Permafrost monitoring using time-lapse resistivity tomography

Size: px
Start display at page:

Download "Permafrost monitoring using time-lapse resistivity tomography"

Transcription

1 Permafrost monitoring using time-lapse resistivity tomography Permafrost, Phillips, Springman & Arenson (eds) 2003 Swets & Zeitlinger, Lisse, ISBN C. Hauck 1 Graduiertenkolleg Natural Disasters & Institute for Meteorology and Climate Research, University of Karlsruhe, Germany D. Vonder Mühll University of Basel & Institute for Geography, University of Zurich, Switzerland 1 formerly at: Laboratory for Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Switzerland ABSTRACT: Time-lapse direct-current (DC) resistivity tomography is shown to be a useful method for permafrost monitoring in high-mountain areas. Resistivity changes are related to subsurface freezing and thawing processes using a fixed-electrode array throughout a full year at a high elevation site in the Swiss Alps. The 2-dimensional tomographic approach yields information about spatially variable transient processes, like the advance and retreat of freezing fronts. In combination with borehole temperature data the temporal evolution of the unfrozen water content was calculated showing a strong decrease during winter months in the near-surface layer and quasi-sinusoidal behaviour at greater depths. A comparison between borehole temperatures, resistivity and energy balance data emphasizes the dominant role of the snow cover evolution in winter and net radiation in summer for the ground thermal regime. A combination of radiation, snow cover and resistivity measurements seems promising for long-term monitoring programmes of the permafrost evolution at low cost. 1 INTRODUCTION In view of a warming climate and the recent retreat of most Alpine glaciers, the need for a continuous monitoring of the permafrost evolution in mountainous regions has been identified in recent years (Fitzharris et al. 1996). This should include long-term temperature monitoring programmes (such as the EU-funded PACE (Permafrost and Climate in Europe) project), as well as improved process understanding and impact assessment. This is specifically important in the context of thawing permafrost slopes, which may induce natural hazards such as rock falls and debris flows (Harris et al. 2001). However, as most mountain permafrost sites are situated in remote and rather inaccessible regions, drilling operations and therefore temperature monitoring programmes in deep boreholes are very costly and often impossible to conduct. In contrast, surface geophysical measurements using electric, electromagnetic and seismic methods present a cost-effective alternative and are applicable even in harsh and remote environments (Scott et al. 1990, Vonder Mühll et al. 2001). In addition, they allow the determination of 2- and 3-dimensional spatial variability compared to the single point measurements in boreholes. In this study a 2-dimensional geophysical monitoring approach introduced in Hauck (2002) is used in combination with energy balance data to determine the permafrost evolution at Schilthorn, Swiss Alps. Changes in subsurface electrical resistivity were monitored using a fixed-electrode array, which allows measurements independent of the snow cover thickness. The resistivity changes are related to changes in the subsurface unfrozen water content, which can be used to determine the amount of freezing and thawing. Energy balance data and temperature data from a nearby borehole are used to verify the results. This work serves as a pilot study for long-term monitoring programmes for permafrost changes in the shallow subsurface. 2 THEORY AND METHODS 2.1 DC resistivity tomography The DC resistivity technique is based on electrical resistivity differences between different subsurface materials. For typical permafrost material a marked increase in resistivity at the freezing point was shown in several field and laboratory studies (Hoekstra et al. 1975, King et al. 1988). Consequently, the application of 1-dimensional vertical electrical has a long tradition in the study of permafrost. With the development of fast, commercially available 2-dimensional inversion schemes for DC resistivity surveys (e.g. Res2DINV, Loke & Barker 1996), 2-dimensional resistivity tomography is increasingly applied, especially in mountainous terrain (Hauck & Vonder Mühll 1999, Kneisel et al. 2000, Hauck 2001). As the heterogeneous surface and subsurface characteristics of mountain permafrost terrain often prohibit the application of plane-layer approximations used in standard data processing for 1-dimensional soundings, the tomographic method greatly improves the quality of data interpretation in resistivity studies on permafrost. 361

2 However, most applications are restricted to single measurements at one time instant (mostly in summer), which may lead to ambiguous interpretations. Resistivity depends mainly on the unfrozen water content of the subsurface, which can be influenced not only by the presence or absence of permafrost, but also through changes in temperature, geologic material, water input through precipitation and snow melt and the occurrence of subsurface air cavities. 2.2 Archie s law for partially frozen soils In most Earth materials electric conduction takes place through ionic transport in the liquid phase. A well known empirical relationship called Archie s law relates the resistivity of a 2-phase medium (rock matrix, liquid) to the resistivity of the water, the porosity and the fraction of the pore space occupied by liquid water: only in so far as the resistivity of the pore water is changed. A decrease in temperature increases the viscosity of water, in turn decreasing the mobility of the ions in the water, which increases the resistivity. A relationship between r and temperatures T above the freezing point is given by: r0 r 1 a( T T ), 0 (3) where r 0 is the resistivity measured at a reference temperature T 0 and a is the temperature coefficient of resistivity, which has a value of about K 1 for most electrolytes (Telford et al. 1990). For temperatures below the freezing point resistivities increase exponentially until most of the pore water is frozen. Using an exponential relationship of the form (e.g. Hauck 2001, 2002) r ar w m S n w, (1) r r 0e bt ( f T), (4) where r is the resistivity of the material, r w is the resistivity of the water in the pore spaces, is the porosity, S w is the fraction of the pore space occupied by liquid water and a, m and n are empirically determined parameters (Telford et al. 1990). In partly frozen material, ionic transport still takes place in the liquid phase. Therefore, the resistivity depends not directly on temperature or ice content, but on the unfrozen water content S, that is the fraction of water remaining unfrozen at subfreezing temperatures, which can be substantial even at relatively low temperatures (Anderson & Morgenstern 1973). Assuming the pore space of the material was completely filled with water prior to freezing (S S w 1 for temperatures above the freezing point) and using Equation 1, Daniels et al. (1976) showed that the ratio of the resistivity of a partially frozen material r f to that unfrozen r i is related to the unfrozen water content by r f r i S 1 n. (2) King et al. (1988) estimated the so-called saturation exponent n between 2 and 3 (for sands) and 5 8 (for clays) using permafrost samples from the North American Arctic. 2.3 Dependence on temperature The dependence of resistivity on temperature differs for temperatures above and below the freezing point. At temperatures above the freezing point, a decrease in temperature changes the resistivity of the material where r 0, b (in K 1 ) are constants and substituting into Equation (2), S can be expressed as bt ( f T) S exp, 1 n (5) where T f is the temperature of the freezing point. For a saturation exponent of n 2 (commonly used for rock, Telford et al. 1990) and T f 0, Equation 5 describes simply an exponential decrease of the unfrozen water content with decreasing temperature. The factor b controls the rate of decrease and can easily be determined from Equation (4) if resistivity data for different subzero temperatures are available. By choosing appropriate values for n and b, the temporal evolution of the unfrozen water content can be determined in a qualitative way. 3 FIELD SITE AND DATA ACQUISITION The Schilthorn (46 33 N, 7 50 E at 2970 m a.s.l.) is located in the Bernese Oberland in the Northern Swiss Alps. Due to the high amount of precipitation and additional snow input through wind transport, the snow cover usually persists from October to June (Imhof et al. 2000). Permafrost temperatures measured in a borehole are comparatively warm, reaching 0.7 C at 14 m depth. Consequently, the unfrozen water content is high leading to low resistivity values compared to typical mountain permafrost occurrences (Hauck & Vonder Mühll 1999). The ground consists of a 5 m thick weathered layer (small to medium size debris) over firm bedrock (micaceous shales) with no vegetation cover. 362

3 A fixed-electrode array allowing resistivity tomography measurements along a 58 m survey line throughout the year was permanently installed at Schilthorn in September 1999 (Hauck 2002). A 2-dimensional inversion algorithm (Res2DINV, Loke & Barker 1996) is used to determine specific resistivities within a finite-element block model from the surface resistance measurements. Ground temperatures were measured within a 14 m borehole drilled in 1998 (Vonder Mühll et al. 2000). Snow height, longwave and shortwave radiation balance were measured 1.50 m above the surface at the energy balance station completed in 1999 (Mittaz, 2002). 4 RESULTS 4.1 Resistivity Between September 15, 1999 and August 28, 2000 eleven sets of DC resistivity tomography measurements were conducted with the fixed electrode array at Schilthorn. The time span between measurements was roughly 1 month except for the thawing season 2000, where measurements were conducted every 2 weeks (June/July). Instead of analysing the resulting resistivity tomograms in terms of absolute values, the cumulative resistivity differences per day based on the September measurement are shown in Figure 1. Largest resistivity increases (white colors) were observed in October, when the snow cover was not yet established and heat loss at the surface resulted in a reduction of near-surface ground temperature (Fig. 1b). Freezing extended along the whole survey line and reaches a depth of 2 m. From October 1999 to April 2000 resistivities increased only slowly due to the insulating snow cover, which arrived in October and effectively decoupled the subsurface thermal regime from the atmosphere. Heat conduction allowed a reduction in temperature at greater depths, subsequently freezing deeper layers. This gradual downshift of the freezing front can be visualised by plotting ratios of successive resistivity measurements instead of cumulative differences (Hauck 2002, not shown here). During the phase transition, the temperatures remained close to 0 C (the so-called zero-curtain effect), while the resistivities increased as the unfrozen water content diminished. From the borehole temperature data shown in Figure 2 it is seen that the zero-curtain effect started at the end of October and lasted until end of December at 0.4 m depth and until beginning of February at 4 m depth. Figure 1. (a) Resistivity model for the measurement on as determined by the inversion. (b) (k) Resistivity difference per day based on the September measurement (a). White and dark shading denote resistivity increase and decrease, respectively. 363

4 Figure 2. Borehole temperatures with time at 4 different depths (PACE borehole 51/1998). In the beginning of May the temperatures near the surface approached 0 C and melting of the uppermost layer started. Again, temperatures remained almost constant at 0 C during the phase transition. At the time of the first summer resistivity measurement (June 2000), most of the frozen water in the uppermost 23 m had already melted which led, together with additional water input by rain, to a wet soaked surface layer, decreasing the resistivity strongly near the surface (grey colors in Figure 1g). Between June and July 2000, temperatures increased at all depths down to 10 m with a corresponding resistivity decrease throughout the major part of the survey area. This decrease continued until end of August 2000, thereby almost totally equalizing the resistivity increase of the winter months (Figure 1k). A more detailed analysis of the resistivity results can be found in Hauck (2001). Comparing all resistivity measurements at the borehole location versus the corresponding temperatures a small but linear increase is found for decreasing but still positive temperatures, showing good agreement with the values calculated from Equation (3) (see Hauck (2002) not shown here). Below the freezing point resistivities increase exponentially with cooling. However, as the data originate from different depths, the rate of increase is not uniform for all data points. Using equation (4) different values for the factor b ( rate of increase) can be determined for different depths. These values can then be used to calculate the unfrozen water content S (see below). 4.2 Comparison between energy balance, ground temperature and resistivity evolution The dominant role of snow cover evolution can be revealed by comparing it to temperature change in the borehole, the radiation balance and the total resistivity variation at the borehole location (Figure 3). A permanent snow cover was established at the end of October (Figure 3c) and persisted until mid-june. During that time the temperature within the uppermost 10 m of the borehole remained almost constant (Figure 3a), as the ground temperature regime was effectively decoupled from atmosphere and temperatures stayed at the freezing temperature of the ground. The net radiation (being the dominant energy flux, see Hoelzle et al. (2001)) during that time is negative, meaning that cooling takes place at the snow surface (Figure 3b). But as the energy flux through the snow cover is negligible during winter (less than 1 W/m 2, Figure 3e), the freezing processes in the subsurface can only be induced by the cold October temperatures, which penetrated into the ground before the snow cover arrived and propagated to larger depths through heat conduction. After the melting of the snow cover in June, temperature variability in the borehole is high, coinciding well with the observed variability of the radiation balance (Figure 3b). This agreement confirms again the dominant role of the radiation balance for ground temperatures in mountain permafrost terrain. Figure 3d shows the evolution of the unfrozen water content, which was calculated using Equation (5). The parameter b was chosen from the respective resistivity temperature relation as introduced in Hauck (2002). The results for two different values for the saturation exponent n and for four depths are shown. In the uppermost layer (0.5 m) the unfrozen water content starts to decrease at the end of October, corresponding to the onset of the negative radiation balance seen in Figure 3b. The minimum is reached in February and subsequently later at greater depth (beginning of June at 8.7 m depth). At larger depths the evolution of S is nearly sinusoidal, corresponding to the seasonal variation of ground temperature. The minimal value of S is smallest at larger depths ( below 6 m for n 2) and largest at intermediate depths ( at 2 4 m for n 2), but depends on the choice of parameters b and n. The larger n, the smaller the variations of S. King et al. (1988) examined a large number of permafrost samples from the North American Arctic. At 2 C they found unfrozen water contents as high as 0.9 (clay) and as low as 0.2 (sands) depending on the material type. Finally, Figure 3f shows the total resistivity variation at the borehole location, calculated as weighted vertical mean ( (r i h i )/z, where z is the model depth and h i is the thickness of the individual resistivity model layers). Total resistivities increase steadily until a maximum is reached for the April measurement. From there, resistivities decrease again until September 2000, where a slightly larger value than the initial value in September 1999 is reached. It is notable that the strong 364

5 Figure 3. Comparison between borehole temperatures, energy balance parameters and resistivity. (a) Total temperature difference per day in the uppermost 10 m in the borehole, (b) net radiation at the energy balance station, (c) snow height, (d) calculated unfrozen water content (Equation (5)), (e) energy flux through the snow cover and (f) total resistivity variation at the borehole location (weighted vertical mean). resistivity increase during winter coincides with an almost zero total temperature change in the borehole (Figure 3a). 5 CONCLUSION Time-lapse resistivity tomography measurements at a mountain permafrost site have been presented in combination with borehole temperature and energy balance data. A set of eleven DC resistivity tomography measurements were performed between September 1999 and September 2000 using a fixed electrode array at Schilthorn, Switzerland. The resulting resistivity changes were analysed in terms of subsurface freeze and thaw processes. Key results from this multiparameter data set include: Temporal resistivity changes in high Alpine environments can be accurately determined using a fixed electrode array, which is accessible throughout winter. Maximum resistivity changes were observed in autumn (September October), before a permanent snow cover was established, and in late spring (May June), when the thawing snow cover and additional water from precipitation greatly decreased the resistivity values in the active layer. During winter, the snow cover effectively decouples the ground from atmospheric influences. The heat flux through the snow cover was less than 1 W/m 2, estimated from energy balance measurements. Consequently, the small but steady resistivity increase observed during winter was solely due to temperature reduction by heat conduction from upper to lower layers. From December to May the freezing front moved gradually downward, reaching 6 m in mid-april. After the start of the melting season the resistivities decreased until the previous September values were reached again at the end of August Resistivity temperature relationships between the resistivity values at the borehole location and 365

6 borehole temperatures show good agreement with theory. The increase of resistivity with decreasing temperature is small and linear for temperatures above the freezing point and exponential for temperatures below freezing. The calculated temporal evolution of the unfrozen water content shows a strong decrease during the winter months in the active layer and a quasisinusoidal behaviour below. A comparison between borehole temperatures, resistivity and energy balance data emphasizes the dominant role of the snow cover evolution in winter and net radiation in summer. In addition, resistivity monitoring may be used to determine the amount of freezing and thawing in the subsurface in future long-term monitoring programmes. ACKNOWLEDGEMENTS The authors would like to thank the Schilthornbahn AG for logistic support and C. Mittaz and M. Hoelzle (Glaciology and Geomorphodynamics Group, University of Zurich) for supplying the energy balance data. This study was financed by the PACE project (Contract Nr ENV4-CT and BBW Nr ). C. Hauck acknowledges a grant by the German Science Foundation (DFG) within the Graduiertenkolleg Natural Disasters (GRK 450). REFERENCES Anderson, D.M. & Morgenstern, N.R Physics, chemistry and mechanics of frozen ground: a review. Proceedings 2nd International Conference on Permafrost, Yakutsk, Russia: Daniels, J.J., Keller, G.V. & Jacobson, J.J Computerassisted interpretation of electromagnetic soundings over a permafrost section. Geophysics 41: Fitzharris, B.B. & 27 authors The cryosphere: changes and their impacts. Climate Change Contribution of Working Group II to the 2nd Assessment Report of the IPCC. Cambridge University Press, Cambridge: Harris, C., Haeberli, W., Vonder Mühll, D. & King, L Permafrost monitoring in the high mountains of Europe: the PACE project in the global context. Permafrost and Periglacial Processes 12(1): Hauck, C Geophysical methods for detecting permafrost in high mountains. Mitt. Versuchsanstalt Wasserbau, Hydrologie u. Glaziologie 171, Zürich, Switzerland. Hauck, C Frozen ground monitoring using DC resistivity tomography. Geophysical Research Letters (in press). Hauck, C. & Vonder Mühll, D Using DC resistivity tomography to detect and characterise mountain permafrost. In: Proceedings of the 61. Europ. Association of Geoscientists and Engineers (EAGE) conference, June 1999, Helsinki, Finland: 2 15, 4pp. Hoekstra, P., Sellmann, P.V. & Delaney, A Ground and airborne resistivity surveys of permafrost near Fairbanks, Alaska. Geophysics 40: Hoelzle, M., Mittaz, C., Etzelmüller, B. & Haeberli, W Surface energy fluxes and distribution models of permafrost in European mountain areas: An overview on current development. Permafrost and Periglacial Processes 12: Imhof, M., Pierrehumbert, G., Haeberli, W. & Kienholz, H Permafrost investigation in the Schilthorn Massif, Bernese Alps, Switzerland. Permafrost and Periglacial Processes 11(3): King, M.S., Zimmerman, R.W. & Corwin, R.F Seismic and electrical properties of unconsolidated permafrost. Geophysical Prospecting 36: Kneisel, C., Hauck, C. & Vonder Mühll, D Permafrost below the timberline confirmed and characterized by geoelectric resistivity measurements, Bever Valley, Eastern Swiss Alps. Permafrost and Periglacial Processes 11: Loke, M.H. & Barker, R.D Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-newton method. Geophysical Prospecting 44: Mittaz, C Energy balance over alpine permafrost. PhD-thesis, University of Zurich, Switzerland. Scott, W., Sellmann, P. & Hunter, J Geophysics in the study of permafrost. In (ed. S. Ward): Geotechnical and Environmental Geophysics, Soc. of Expl. Geoph., Tulsa. pp Telford, W.M., Geldart, L.P. & Sheriff, R.E Applied geophysics. 2nd edition, Cambridge University Press. Vonder Mühll, D., Hauck, C. & Lehmann, F Verification of geophysical models in Alpine permafrost using borehole information. Annals of Glaciology 31: Vonder Mühll, D., Hauck, C., Gubler, H., McDonald, R. & Russill, N New geophysical methods of investigating the nature and distribution of mountain permafrost with special reference to radiometry techniques. Permafrost and Periglacial Processes 12(1):

Spatial mountain permafrost modelling in the Daisetsu Mountains, northern Japan

Spatial mountain permafrost modelling in the Daisetsu Mountains, northern Japan Permafrost, Phillips, Springman & Arenson (eds) 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Spatial mountain permafrost modelling in the Daisetsu Mountains, northern Japan M. Ishikawa Frontier Observational

More information

Permafrost monitoring at Mölltaler Glacier and Magnetköpfl

Permafrost monitoring at Mölltaler Glacier and Magnetköpfl Permafrost monitoring at Mölltaler Glacier and Magnetköpfl DAVID OTTOWITZ 1, BIRGIT JOCHUM 1, ROBERT SUPPER 1, ALEXANDER RÖMER 1, STEFAN PFEILER 1 and MARKUS KEUSCHNIG 2, 3 1 Department of Geophysics,

More information

Miniature ground temperature data logger measurements in the Murtèl-Corvatsch area, Eastern Swiss Alps

Miniature ground temperature data logger measurements in the Murtèl-Corvatsch area, Eastern Swiss Alps Permafrost, Phillips, Springman & Arenson (eds) 23 Swets & Zeitlinger, Lisse, ISBN 9 589 582 7 Miniature ground temperature data logger measurements 2 22 in the Murtèl-Corvatsch area, Eastern Swiss Alps

More information

Characterisation of potentially unstable mountain permafrost A multidisciplinary approach

Characterisation of potentially unstable mountain permafrost A multidisciplinary approach Characterisation of potentially unstable mountain permafrost A multidisciplinary approach Permafrost, Phillips, Springman & Arenson (eds) 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 H.R. Maurer,

More information

Microclimate within coarse debris of talus slopes in the alpine periglacial belt and its effect on permafrost

Microclimate within coarse debris of talus slopes in the alpine periglacial belt and its effect on permafrost Permafrost, Phillips, Springman & Arenson (eds) 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Microclimate within coarse debris of talus slopes in the alpine periglacial belt and its effect on permafrost

More information

Active layer and permafrost monitoring in Livingston Island, Antarctic. First results from 2000 to 2001

Active layer and permafrost monitoring in Livingston Island, Antarctic. First results from 2000 to 2001 Permafrost, Phillips, Springman & Arenson (eds) 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Active layer and permafrost monitoring in Livingston Island, Antarctic. First results from 2000 to 2001

More information

1. GLACIER METEOROLOGY - ENERGY BALANCE

1. GLACIER METEOROLOGY - ENERGY BALANCE Summer School in Glaciology McCarthy, Alaska, 5-15 June 2018 Regine Hock Geophysical Institute, University of Alaska, Fairbanks 1. GLACIER METEOROLOGY - ENERGY BALANCE Ice and snow melt at 0 C, but this

More information

Electrical imaging techniques for hydrological and risk assessment studies

Electrical imaging techniques for hydrological and risk assessment studies Séminaire IPG le 9 mars 2006 Strasbourg Institute of Geophysics ETH Hoenggerberg CH-8093 Zurich Electrical imaging techniques for hydrological and risk assessment studies Laurent Marescot laurent@aug.ig.erdw.ethz.ch

More information

Meltwater Infiltration into the Frozen Active Layer at an Alpine Permafrost Site ABSTRACT

Meltwater Infiltration into the Frozen Active Layer at an Alpine Permafrost Site ABSTRACT Published in which should be cited to refer to this work. Meltwater Infiltration into the Frozen Active Layer at an Alpine Permafrost Site Martin Scherler, 1 * Christian Hauck, 1 Martin Hoelzle, 1 Manfred

More information

18577 Repeated Electrical Resistivity Tomographies in a CALM Site in Livingston Island, Maritime Antarctica

18577 Repeated Electrical Resistivity Tomographies in a CALM Site in Livingston Island, Maritime Antarctica 18577 Repeated Electrical Resistivity Tomographies in a CALM Site in Livingston Island, Maritime Antarctica A.M. Correia* (Evora University), J. Rocha (Evora University) & G. Vieira (University of Lisbon)

More information

Modeling Transient Permafrost Temperatures below Steep Alpine Topography

Modeling Transient Permafrost Temperatures below Steep Alpine Topography Modeling Transient Permafrost Temperatures below Steep Alpine Topography Jeannette Noetzli 1*, Stephan Gruber 1 and Sven Friedel 2 1 Glaciology, Geomorphodynamics and Geochronology, Department of Geography,

More information

The TEMPS project: The evolution of mountain permafrost in Switzerland

The TEMPS project: The evolution of mountain permafrost in Switzerland The TEMPS project: The evolution of mountain permafrost in Switzerland Christian Hauck, Reynald Delaloye, Isabelle Gärtner-Roer, Andreas Hasler, Christin Hilbich, Martin Hoelzle, Robert Kenner, Sven Kotlarski,

More information

Thermal Diffusivity Variability in Alpine Permafrost Rockwalls

Thermal Diffusivity Variability in Alpine Permafrost Rockwalls Thermal Diffusivity Variability in Alpine Permafrost Rockwalls P.Pogliotti GEOSITLAB, Department of Earth Sciences, University of Turin, Italy ARPA Valle d Aosta, Climate Change Div., Aosta, Italy E. Cremonese

More information

Temperature conditions in two Alpine rock glaciers

Temperature conditions in two Alpine rock glaciers Temperature conditions in two Alpine rock glaciers Permafrost, Phillips, Springman & Arenson (eds) 3 Swets & Zeitlinger, Lisse, ISBN 9 589 582 7 D.S. Vonder Mühll Universities of Basel and Zurich, Switzerland

More information

Developing new methods for monitoring periglacial phenomena

Developing new methods for monitoring periglacial phenomena Developing new methods for monitoring periglacial phenomena Permafrost, Phillips, Springman & Arenson (eds) 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 D. Mihajlovic, D. Kölbing, I. Kunz, S. Schwab,

More information

High Resolution Time-lapse Resistivity Tomography with Merging Data Levels by Two Different Optimized Resistivity Arrays for Slope Monitoring Study

High Resolution Time-lapse Resistivity Tomography with Merging Data Levels by Two Different Optimized Resistivity Arrays for Slope Monitoring Study High Resolution Time-lapse Resistivity Tomography with Merging Data Levels by Two Different Optimized Resistivity Arrays for Slope Monitoring Study Andy A. Bery* Geophysics Section, School of Physics,

More information

Joseph M. Shea 1, R. Dan Moore, Faron S. Anslow University of British Columbia, Vancouver, BC, Canada. 1 Introduction

Joseph M. Shea 1, R. Dan Moore, Faron S. Anslow University of British Columbia, Vancouver, BC, Canada. 1 Introduction 17th Conference on Applied Climatology, American Meteorological Society, 11-1 August, 28, Whistler, BC, Canada P2. - Estimating meteorological variables within glacier boundary layers, Southern Coast Mountains,

More information

A conceptual model of Hiorthfjellet rock glacier, Svalbard

A conceptual model of Hiorthfjellet rock glacier, Svalbard A conceptual model of Hiorthfjellet rock glacier, Svalbard Permafrost, Phillips, Springman & Arenson (eds) 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 R.S. Ødegård Gjøvik University College, Gjøvik,

More information

Numerical simulation of the interaction processes between snow cover and alpine permafrost

Numerical simulation of the interaction processes between snow cover and alpine permafrost Permafrost, Phillips, Springman & Arenson (eds) 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Numerical simulation of the interaction processes between snow cover and alpine permafrost M. Luetschg,

More information

Permafrost environment in the Yari-Hotaka Mountains, southern part of the Northern Japanese Alps

Permafrost environment in the Yari-Hotaka Mountains, southern part of the Northern Japanese Alps Permafrost, Phillips, Springman & Arenson (eds) 23 Swets & Zeitlinger, Lisse, ISBN 9 589 582 7 Permafrost environment in the Yari-Hotaka Mountains, southern part of the Northern Japanese Alps M. Aoyama

More information

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean C. Marty, R. Storvold, and X. Xiong Geophysical Institute University of Alaska Fairbanks, Alaska K. H. Stamnes Stevens Institute

More information

Land Surface: Snow Emanuel Dutra

Land Surface: Snow Emanuel Dutra Land Surface: Snow Emanuel Dutra emanuel.dutra@ecmwf.int Slide 1 Parameterizations training course 2015, Land-surface: Snow ECMWF Outline Snow in the climate system, an overview: Observations; Modeling;

More information

Advance Mechanisms of Rock Glaciers

Advance Mechanisms of Rock Glaciers PERMAFROST AND PERIGLACIAL PROCESSES Permafrost and Periglac. Process. 16: 187 193 (2005) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/ppp.507 Advance Mechanisms of

More information

Impact of meteorological factors on active layer development in Central Spitsbergen

Impact of meteorological factors on active layer development in Central Spitsbergen Permafrost, Phillips, Springman & Arenson (eds) 23 Swets & Zeitlinger, Lisse, ISBN 9 589 582 7 Impact of meteorological factors on active layer development in Central Spitsbergen M. Oht Institute of Geography,

More information

Chapter outline. Reference 12/13/2016

Chapter outline. Reference 12/13/2016 Chapter 2. observation CC EST 5103 Climate Change Science Rezaul Karim Environmental Science & Technology Jessore University of science & Technology Chapter outline Temperature in the instrumental record

More information

BOREHOLE TEMPERATURES IN ALPINE PERMAFROST: A TEN YEAR SERIES.

BOREHOLE TEMPERATURES IN ALPINE PERMAFROST: A TEN YEAR SERIES. BOREHOLE TEMPERATURES IN ALPINE PERMAFROST: A TEN YEAR SERIES. Daniel Vonder MŸhll 1, Thomas Stucki 2, Wilfried Haeberli 3 1. Laboratory of Hydraulics, Hydrology and Glaciology (VAW) Federal Institute

More information

Rock Glacier Dynamics. near the Lower Limit of Mountain Permafrost. in the Swiss Alps

Rock Glacier Dynamics. near the Lower Limit of Mountain Permafrost. in the Swiss Alps Rock Glacier Dynamics near the Lower Limit of Mountain Permafrost in the Swiss Alps Atsushi IKEDA A dissertation submitted to the Doctoral Program in Geoscience, the University of Tsukuba in partial fulfillment

More information

Brita Horlings

Brita Horlings Knut Christianson Brita Horlings brita2@uw.edu https://courses.washington.edu/ess431/ Natural Occurrences of Ice: Distribution and environmental factors of seasonal snow, sea ice, glaciers and permafrost

More information

Chapter 3 Mountain Permafrost

Chapter 3 Mountain Permafrost Chapter 3 Mountain Permafrost Stephan Gruber(*ü ) and Wilfried Haeberli 3.1 Introduction This chapter provides an introduction to mountain permafrost and a review of recent scientific progress. In it,

More information

1. Resistivity of rocks

1. Resistivity of rocks RESISTIVITY 1) Resistivity of rocks 2) General principles of resistivity surveying 3) Field procedures, interpretation and examples 4) Summary and conclusions INDUCED POLARIZATION 1) General principles

More information

Annex I to Target Area Assessments

Annex I to Target Area Assessments Baltic Challenges and Chances for local and regional development generated by Climate Change Annex I to Target Area Assessments Climate Change Support Material (Climate Change Scenarios) SWEDEN September

More information

Mass Wasting: The Work of Gravity

Mass Wasting: The Work of Gravity Chapter 15 Lecture Earth: An Introduction to Physical Geology Twelfth Edition Mass Wasting: The Work of Gravity Tarbuck and Lutgens Chapter 15 Mass Wasting The Importance of Mass Wasting Slopes are the

More information

PERMAFROST INVESTIGATIONS WITH GIS Ð A CASE STUDY IN THE FLETSCHHORN AREA, WALLIS, SWISS ALPS

PERMAFROST INVESTIGATIONS WITH GIS Ð A CASE STUDY IN THE FLETSCHHORN AREA, WALLIS, SWISS ALPS PERMAFROST INVESTIGATIONS WITH GIS Ð A CASE STUDY IN THE FLETSCHHORN AREA, WALLIS, SWISS ALPS Regula Frauenfelder 1, Britta Allgšwer 2, Wilfried Haeberli 3, Martin Hoelzle 4 1. Department of Geography,

More information

The Northern Hemisphere Sea ice Trends: Regional Features and the Late 1990s Change. Renguang Wu

The Northern Hemisphere Sea ice Trends: Regional Features and the Late 1990s Change. Renguang Wu The Northern Hemisphere Sea ice Trends: Regional Features and the Late 1990s Change Renguang Wu Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing World Conference on Climate Change

More information

CLIMATE CHANGE IMPACTS ON ICE REGIME OF THE RIVERS IN MONGOLIA

CLIMATE CHANGE IMPACTS ON ICE REGIME OF THE RIVERS IN MONGOLIA Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 2002 International Association of Hydraulic Engineering and Research CLIMATE CHANGE

More information

An operational supporting tool for assessing wet-snow avalanche danger

An operational supporting tool for assessing wet-snow avalanche danger An operational supporting tool for assessing wet-snow avalanche danger Christoph Mitterer*, Frank Techel, Charles Fierz and Jürg Schweizer WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

More information

Name of research institute or organization: Federal Office of Meteorology and Climatology MeteoSwiss

Name of research institute or organization: Federal Office of Meteorology and Climatology MeteoSwiss Name of research institute or organization: Federal Office of Meteorology and Climatology MeteoSwiss Title of project: The weather in 2016 Report by: Stephan Bader, Climate Division MeteoSwiss English

More information

A RADAR-BASED CLIMATOLOGY OF HIGH PRECIPITATION EVENTS IN THE EUROPEAN ALPS:

A RADAR-BASED CLIMATOLOGY OF HIGH PRECIPITATION EVENTS IN THE EUROPEAN ALPS: 2.6 A RADAR-BASED CLIMATOLOGY OF HIGH PRECIPITATION EVENTS IN THE EUROPEAN ALPS: 2000-2007 James V. Rudolph*, K. Friedrich, Department of Atmospheric and Oceanic Sciences, University of Colorado at Boulder,

More information

5 Cryospheric aspects of climate change impacts on snow, ice, and ski tourism

5 Cryospheric aspects of climate change impacts on snow, ice, and ski tourism 5 Cryospheric aspects of climate change impacts on snow, ice, and ski tourism snow cover winter tourism glaciers permafrost A multi-day snow cover is projected to become a rare phenomenon in the Swiss

More information

A summary of the weather year based on data from the Zumwalt weather station

A summary of the weather year based on data from the Zumwalt weather station ZUMWALT PRAIRIE WEATHER 2016 A summary of the weather year based on data from the Zumwalt weather station Figure 1. An unusual summer storm on July 10, 2016 brought the second-largest precipitation day

More information

Measuring integral soil moisture variations using a geoelectrical resistivity meter

Measuring integral soil moisture variations using a geoelectrical resistivity meter Measuring integral soil moisture variations using a geoelectrical resistivity meter Thomas Klügel 1, Günter Harnisch 2 & Martina Harnisch 2 1 Bundesamt für Kartographie und Geodäsie, Fundamentalstation

More information

Evaluation of a New Land Surface Model for JMA-GSM

Evaluation of a New Land Surface Model for JMA-GSM Evaluation of a New Land Surface Model for JMA-GSM using CEOP EOP-3 reference site dataset Masayuki Hirai Takuya Sakashita Takayuki Matsumura (Numerical Prediction Division, Japan Meteorological Agency)

More information

Zurich Open Repository and Archive. A first estimate of mountain permafrost distribution in the Mount Cook region of New Zealand's southern alps

Zurich Open Repository and Archive. A first estimate of mountain permafrost distribution in the Mount Cook region of New Zealand's southern alps University of Zurich Zurich Open Repository and Archive Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2008 A first estimate of mountain permafrost distribution in the Mount Cook region

More information

HIGH-MOUNTAIN PERMAFROST IN THE AUSTRIAN ALPS (EUROPE)

HIGH-MOUNTAIN PERMAFROST IN THE AUSTRIAN ALPS (EUROPE) HIGH-MOUNTAIN PERMAFROST IN THE AUSTRIAN ALPS (EUROPE) Gerhard Karl Lieb Institute of Geography University of Graz Heinrichstrasse 36 A-8010 Graz e-mail: gerhard.lieb@kfunigraz.ac.at Abstract Permafrost

More information

Surface temperatures in steep alpine rock faces A strategy for regional-scale measurement and modelling

Surface temperatures in steep alpine rock faces A strategy for regional-scale measurement and modelling Permafrost, Phillips, Springman & Arenson (eds) 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Surface temperatures in steep alpine rock faces A strategy for regional-scale measurement and modelling

More information

The PermaSense Project. Computer Engineering and Networks Lab, ETH Zurich Geography Department, University of Zurich

The PermaSense Project. Computer Engineering and Networks Lab, ETH Zurich Geography Department, University of Zurich The PermaSense Project Computer Engineering and Networks Lab, ETH Zurich Geography Department, University of Zurich PermaSense Aims and Vision Interdisciplinary geo-science and engineering collaboration

More information

Correspondence to: S. Schneider

Correspondence to: S. Schneider Geogr. Helv., 68, 265 280, 2013 doi:10.5194/gh-68-265-2013 Author(s) 2013. CC Attribution 3.0 License. A spatial and temporal analysis of different periglacial materials by using geoelectrical, seismic

More information

Permafrost Dynamics at the Fairbanks Permafrost Experimental Station Near Fairbanks, Alaska

Permafrost Dynamics at the Fairbanks Permafrost Experimental Station Near Fairbanks, Alaska Permafrost Dynamics at the Fairbanks Permafrost Experimental Station Near Fairbanks, Alaska T.A. Douglas Cold Regions Research and Engineering Laboratory Fairbanks, AK M. Torre Jorgenson Alaska Biological

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 3 Worksheet 1 Meteorology Name: Circle the letter that corresponds to the correct answer 1) If the maximum temperature for a particular day is 26 C and the minimum temperature is 14 C, the daily

More information

Periglacial Geomorphology

Periglacial Geomorphology Periglacial Geomorphology Periglacial Geomorphology Periglacial: literally means around glacial - term introduced in 1909 to describe landforms and processes around glaciated areas. Periglacial environments:

More information

Permafrost and surface movement of an active protalus rampart in the Kuranosuke Cirque, the Northern Japanese Alps

Permafrost and surface movement of an active protalus rampart in the Kuranosuke Cirque, the Northern Japanese Alps Permafrost, Phillips, Springman & Arenson (eds) 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Permafrost and surface movement of an active protalus rampart in the Kuranosuke Cirque, the Northern Japanese

More information

Plenary Paper Recent Warming of European Permafrost: Evidence from Borehole Monitoring

Plenary Paper Recent Warming of European Permafrost: Evidence from Borehole Monitoring Plenary Paper Recent Warming of European Permafrost: Evidence from Borehole Monitoring Charles Harris School of Earth, Ocean and Planetary Sciences, Cardiff University, Cardiff, CF10 3YE UK Ketil Isaksen

More information

JRC MARS Bulletin global outlook 2017 Crop monitoring European neighbourhood

JRC MARS Bulletin global outlook 2017 Crop monitoring European neighbourhood MARS Bulletin global outlook 2015-06 7r JRC MARS Bulletin global outlook 2017 Crop monitoring European neighbourhood Russia April 2017 Positive start to the season after winter dormancy The sowing campaign

More information

Observations of surface dynamics with thermokarst initiation, Yukechi site, Central Yakutia

Observations of surface dynamics with thermokarst initiation, Yukechi site, Central Yakutia Permafrost, Phillips, Springman & Arenson (eds) 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Observations of surface dynamics with thermokarst initiation, Yukechi site, Central Yakutia A. Fedorov

More information

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow ATOC 1060-002 OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow cover, permafrost, river and lake ice, ; [3]Glaciers and

More information

Modelling runoff from large glacierized basins in the Karakoram Himalaya using remote sensing of the transient snowline

Modelling runoff from large glacierized basins in the Karakoram Himalaya using remote sensing of the transient snowline Remote Sensing and Hydrology 2000 (Proceedings of a symposium held at Santa Fe, New Mexico, USA, April 2000). IAHS Publ. no. 267, 2001. 99 Modelling runoff from large glacierized basins in the Karakoram

More information

FROST HEAVE. GROUND FREEZING and FROST HEAVE

FROST HEAVE. GROUND FREEZING and FROST HEAVE FROST HEAVE The temperature of soils near the ground surface reflects the recent air temperatures. Thus, when the air temperature falls below 0 C (32 F) for extended periods, the soil temperature drops

More information

A R C T E X Results of the Arctic Turbulence Experiments Long-term Monitoring of Heat Fluxes at a high Arctic Permafrost Site in Svalbard

A R C T E X Results of the Arctic Turbulence Experiments Long-term Monitoring of Heat Fluxes at a high Arctic Permafrost Site in Svalbard A R C T E X Results of the Arctic Turbulence Experiments www.arctex.uni-bayreuth.de Long-term Monitoring of Heat Fluxes at a high Arctic Permafrost Site in Svalbard 1 A R C T E X Results of the Arctic

More information

Regional influence on road slipperiness during winter precipitation events. Marie Eriksson and Sven Lindqvist

Regional influence on road slipperiness during winter precipitation events. Marie Eriksson and Sven Lindqvist Regional influence on road slipperiness during winter precipitation events Marie Eriksson and Sven Lindqvist Physical Geography, Department of Earth Sciences, Göteborg University Box 460, SE-405 30 Göteborg,

More information

Research highlights from permafrost research: Rock glacier mapping in the HKH region with Google Earth

Research highlights from permafrost research: Rock glacier mapping in the HKH region with Google Earth Research highlights from permafrost research: Rock glacier mapping in the HKH region with Google Earth M.-O. Schmid, P. Baral, S. Gruber, S. Shahi, T. Shrestha, D. Stumm, and P. Wester International Centre

More information

ACTIVE LAYER MONITORING IN NORTHERN WEST SIBERIA

ACTIVE LAYER MONITORING IN NORTHERN WEST SIBERIA ACTIVE LAYER MONITORING IN NORTHERN WEST SIBERIA A. V. Pavlov Earth Cryosphere Institute, B RAS 142452, Zeleny-village, 5-67, Noginsk district, Moscow region, Russia e-mail: emelnikov@glas.apc.org Abstract

More information

SLOPE SCALE AVALANCHE FORECASTING IN THE ARCTIC (SVALBARD)

SLOPE SCALE AVALANCHE FORECASTING IN THE ARCTIC (SVALBARD) SLOPE SCALE AVALANCHE FORECASTING IN THE ARCTIC (SVALBARD) Alexander Prokop 1,2 *, Holt Hancock 2, Martin Praz 3, and Elisabeth Jahn 1 1 Snow Scan Research, Engineering, Education GmbH, Vienna, Austria

More information

Sensitivity and responses to climate change in the Subantarctic periglacial environment

Sensitivity and responses to climate change in the Subantarctic periglacial environment Sensitivity and responses to climate change in the Subantarctic periglacial environment Permafrost, Phillips, Springman & Arenson (eds) Swets & Zeitlinger, Lisse, ISBN 9 589 58 7 J. Boelhouwers Department

More information

ALPINE GLACIERS AS A CLIMATE PROXY AND AS A PROMINENT CLIMATE IMPACT

ALPINE GLACIERS AS A CLIMATE PROXY AND AS A PROMINENT CLIMATE IMPACT ALPINE GLACIERS AS A CLIMATE PROXY AND AS A PROMINENT CLIMATE IMPACT Wilfried Haeberli and Martin Hoelzle World Glacier Monitoring Service and Glaciology and Geomorphodynamics Group, Geography Department,

More information

World Geography Chapter 3

World Geography Chapter 3 World Geography Chapter 3 Section 1 A. Introduction a. Weather b. Climate c. Both weather and climate are influenced by i. direct sunlight. ii. iii. iv. the features of the earth s surface. B. The Greenhouse

More information

Air temperature environment on the debriscovered area of Lirung Glacier, Langtang Valley, Nepal Himalayas

Air temperature environment on the debriscovered area of Lirung Glacier, Langtang Valley, Nepal Himalayas Debris-Covered Glaciers (Proceedings of a workshop held at Seattle, Washington, USA, September 2000). IAHS Publ. no. 264, 2000. 83 Air temperature environment on the debriscovered area of Lirung Glacier,

More information

Snowcover accumulation and soil temperature at sites in the western Canadian Arctic

Snowcover accumulation and soil temperature at sites in the western Canadian Arctic Snowcover accumulation and soil temperature at sites in the western Canadian Arctic Philip Marsh 1, C. Cuell 1, S. Endrizzi 1, M. Sturm 2, M. Russell 1, C. Onclin 1, and J. Pomeroy 3 1. National Hydrology

More information

Climatic change in the Alps

Climatic change in the Alps Climatic change in the Alps Prof. Martin Beniston Martin.Beniston@unige.ch Wengen-2006 Workshop Overview Introduction Current and future climate in the Alps Potential impacts Conclusions 1 Introduction

More information

Keywords: lightning climatology; lightning flashes; Macedonia Greece.

Keywords: lightning climatology; lightning flashes; Macedonia Greece. International Scientific Conference GEOBALCANICA 2018 A 10-YEAR CLIMATOLOGY OF LIGHTNING FOR MACEDONIA, GREECE Paraskevi Roupa 1 Theodore Karacostas 2 1 Hellenic National Meteorological Service, Greece

More information

but 2012 was dry Most farmers pulled in a crop

but 2012 was dry Most farmers pulled in a crop After a winter that wasn t, conditions late in the year pointed to a return to normal snow and cold conditions Most farmers pulled in a crop but 2012 was dry b y M i k e Wr o b l e w s k i, w e a t h e

More information

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B)

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B) 1. When snow cover on the land melts, the water will most likely become surface runoff if the land surface is A) frozen B) porous C) grass covered D) unconsolidated gravel Base your answers to questions

More information

B7 Applications of DC resistivity exploration

B7 Applications of DC resistivity exploration B7 Applications of DC resistivity exploration Modern DC resistivity surveys collect data for generating a 2-D or 3-D geoelectric model of the Earth. A simple 1-D analysis does not often yield results that

More information

The Arctic - A New Frontier The geological, environmental and engineering challenges for submarine telecommunication cables

The Arctic - A New Frontier The geological, environmental and engineering challenges for submarine telecommunication cables The Arctic - A New Frontier The geological, environmental and engineering challenges for submarine telecommunication cables Ryan Wopschall 5 September 2013 Oceanology International China, Shanghai Fugro

More information

J8.4 TRENDS OF U.S. SNOWFALL AND SNOW COVER IN A WARMING WORLD,

J8.4 TRENDS OF U.S. SNOWFALL AND SNOW COVER IN A WARMING WORLD, J8.4 TRENDS OF U.S. SNOWFALL AND SNOW COVER IN A WARMING WORLD, 1948-2008 Richard R. Heim Jr. * NOAA National Climatic Data Center, Asheville, North Carolina 1. Introduction The Intergovernmental Panel

More information

The indicator can be used for awareness raising, evaluation of occurred droughts, forecasting future drought risks and management purposes.

The indicator can be used for awareness raising, evaluation of occurred droughts, forecasting future drought risks and management purposes. INDICATOR FACT SHEET SSPI: Standardized SnowPack Index Indicator definition The availability of water in rivers, lakes and ground is mainly related to precipitation. However, in the cold climate when precipitation

More information

C18 Hydrogeophysical Monitoring of Landslide Processes Using Automated Time-Lapse Electrical Resistivity Tomography (ALERT)

C18 Hydrogeophysical Monitoring of Landslide Processes Using Automated Time-Lapse Electrical Resistivity Tomography (ALERT) C18 Hydrogeophysical Monitoring of Landslide Processes Using Automated Time-Lapse Electrical Resistivity Tomography (ALERT) J.E. Chambers* (British Geological Survey), P.I. Meldrum (British Geological

More information

Effect of microscopic heterogeneities on water transfer in frozen ground

Effect of microscopic heterogeneities on water transfer in frozen ground Permafrost, Phillips, Springman & Arenson (eds) 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Effect of microscopic heterogeneities on water transfer in frozen ground I.A. Komarov Geological Department,

More information

Geophysical Surveys for Groundwater Modelling of Coastal Golf Courses

Geophysical Surveys for Groundwater Modelling of Coastal Golf Courses 1 Geophysical Surveys for Groundwater Modelling of Coastal Golf Courses C. RICHARD BATES and RUTH ROBINSON Sedimentary Systems Research Group, University of St. Andrews, St. Andrews, Scotland Abstract

More information

Polar Portal Season Report 2016

Polar Portal Season Report 2016 Polar Portal Season Report 2016 Less ice both on land and at sea This year s report is the fourth since the Polar Portal was launched, and as an introduction, we have chosen to take a look at the trends

More information

Analysis of meteorological measurements made over three rainy seasons in Sinazongwe District, Zambia.

Analysis of meteorological measurements made over three rainy seasons in Sinazongwe District, Zambia. Analysis of meteorological measurements made over three rainy seasons in Sinazongwe District, Zambia. 1 Hiromitsu Kanno, 2 Hiroyuki Shimono, 3 Takeshi Sakurai, and 4 Taro Yamauchi 1 National Agricultural

More information

AIR MASSES. Large bodies of air. SOURCE REGIONS areas where air masses originate

AIR MASSES. Large bodies of air. SOURCE REGIONS areas where air masses originate Large bodies of air AIR MASSES SOURCE REGIONS areas where air masses originate Uniform in composition Light surface winds Dominated by high surface pressure The longer the air mass remains over a region,

More information

Climate Dataset: Aitik Closure Project. November 28 th & 29 th, 2018

Climate Dataset: Aitik Closure Project. November 28 th & 29 th, 2018 1 Climate Dataset: Aitik Closure Project November 28 th & 29 th, 2018 Climate Dataset: Aitik Closure Project 2 Early in the Closure Project, consensus was reached to assemble a long-term daily climate

More information

Techniques for determining the structure and properties of permafrost

Techniques for determining the structure and properties of permafrost Stanford Exploration Project, Report 80, May 15, 2001, pages 1 404 Techniques for determining the structure and properties of permafrost Ray Abma 1 ABSTRACT Several methods for predicting the relationship

More information

Persistence of Soil Moisture in the Cariboo Mountains, BC

Persistence of Soil Moisture in the Cariboo Mountains, BC Persistence of Soil Moisture in the Cariboo Mountains, BC Tullia Leona Upton University of Northern Brithish Columbia M.Sc. Candidate Natural Resources and Environmental Studies upton@unbc.ca Overview

More information

IMPACT OF SOIL FREEZING ON THE CONTINENTAL-SCALE SEASONAL CYCLE SIMULATED BY A GENERAL CIRCULATION MODEL

IMPACT OF SOIL FREEZING ON THE CONTINENTAL-SCALE SEASONAL CYCLE SIMULATED BY A GENERAL CIRCULATION MODEL IMPACT OF SOIL FREEZING ON THE CONTINENTAL-SCALE SEASONAL CYCLE SIMULATED BY A GENERAL CIRCULATION MODEL Kumiko Takata 1, Masahide Kimoto 2 1. Domestic Research Fellow, National Institute of Environmental

More information

Needs for traceability, to establish comparability in permafrost stations and networks

Needs for traceability, to establish comparability in permafrost stations and networks MeteoMet International Workshop Metrology for High Mountains Climate Observational Issues Moncalieri, 15 th Feb. 2017 Needs for traceability, to establish comparability in permafrost stations and networks

More information

Thomas P. Phillips CIRES Prof K. Steffen, L. Colgan PhD ABD, D. McGrath MA

Thomas P. Phillips CIRES Prof K. Steffen, L. Colgan PhD ABD, D. McGrath MA Thomas P. Phillips CIRES Prof K. Steffen, L. Colgan PhD ABD, D. McGrath MA Problem: we know very little about the processes happening within the Greenland Ice Sheet. What is the velocity at the base? What

More information

PHYSICAL PROPERTIES TAHOE.UCDAVIS.EDU 8

PHYSICAL PROPERTIES TAHOE.UCDAVIS.EDU 8 PHYSICAL PROPERTIES 8 Lake surface level Daily since 1900 Lake surface level varies throughout the year. Lake level rises due to high stream inflow, groundwater inflow, and precipitation directly onto

More information

Freezing n-factors in discontinuous permafrost terrain, Takhini River, Yukon Territory, Canada

Freezing n-factors in discontinuous permafrost terrain, Takhini River, Yukon Territory, Canada Permafrost, Phillips, Springman & Arenson (eds) 23 Swets & Zeitlinger, Lisse, ISBN 9 589 582 7 Freezing n-factors in discontinuous permafrost terrain, Takhini River, Yukon Territory, Canada K.C. Karunaratne

More information

Lecture 10 Glaciers and glaciation

Lecture 10 Glaciers and glaciation Lecture 10 Glaciers and glaciation Outline Importance of ice to people! Basics of glaciers formation, classification, mechanisms of movement Glacial landscapes erosion and deposition by glaciers and the

More information

By Charis Smith, Cassie Scruggs, Erol Chandler, & Shawna Fox Anderson

By Charis Smith, Cassie Scruggs, Erol Chandler, & Shawna Fox Anderson By Charis Smith, Cassie Scruggs, Erol Chandler, & Shawna Fox Anderson What are the different types of ice? How was the ice identified? What can we draw from comparing Mars ice with the ice seen here on

More information

INDUCED POLARIZATION AND RESISTIVITY LOGGING IN PERMAFROST

INDUCED POLARIZATION AND RESISTIVITY LOGGING IN PERMAFROST INDUCED POLARIZATION AND RESISTIVITY LOGGING IN PERMAFROST Richard Fortier 1, Michel Allard 2 1. DŽpartement de gžologie et de gžnie gžologique Pavillon Pouliot, UniversitŽ Laval Sainte-Foy (QuŽbec) Canada

More information

RELATIVE IMPORTANCE OF GLACIER CONTRIBUTIONS TO STREAMFLOW IN A CHANGING CLIMATE

RELATIVE IMPORTANCE OF GLACIER CONTRIBUTIONS TO STREAMFLOW IN A CHANGING CLIMATE Proceedings of the Second IASTED International Conference WATER RESOURCE MANAGEMENT August 20-22, 2007, Honolulu, Hawaii, USA ISGN Hardcopy: 978-0-88986-679-9 CD: 978-0-88-986-680-5 RELATIVE IMPORTANCE

More information

Effect of mountain permafrost on snowpack stability

Effect of mountain permafrost on snowpack stability Cold Regions Science and Technology 47 (2007) 43 49 www.elsevier.com/locate/coldregions Effect of mountain permafrost on snowpack stability Marcia Phillips, Jürg Schweizer Swiss Federal Institute for Snow

More information

Temperature variations in lake ice in central Alaska, USA

Temperature variations in lake ice in central Alaska, USA Annals of Glaciology 40 2005 89 Temperature variations in lake ice in central Alaska, USA Marc GOULD, Martin JEFFRIES Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Drive, Fairbanks,

More information

Permafrost Creep within a Recently Deglaciated Glacier Forefield: Muragl, Swiss Alps

Permafrost Creep within a Recently Deglaciated Glacier Forefield: Muragl, Swiss Alps PERMAFROST AND PERIGLACIAL PROCESSES Permafrost and Periglac. Process. 17: 79 85 (2006) Published online 12 December 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/ppp.540 Short

More information

Gateway Trail Project

Gateway Trail Project Gateway Trail Project Debris Flow Hazard Assessment By: Juan de la Fuente April 30, 2010 Background- On April 22, 2010, the Shasta-Trinity National Forest (Mt. Shasta-McCloud Unit) requested a geologic

More information

Novel Snotel Data Uses: Detecting Change in Snowpack Development Controls, and Remote Basin Snow Depth Modeling

Novel Snotel Data Uses: Detecting Change in Snowpack Development Controls, and Remote Basin Snow Depth Modeling Novel Snotel Data Uses: Detecting Change in Snowpack Development Controls, and Remote Basin Snow Depth Modeling OVERVIEW Mark Losleben and Tyler Erickson INSTAAR, University of Colorado Mountain Research

More information

2D Resistivity Imaging Investigation of Solid Waste Landfill Sites in Ikhueniro Municipality, Ikpoba Okha Local Government Area,Edo State, Nigeria.

2D Resistivity Imaging Investigation of Solid Waste Landfill Sites in Ikhueniro Municipality, Ikpoba Okha Local Government Area,Edo State, Nigeria. 2D Resistivity Imaging Investigation of Solid Waste Landfill Sites in Ikhueniro Municipality, Ikpoba Okha Local Government Area,Edo State, Nigeria. Iyoha. A, Akhirevbulu O.E, Amadasun C.V.O and Evboumwan

More information

Deke Arndt, Chief, Climate Monitoring Branch, NOAA s National Climatic Data Center

Deke Arndt, Chief, Climate Monitoring Branch, NOAA s National Climatic Data Center Thomas R. Karl, L.H.D., Director, NOAA s National Climatic Data Center, and Chair of the Subcommittee on Global Change Research Peter Thorne, PhD, Senior Scientist, Cooperative Institute for Climate and

More information