #5:! Starry Night Student Exercises II!

Physics Lab #5:! Starry Night Student Exercises II! Physics 10293 Lab #5: Starry Night Student Exercises II Introduction We will continue today exploring some of the useful applications of the Starry Night software to learn about motions in the sky. Step

More information

Module 2: Mapping Topic 2 Content: Determining Latitude and Longitude Notes

Module 2: Mapping Topic 2 Content: Determining Latitude and Longitude Notes Introduction In order to more easily locate points on a globe or map, cartographers designed a system of imaginary vertical lines (also called parallels) and horizontal lines (also called meridians) that

More information

Earth Science Regents Reading Topographic Maps

Earth Science Regents Reading Topographic Maps Earth Science Regents Reading Topographic Maps Name Period Quick Tutorial on Degrees, Minutes, and Seconds of Latitude and Longitude A degree of latitude on the surface of the earth is about 70 miles long.

More information

Discovering the Universe for Yourself (Chapter 2) Years, Seasons, and Months: The Motions of Sun, Earth, and Moon

Discovering the Universe for Yourself (Chapter 2) Years, Seasons, and Months: The Motions of Sun, Earth, and Moon Discovering the Universe for Yourself (Chapter 2) Years, Seasons, and Months: The Motions of Sun, Earth, and Moon Based on Chapter 2 This material will be useful for understanding Chapters 3 and 4 on The

More information

Map and Compass Skills

Map and Compass Skills Map and Compass Skills Grade levels: 5-12 In a Nutshell Given a map and compass, students will be able to find a location on the map, chart a course to that location with the compass, and find that location

More information

Map Skills Unit. Note taking unit

Map Skills Unit. Note taking unit Map Skills Unit Note taking unit Introduction To learn about the Earth, we are going to learn about two geographic tools you can use.globes and maps. Globe A globe is a round model of the planet Earth

More information

Lab 2: Angles and other needed math (or the history of astronomy)

Lab 2: Angles and other needed math (or the history of astronomy) Astronomy 101 Name(s): Lab 2: Angles and other needed math (or the history of astronomy) Purpose: This lab is an overview of much of the math skills you will need for this course. As I hope you will see

More information

Lecture 4: August 30, 2010

Lecture 4: August 30, 2010 Lecture 4: August 30, 2010 How many hospitals are there in the USA? Announcements: First homework has been posted Due Friday (10 th ) First Observatory Opportunity Thursday Night September 2, 8:30pm Will

More information

Exercise 7.0 THE CHANGING DIURNAL CIRCLES OF THE SUN

Exercise 7.0 THE CHANGING DIURNAL CIRCLES OF THE SUN Exercise 7.0 THE CHANGING DIURNAL CIRCLES OF THE SUN I. The Apparent Annual Motion of the Sun A star always rises and sets at the same place on the horizon and, hence, it is above the horizon for the same

More information

Name Class Date. For each pair of terms, explain how the meanings of the terms differ.

Name Class Date. For each pair of terms, explain how the meanings of the terms differ. Skills Worksheet Chapter Review USING KEY TERMS 1. Use each of the following terms in a separate sentence: year, month, day, astronomy, electromagnetic spectrum, constellation, and altitude. For each pair

More information

Due to the fact that we are hurrying to get on the telescope this Tuesday, we will postpone the writing of a formal proposal.

Due to the fact that we are hurrying to get on the telescope this Tuesday, we will postpone the writing of a formal proposal. ASTRONOMY 221 SARA IMAGING EXERCISE Spring 2011 Observing Exercise 4 Introduction: The use of the SARA telescopes at Kitt Peak, Arizona and Cerro Tololo, Chile, permit us to observe fainter objects that

More information

Office 307 Breshnahan Hall Phone: ext MT3121 CELESTIAL NAVIGATION II

Office 307 Breshnahan Hall Phone: ext MT3121 CELESTIAL NAVIGATION II MT3121 CELESTIAL NAVIGATION II Learning Objective Celestial Navigation II will cover the requirements of the 1978 STCW convention as amended in 1995. The course covers the theory and practice of navigation

More information

Global Positioning System (G.P.S.)

Global Positioning System (G.P.S.) Title: Global Positioning System (G.P.S.) (Navigation) Grade(s): 6-8 Introduction: The Global Positioning System (G.P.S.) Is a worldwide radio-navigation system formed from a constellation of 24 satellites

More information

Land Navigation Table of Contents

Land Navigation Table of Contents Land Navigation Table of Contents Preparatory Notes to Instructor... 1 Session Notes... 5 Learning Activity: Grid Reference Four Figure... 7 Learning Activity: Grid Reference Six Figure... 8 Learning Activity:

More information

Resources and Materials Promethean Board and Laptop for notes, Stellarium, and to record class discussion topics

Resources and Materials Promethean Board and Laptop for notes, Stellarium, and to record class discussion topics Photo by stillwellmike Resources and Materials Promethean Board and Laptop for notes, Stellarium, and to record class discussion topics Star trail photos Protractors Compass Pencils Paper Key Definitions

More information

Tonight. {01} The map. Relative space. What does a map do? Types of maps GEOG 201 2/17/2010. Instructor: Pesses 1

Tonight. {01} The map. Relative space. What does a map do? Types of maps GEOG 201 2/17/2010. Instructor: Pesses 1 Tonight {01} The map What makes a map Measuring the Earth Map Interpretation & GPS Spring 2010 M. Pesses What does a map do? Shows where things are Shows spatial (topological) relationships Shows patterns,

More information

Local Coordinates. These are centered upon you, the observer.

Local Coordinates. These are centered upon you, the observer. Astronomy 30, Observing #3 Name: Lab Partners: Date: Materials: This lab, with the star chart completed from the pre-lab. Some sheets of paper for sketches. A pencil with eraser. A small flashlight, ideally

More information

The Earth-Moon-Sun System

The Earth-Moon-Sun System chapter 7 The Earth-Moon-Sun System section 2 Time and Seasons What You ll Learn how to calculate time and date in different time zones how to distinguish rotation and revolution what causes seasons Before

More information