SEISMIC PERFORMANCE ASSESSMENT AND RETROFITTING OF RC STRUCTURES

Size: px
Start display at page:

Download "SEISMIC PERFORMANCE ASSESSMENT AND RETROFITTING OF RC STRUCTURES"

Transcription

1 Aristotle University of Thessaloniki KE.DE.A. Conference Hall I Tuesday 11 Thursday 13 November, 2014 SEISMIC PERFORMANCE ASSESSMENT AND RETROFITTING OF RC STRUCTURES Luigi Di Sarno, PhD, MASCE ldisarno@unisannio.it UNIVERSITA' DEGLI Dipartimento di Ingegneria Palazzo Bosco Lucarelli, Piazza Roma, 821

2 RC Bridges INTRODUCTION LAB TESTS SIMULATIONS CONCLUSIONS

3 BACKGROUND & MOTIVATION The seismic vulnerability assessment of existing and new lifeline systems, especially transportation systems, is becoming of paramount importance in resilient social communities. Unfortunately, the transportation systems, especially in Italy, were mainly built in the late 60s and early 70s and were designed primarily for gravity loads. As a result most of the bridges do not employ seismic details. In addition, Eurocode 8 does not contain specific rules for the assessment of existing bridges. In Italy, guidelines for the assessment of existing bridges in seismic prone-areas were proposed within the Reluis Consortium. A large scale testing program was initiated within the European project RETRO, a research program of the Seismic Engineering Research Infrastructures for European Synergies (SERIES), financially supported by the Seventh Framework Programm of the European Commission. Additional projects are still working in progress on the seismic response analysis of existing RC bridge structures with and without retrofitting measures.

4 Seismic Engineering Research Infrastructures for European Synergies TRANSATIONAL ACCESS USE - JRC (RETRO ) Assessment of the seismic vulnerability of an old R.C viaduct with frame piers and study of the Effectiveness of different isolation systems through pseudodynamic Test on a large scale model Participants (F. Paolacci, R. Giannini, A. Mohamad, L. Di Sarno, R. De Risi, R. Ceravolo, M. Erdik, C. Yenidogan, A. Marioni, M. Sartori) University of Roma Tre (coordinator) University of Naples University of Sannio Polytechnic of Turin Univertsity of Bogazici ALGA Spa Milan UNIVERSITA' DEGLI STUDI DEL DI SALERNO SANNIO Dipartimento di Ingegneria Palazzo Bosco Lucarelli, Piazza Roma, Benevento

5 EXperimental &Computational Hybrid Assessment Network for Ground- Motion Excited Soil- Structure Interaction Systems (PIRSES-GA EXCHANGE-SSI)

6 RETRO PROJECT Paolacci F, Pegon P, Javier Molina F, Poljansek M, Giannini R, Di Sarno L, Abbiati G, Mohamad A, Bursi O, Taucer F, Ceravolo R, Zanotti Fragonara L, De Risi R, Sartori M, Alessandri S, Yenidogan C (2014) Assessment of the seismic vulnerability of an old RC viaduct with frame piers and study of the effectiveness of base isolation through PsD testing (RETRO). doi: /63472

7 Rio-Torto Viaduct The case study is an old R.C. viaduct (Rio Torto) placed along the Firenze-Bologna Highway between Roncobilaccio and Pian del Voglio, and was built at the end of the 50 s It is characterized by: Thirteen-span bays deck with two independent roadways sustained by 12 couples of piers Frame piers with height variable between 14 and 50 m RC members with smooth bars Gerber Saddles

8 275 INTRODUCTION LAB TESTS SIMULATIONS CONCLUSIONS spalla BO spalla FI 29, ,05 17,35 30,61 30,49 26,75 27,86 39,41 41,34 36,49 piena piena cava piena piena cava cava cava 25,74 17,19 14,37 13,8 piena piena piena cava Pier 9 Pier 11 An experimental test campaign was performed at ELSA Laboratory of JRC (Ispra, Italy). Two piers (scale 1:2.5) were built and tested using the PsD technique with sub-structuring: Pier 9: a 3 floor, 1 bay frame with columns with an hollow section Pier 11: a 2 floor, 1 bay frame with columns with a full section Pier 11 Pier 9

9 Pier 9 Pier 11

10 Isolation system installed on the strong floor

11 TEST SET-UP

12 U D P

13 U D P Opensees Model (with and w/o bond-slip and shear) Flexural Model

14 U D P The simplified model has been built using non-linear springs simulating the transversal response of each pier, whereas the deck has been considered as a linear elastic element with the geometrical characteristics of the deck. The saddles have been considered as hinges. This is the most simply model that can be adopted for the PsD test within a certain range of transversal displacements given that the influence of the overturning moment on the axial force of the columns and consequently on their flexural strength is not significant.

15 U D P To evaluate the characteristics of the single pier special non-linear elements as implemented in Opensees have been used. Such elements include: Hysteretic element Pinching4 element Both elements are able to reproduce the pinching phenomena even if pinching4 model is more versatile when significant pinching is expected. Hysteretic Pinching4

16 U D P (SLC Record1) COMPLETE MODEL SYMPLIFIED MODEL BASE SHEAR (kn) displacement (cm) DISPLACEMENT (cm) time (sec)

17 U D P Base isolated configuration of the bridge deck V FPS f N N R iso

18 U D P Displacement Demand Force Demand S a f 10% f 1% T

19 U D P From a classical probabilistic seismic hazard anaysis it follows that the expected PGA ranges between 0.23g and 0.25g, whereas for the collapse prevention condition (probability of 2% in 50 years) PGA ranges between 0.30g and 0.35g. Probability of occurence X: Y: SLV SLC PGA (g) Earthquake swarms occurred in the region (i.e. the earthquake records of the 20th and 29th May 2012) were used as seismic input

20 U D P Name Description Parameters Type of test Physical Part Experimental Test Program d03 Test on Isolator_P9 V = 450 kn D = 50,40,30,20,10 mmm f03 f04 k06 k07 Preliminary test for the stiffness of pier 11 Preliminary test for the stiffness of pier 9 Not Isolated Bridge 10% SLS Not Isolated Bridge 100% SLS V = 450 kn D=1.5 mm V = 450 kn D=2 mm m01 Only physical isolators V = 450, 225, 175 kn, H = 30 mm, 1.88 mm/s, l01 Isolated Piers case 100% SLS p02 Isolated Piers case 70% ULS k09 r01 r02 r03 k10 k12 Not Isolated Bridge 100% ULS Pier 9 - Isolator case 65% ULS Pier 9 - Isolator case 80% ULS Pier 9 - Isolator case 90% ULS Aftershock - Not Isolated 100% ULS Aftershock - Not Isolated 200% ULS Cyclic displacements Cyclic displacements Cyclic displacements Isolator_P9 Pier 11 Pier 9 PGA=10% SLS PsD test Pier 9 & 11 PGA=100% SLS PsD test Pier 9 & 11 PGA=100% SLS, μ=4% (design value) PGA=70% ULS, μ=4% (design value) Cyclic Isolator_P9 & P11 displacements PsD test Pier 9 & 11 + Isolator_P9 PsD test Pier 9 & 11 + Isolator_P9 PGA=100% ULS PsD test Pier9&11 PGA=65% ULS μ=7% (actual value) PGA=80% ULS μ=7% (actual value) PGA=90% ULS μ=7% (actual value) PGA=100% ULS after a first sequence of 100% ULS (k09) PGA=200% ULS after the second sequence of 100% ULS (k10) PsD test PsD test PsD test Pier9 + Isolator_P9 Pier9 + Isolator_P9 Pier9 + Isolator_P9 PsD test Pier 9 & 11 PsD test Pier 9 & 11

21 U D P

22

23 U D P Name Description Parameters Type of test Physical Part Experimental Test Program d03 Test on Isolator_P9 V = 450 kn D = 50,40,30,20,10 mmm f03 f04 k06 k07 Preliminary test for the stiffness of pier 11 Preliminary test for the stiffness of pier 9 Not Isolated Bridge 10% SLS Not Isolated Bridge 100% SLS V = 450 kn D=1.5 mm V = 450 kn D=2 mm m01 Only physical isolators V = 450, 225, 175 kn, H = 30 mm, 1.88 mm/s, l01 Isolated Piers case 100% SLS p02 Isolated Piers case 70% ULS k09 r01 r02 r03 k10 k12 Not Isolated Bridge 100% ULS Pier 9 - Isolator case 65% ULS Pier 9 - Isolator case 80% ULS Pier 9 - Isolator case 90% ULS Aftershock - Not Isolated 100% ULS Aftershock - Not Isolated 200% ULS Cyclic displacements Cyclic displacements Cyclic displacements Isolator_P9 Pier 11 Pier 9 PGA=10% SLS PsD test Pier 9 & 11 PGA=100% SLS PsD test Pier 9 & 11 PGA=100% SLS, μ=4% (design value) PGA=70% ULS, μ=4% (design value) Cyclic Isolator_P9 & P11 displacements PsD test Pier 9 & 11 + Isolator_P9 PsD test Pier 9 & 11 + Isolator_P9 PGA=100% ULS PsD test Pier9&11 PGA=65% ULS μ=7% (actual value) PGA=80% ULS μ=7% (actual value) PGA=90% ULS μ=7% (actual value) PGA=100% ULS after a first sequence of 100% ULS (k09) PGA=200% ULS after the second sequence of 100% ULS (k10) PsD test PsD test PsD test Pier9 + Isolator_P9 Pier9 + Isolator_P9 Pier9 + Isolator_P9 PsD test Pier 9 & 11 PsD test Pier 9 & 11

24 Slender piers Single-Record (MRN e/q) Short piers Multiple-Record (MRN e/q)

25 The robust fragility curves for damage limit state (left) and for the collapse limit state (right) for the as built configuration, compared with the Syner-G results

26 7th Framework Programme of UE PIRSES-GA EXCHANGE-SSI (Experimental & Computational Hybrid Assessment Network for Ground-Motion Excited Soil-Structure Interaction Systems) The main objectives of the research is to quantify the influence of advanced numerical modelling in the assessment of seismic capacity of complex structural systems At the element level (i.e. columns, piers) advanced numerical models have been proposed Numerical validation comparing analytical and experimental data for specimens with different failure modes under static cyclic load At subassembly level a numerical model validation with experimental data of a shear critical bridge bent Dynamic validation of the proposed model with numerical comparison with experimental data of a shaking table test Comparisons of available literature simplified assessment procedure with advanced nuemerical modelling

27 U D P VecTor2 model of a shear critical frame used as deck support in a typical Italian bridge with smooth reinforcement 100 V [kn] d [mm] Analytical VT2 Experimental -100

28 Bridge Pier (SD) - Flexure-critical The large errors in the displacement demand estimation for shear critical structural systems can be found in the hysteretic behavior adopted in the NLSP calibrations Base Shear [kn] Analytical VT2 FF2_ Bridge Bent (SSD) - Shear-critical Relative longitudinal displacement [mm] Base Shear [kn] Analytical VT2 FF1_1.188 CM CSM Relative longitudinal displacement [mm]

29 Maximum Displacement (m) NDA mean FEMA 440-CM FEMA 440-CSM Bridge Pier (SD) - Flexure-critical Tel = 0.47 s Both the static procedures (CM and CSM) show a reasonable accuracy, with average errors lower than 15% for the flexural critical structural systems. Maximum Displacement (m) NDA mean FEMA 440-CM FEMA 440-CSM Strength Reduction Factor, R Bridge Bent ( SSD ) - Shear-critical Tel = 0.27 s For the shear critical bridge bent, the NLSPs showed significant differences. In particular the CM presents an average error with a maximum of 40% and significant underestimation also for low ductility demands Strength Reduction Factor, R

30 U D P Frame Response Hitachi Station Tsukidate Station

31 U D P Normalized strength h = Fy / M PGA Force Reduction Factors Ductility = 2 Ductility = 4 Ductility = 6 Ductility 2 Ductility 4 Ductility 6 Normalized Strength Ratio sec Kh / K = 5% Force Reduction Factor Ratio Kh / K = 5% Safe Unsafe Period (seconds) Period (seconds) Hitachi Station Stiffening degrading model with 5% and 10% hardening

32 U D P Summarizing. Large scale PsD tests carried out on as-built non-ductile bridge systems has shown that brittle failure may occur on transverse (shear-critical) members. Base isolation is highly efficient in preventing the damage occurrence in brittle components. The results of the inelastic numerical analyses and the preliminary outcomes of the experimental tests not only confirm that multiple earthquakes deserve extensive and urgent studies, but also give indications of the levels of lack of conservatism in the safety of conventionally-designed structures when subjected to multiple earthquakes. Normalized strength spectra for seismic sequence have shown that the force demand on structures can be thrice that relative to a single event. Such demand is, however, significantly influenced by the ductility levels, especially for periods greater than 1.0 second. Consistently higher inelastic displacements have also been computed for multiple earthquakes.

33 U D P Further developments: Experimental seismic performance assessment of bridge piers with smooth bars and low-stregth concrete through shaking table; Experimental seismic performance assessment of bridge subassemblages w and w/o retrofitting. Empirical and analytical fragility analysis.

EVALUATION OF SECOND ORDER EFFECTS ON THE SEISMIC PERFORMANCE OF RC FRAMED STRUCTURES: A FRAGILITY ANALYSIS

EVALUATION OF SECOND ORDER EFFECTS ON THE SEISMIC PERFORMANCE OF RC FRAMED STRUCTURES: A FRAGILITY ANALYSIS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 428 EVALUATION OF SECOND ORDER EFFECTS ON THE SEISMIC PERFORMANCE OF RC FRAMED STRUCTURES: A FRAGILITY

More information

Chapter 6 Seismic Design of Bridges. Kazuhiko Kawashima Tokyo Institute of Technology

Chapter 6 Seismic Design of Bridges. Kazuhiko Kawashima Tokyo Institute of Technology Chapter 6 Seismic Design of Bridges Kazuhiko Kawashima okyo Institute of echnology Seismic Design Loading environment (dead, live, wind, earthquake etc) Performance criteria for gravity (deflection, stresses)

More information

Analysis Of Seismic Performance Of Fps Base Isolated Structures Subjected To Near Fault Events

Analysis Of Seismic Performance Of Fps Base Isolated Structures Subjected To Near Fault Events Analysis Of Seismic Performance Of Fps Base Isolated Structures Subjected To Near Fault Events Luigi Petti, Fabrizio Polichetti, Bruno Palazzo Dipartimento di Ingegneria Civile dell Università degli Studi

More information

THREE-DIMENSIONAL NONLINEAR DEGRADING MODEL FOR EARTHQUAKE RESPONSE ANALYSES OF CONCRETE BRIDGES

THREE-DIMENSIONAL NONLINEAR DEGRADING MODEL FOR EARTHQUAKE RESPONSE ANALYSES OF CONCRETE BRIDGES The 4 th World Conference on Earthquake Engineering October 2-7, 28, Beijing, China THREE-DIMENSIONAL NONLINEAR DEGRADING MODEL FOR EARTHQUAKE RESPONSE ANALYSES OF CONCRETE BRIDGES V. Phung and D. Lau

More information

Nonlinear static analysis PUSHOVER

Nonlinear static analysis PUSHOVER Nonlinear static analysis PUSHOVER Adrian DOGARIU European Erasmus Mundus Master Course Sustainable Constructions under Natural Hazards and Catastrophic Events 520121-1-2011-1-CZ-ERA MUNDUS-EMMC Structural

More information

IS DIRECT DISPLACEMENT BASED DESIGN VALID FOR LONG SPAN BRIDGES?

IS DIRECT DISPLACEMENT BASED DESIGN VALID FOR LONG SPAN BRIDGES? October 1-17, 8, Beijing, China IS DIRECT DISPLACEMENT BASED DESIGN VALID FOR LONG SPAN BRIDGES? G. Adhikari 1 L. Petrini and G. M. Calvi 3 1 PhD Student, European School for Advanced Studies in Reduction

More information

Seismic Assessment of a RC Building according to FEMA 356 and Eurocode 8

Seismic Assessment of a RC Building according to FEMA 356 and Eurocode 8 1 Seismic Assessment of a RC Building according to FEMA 356 and Eurocode 8 Ioannis P. GIANNOPOULOS 1 Key words: Pushover analysis, FEMA 356, Eurocode 8, seismic assessment, plastic rotation, limit states

More information

Pushover Seismic Analysis of Bridge Structures

Pushover Seismic Analysis of Bridge Structures Pushover Seismic Analysis of Bridge Structures Bernardo Frère Departamento de Engenharia Civil, Arquitectura e Georrecursos, Instituto Superior Técnico, Technical University of Lisbon, Portugal October

More information

DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS

DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS Konstantinos CHRISTIDIS 1, Emmanouil VOUGIOUKAS 2 and Konstantinos TREZOS 3 ABSTRACT

More information

BI-DIRECTIONAL SEISMIC ANALYSIS AND DESIGN OF BRIDGE STEEL TRUSS PIERS ALLOWING A CONTROLLED ROCKING RESPONSE

BI-DIRECTIONAL SEISMIC ANALYSIS AND DESIGN OF BRIDGE STEEL TRUSS PIERS ALLOWING A CONTROLLED ROCKING RESPONSE Proceedings of the 8 th U.S. National Conference on Earthquake Engineering April 18-22, 2006, San Francisco, California, USA Paper No. 1954 BI-DIRECTIONAL SEISMIC ANALYSIS AND DESIGN OF BRIDGE STEEL TRUSS

More information

Effect of eccentric moments on seismic ratcheting of single-degree-of-freedom structures

Effect of eccentric moments on seismic ratcheting of single-degree-of-freedom structures Effect of eccentric moments on seismic ratcheting of single-degree-of-freedom structures K.Z. Saif, C.-L. Lee, G.A. MacRae & T.Z. Yeow Department of Civil Engineering, University of Canterbury, Christchurch.

More information

Seismic design of bridges

Seismic design of bridges NATIONAL TECHNICAL UNIVERSITY OF ATHENS LABORATORY FOR EARTHQUAKE ENGINEERING Seismic design of bridges Lecture 3 Ioannis N. Psycharis Capacity design Purpose To design structures of ductile behaviour

More information

TRANSPORTATION RESEARCH BOARD. TRB Webinar Program Direct Displacement Based Seismic Design of Bridges. Thursday, June 22, :00-3:30 PM ET

TRANSPORTATION RESEARCH BOARD. TRB Webinar Program Direct Displacement Based Seismic Design of Bridges. Thursday, June 22, :00-3:30 PM ET TRANSPORTATION RESEARCH BOARD TRB Webinar Program Direct Displacement Based Seismic Design of Bridges Thursday, June 22, 2017 2:00-3:30 PM ET The Transportation Research Board has met the standards and

More information

Rapid Earthquake Loss Assessment: Stochastic Modelling and an Example of Cyclic Fatigue Damage from Christchurch, New Zealand

Rapid Earthquake Loss Assessment: Stochastic Modelling and an Example of Cyclic Fatigue Damage from Christchurch, New Zealand Rapid Earthquake Loss Assessment: Stochastic Modelling and an Example of Cyclic Fatigue Damage from Christchurch, New Zealand John B. Mander 1 and Geoffrey W. Rodgers 2, David Whittaker 3 1 University

More information

20 and 29 May events. Luigi Petti, Alessio Lodato

20 and 29 May events. Luigi Petti, Alessio Lodato PRELIMINARY SPATIAL ANALYSIS AND COMPARISON BETWEEN RESPONSE SPECTRA EVALUATED FOR EMILIA ROMAGNA EARTHQUAKES AND ELASTIC DEMAND SPECTRA ACCORDING TO THE NEW SEISMIC ITALIAN CODE 20 and 29 May events Introduction

More information

Behavior and Modeling of Existing Reinforced Concrete Columns

Behavior and Modeling of Existing Reinforced Concrete Columns Behavior and Modeling of Existing Reinforced Concrete Columns Kenneth J. Elwood University of British Columbia with contributions from Jose Pincheira, Univ of Wisconsin John Wallace, UCLA Questions? What

More information

Non-linear Shear Model for R/C Piers. J. Guedes, A.V. Pinto, P. Pegon

Non-linear Shear Model for R/C Piers. J. Guedes, A.V. Pinto, P. Pegon Non-linear Shear Model for R/C Piers J. Guedes, A.V. Pinto, P. Pegon EUR 24153 EN - 2010 The mission of the JRC-IPSC is to provide research results and to support EU policy-makers in their effort towards

More information

ENERGY DIAGRAM w/ HYSTERETIC

ENERGY DIAGRAM w/ HYSTERETIC ENERGY DIAGRAM ENERGY DIAGRAM w/ HYSTERETIC IMPLIED NONLINEAR BEHAVIOR STEEL STRESS STRAIN RELATIONSHIPS INELASTIC WORK DONE HYSTERETIC BEHAVIOR MOMENT ROTATION RELATIONSHIP IDEALIZED MOMENT ROTATION DUCTILITY

More information

EUROCODE EN SEISMIC DESIGN OF BRIDGES

EUROCODE EN SEISMIC DESIGN OF BRIDGES Brussels, 18-20 February 2008 Dissemination of information workshop 1 EUROCODE EN1998-2 SEISMIC DESIGN OF BRIDGES Basil Kolias Basic Requirements Brussels, 18-20 February 2008 Dissemination of information

More information

Coupling Beams of Shear Walls

Coupling Beams of Shear Walls Coupling Beams of Shear Walls Modelling Procedure for the Seismic Analysis of RC Structures João Miguel Damião Bezelga (1) July 215 (1) Instituto Superior Técnico Universidade de Lisboa, Av. Rovisco Pais,

More information

STATIC NONLINEAR ANALYSIS. Advanced Earthquake Engineering CIVIL-706. Instructor: Lorenzo DIANA, PhD

STATIC NONLINEAR ANALYSIS. Advanced Earthquake Engineering CIVIL-706. Instructor: Lorenzo DIANA, PhD STATIC NONLINEAR ANALYSIS Advanced Earthquake Engineering CIVIL-706 Instructor: Lorenzo DIANA, PhD 1 By the end of today s course You will be able to answer: What are NSA advantages over other structural

More information

ROSESCHOOL ANALYSIS OF CODE PROCEDURES FOR SEISMIC ASSESSMENT OF EXISTING BUILDINGS: ITALIAN SEISMIC CODE, EC8, ATC-40, FEMA356, FEMA440

ROSESCHOOL ANALYSIS OF CODE PROCEDURES FOR SEISMIC ASSESSMENT OF EXISTING BUILDINGS: ITALIAN SEISMIC CODE, EC8, ATC-40, FEMA356, FEMA440 EUROPEAN SCHOOL FOR ADVANCED STUDIES IN REDUCTION OF SEISMIC RISK ROSESCHOOL ANALYSIS OF CODE PROCEDURES FOR SEISMIC ASSESSMENT OF EXISTING BUILDINGS: ITALIAN SEISMIC CODE, EC8, ATC-40, FEMA356, FEMA440

More information

EARTHQUAKE SIMULATION TESTS OF BRIDGE COLUMN MODELS DAMAGED DURING 1995 KOBE EARTHQUAKE

EARTHQUAKE SIMULATION TESTS OF BRIDGE COLUMN MODELS DAMAGED DURING 1995 KOBE EARTHQUAKE EARTHQUAKE SIMULATION TESTS OF BRIDGE COLUMN MODELS DAMAGED DURING 1995 KOBE EARTHQUAKE J. Sakai 1, S. Unjoh 2 and H. Ukon 3 1 Senior Researcher, Center for Advanced Engineering Structural Assessment and

More information

NON LINEAR DYNAMIC RESPONSE VARIATION UNDER DIFFERENT SETS OF EARTHQUAKES

NON LINEAR DYNAMIC RESPONSE VARIATION UNDER DIFFERENT SETS OF EARTHQUAKES NON LINEAR DYNAMIC RESPONSE VARIATION UNDER DIFFERENT SETS OF EARTHQUAKES Giuseppe Maddaloni 1, Gennaro Magliulo and Edoardo Cosenza 3 1 Assistant Professor, University of Naples Parthenope, Department

More information

Lap splice length and details of column longitudinal reinforcement at plastic hinge region

Lap splice length and details of column longitudinal reinforcement at plastic hinge region Lap length and details of column longitudinal reinforcement at plastic hinge region Hong-Gun Park 1) and Chul-Goo Kim 2) 1), 2 Department of Architecture and Architectural Engineering, Seoul National University,

More information

Comparison of Structural Models for Seismic Analysis of Multi-Storey Frame Buildings

Comparison of Structural Models for Seismic Analysis of Multi-Storey Frame Buildings Comparison of Structural Models for Seismic Analysis of Multi-Storey Frame Buildings Dj. Ladjinovic, A. Raseta, A. Radujkovic & R. Folic University of Novi Sad, Faculty of Technical Sciences, Novi Sad,

More information

PRECAST VS. CAST-IN-SITU REINFORCED CONCRETE INDUSTRIAL BUILDINGS UNDER EARTHQUAKE LOADING: AN ASSESSMENT VIA PSEUDODYNAMIC TESTS

PRECAST VS. CAST-IN-SITU REINFORCED CONCRETE INDUSTRIAL BUILDINGS UNDER EARTHQUAKE LOADING: AN ASSESSMENT VIA PSEUDODYNAMIC TESTS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 743 PRECAST VS. CAST-IN-SITU REINFORCED CONCRETE INDUSTRIAL BUILDINGS UNDER EARTHQUAKE LOADING: AN ASSESSMENT

More information

Shear Failure Model for Flexure-Shear Critical Reinforced Concrete Columns

Shear Failure Model for Flexure-Shear Critical Reinforced Concrete Columns Shear Failure Model for Flexure-Shear Critical Reinforced Concrete Columns W.M. Ghannoum 1 and J.P. Moehle 2 1 Assistant Professor, Dept. of Civil, Architectural, and Environmental Engineering, University

More information

OS MODELER - EXAMPLES OF APPLICATION Version 1.0. (Draft)

OS MODELER - EXAMPLES OF APPLICATION Version 1.0. (Draft) OS MODELER - EXAMPLES OF APPLICATION Version 1.0 (Draft) Matjaž Dolšek February 2008 Content 1. Introduction... 1 2. Four-storey reinforced concrete frame designed according to EC8... 2 2.1. Description

More information

Performance Modeling Strategies for Modern Reinforced Concrete Bridge Columns

Performance Modeling Strategies for Modern Reinforced Concrete Bridge Columns Performance Modeling Strategies for Modern Reinforced Concrete Bridge Columns Michael P. Berry Marc O. Eberhard University of Washington Project funded by the Pacific Earthquake Engineering Research Center

More information

P-Delta Effects in Limit State Design of Slender RC Bridge Columns

P-Delta Effects in Limit State Design of Slender RC Bridge Columns P-Delta Effects in Limit State Design of Slender RC Bridge Columns Pedro F. Silva, & Arash Sangtarashha The George Washington University, Washington, DC, U.S.A. Rigoberto Burgueño Michigan State University,

More information

NON-LINEAR MODELING OF FLAT-PLATE SYSTEMS UNDER CYCLIC LOADING

NON-LINEAR MODELING OF FLAT-PLATE SYSTEMS UNDER CYCLIC LOADING NON-LINEAR MODELING OF FLAT-PLATE SYSTEMS UNDER CYCLIC LOADING S. Derogar & C. Ince Yeditepe University, Turkey P. Mandal University of Manchester, UK Y. C. Toklu Bayburt University, Turkey SUMMARY: There

More information

HIERARCHY OF DIFFICULTY CONCEPT: COMPARISON BETWEEN LINEAR AND NON LINEAR ANALYSES ACCORDING TO EC8

HIERARCHY OF DIFFICULTY CONCEPT: COMPARISON BETWEEN LINEAR AND NON LINEAR ANALYSES ACCORDING TO EC8 HIERARCHY OF DIFFICULTY CONCEPT: COMPARISON BETWEEN LINEAR AND NON LINEAR ANALYSES ACCORDING TO EC8 Gennaro Magliulo 1, Giuseppe Maddaloni 2, Edoardo Cosenza 3 1 Assistant Professor, University of Naples

More information

Seismic Performance of RC Building Using Spectrum Response and Pushover Analyses

Seismic Performance of RC Building Using Spectrum Response and Pushover Analyses Seismic Performance of RC Building Using Spectrum Response and Pushover Analyses Mehani Youcef (&), Kibboua Abderrahmane, and Chikh Benazouz National Earthquake Engineering Research Center (CGS), Algiers,

More information

Eurocode 8 Part 3: Assessment and retrofitting of buildings

Eurocode 8 Part 3: Assessment and retrofitting of buildings in the Euro-Mediterranean Area Eurocode 8 Part 3: Assessment and retrofitting of buildings Paolo Emilio Pinto Università di Roma La Sapienza Urgency of guidance documents for assessment and retrofit in

More information

Seminar Bridge Design with Eurocodes

Seminar Bridge Design with Eurocodes Seminar Bridge Design with Eurocodes JRC Ispra, 1-2 October 2012 1 EU-Russia Regulatory Dialogue: Construction Sector Subgroup Seminar Bridge Design with Eurocodes JRC-Ispra, 1-2 October 2012 Organized

More information

Effective stress analysis of pile foundations in liquefiable soil

Effective stress analysis of pile foundations in liquefiable soil Effective stress analysis of pile foundations in liquefiable soil H. J. Bowen, M. Cubrinovski University of Canterbury, Christchurch, New Zealand. M. E. Jacka Tonkin and Taylor Ltd., Christchurch, New

More information

on the figure. Someone has suggested that, in terms of the degrees of freedom x1 and M. Note that if you think the given 1.2

on the figure. Someone has suggested that, in terms of the degrees of freedom x1 and M. Note that if you think the given 1.2 1) A two-story building frame is shown below. The mass of the frame is assumed to be lumped at the floor levels and the floor slabs are considered rigid. The floor masses and the story stiffnesses are

More information

INELASTIC RESPONSES OF LONG BRIDGES TO ASYNCHRONOUS SEISMIC INPUTS

INELASTIC RESPONSES OF LONG BRIDGES TO ASYNCHRONOUS SEISMIC INPUTS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 638 INELASTIC RESPONSES OF LONG BRIDGES TO ASYNCHRONOUS SEISMIC INPUTS Jiachen WANG 1, Athol CARR 1, Nigel

More information

Nonlinear Analysis of Reinforced Concrete Bridges under Earthquakes

Nonlinear Analysis of Reinforced Concrete Bridges under Earthquakes 6 th International Conference on Advances in Experimental Structural Engineering 11 th International Workshop on Advanced Smart Materials and Smart Structures Technology August 1-2, 2015, University of

More information

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS Atsuhiko MACHIDA And Khairy H ABDELKAREEM SUMMARY Nonlinear D FEM was utilized to carry out inelastic

More information

Dynamic Stability and Design of Cantilever Bridge Columns

Dynamic Stability and Design of Cantilever Bridge Columns Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society 14-16 April, 211, Auckland, New Zealand Dynamic Stability and Design of Cantilever Bridge

More information

Chord rotation demand for Effective Catenary Action under Monotonic. Loadings

Chord rotation demand for Effective Catenary Action under Monotonic. Loadings ICCM015, 14-17 th July, Auckland, NZ Chord rotation demand for Effective Catenary Action under Monotonic Loadings *Meng-Hao Tsai Department of Civil Engineering, National Pingtung University of Science

More information

SEISMIC DESIGN OF ARCH BRIDGES DURING STRONG EARTHQUAKE

SEISMIC DESIGN OF ARCH BRIDGES DURING STRONG EARTHQUAKE SEISMIC DESIGN OF ARC BRIDGES DURING STRONG EARTQUAKE Kiyofumi NAKAGAWA 1, Tatsuo IRIE 2, Allan D SUMAYA 3 And Kazuya ODA 4 SUMMARY In structural design of arch bridges, it is essential to determine plastic

More information

City, University of London Institutional Repository

City, University of London Institutional Repository City Research Online City, University of London Institutional Repository Citation: Mergos, P.E. & Kappos, A.J. (2012). A gradual spread inelasticity model for R/C beam-columns, accounting for flexure,

More information

A. Belejo, R. Bento & C. Bhatt Instituto Superior Técnico, Lisbon, Portugal 1.INTRODUCTION

A. Belejo, R. Bento & C. Bhatt Instituto Superior Técnico, Lisbon, Portugal 1.INTRODUCTION Comparison of different computer programs to predict the seismic performance of SPEAR the SPEAR building building by means of by means of Pushover Analysis A. Belejo, R. Bento & C. Bhatt Instituto Superior

More information

Inelastic shear response of RC coupled structural walls

Inelastic shear response of RC coupled structural walls Inelastic shear response of RC coupled structural walls E. Morariu EDIT Structural, Bucuresti, Rumania. T. Isakovic, N. Eser & M. Fischinger Faculty of Civil and Geodetic Engineering, University of Ljubljana,

More information

PEER/SSC Tall Building Design. Case study #2

PEER/SSC Tall Building Design. Case study #2 PEER/SSC Tall Building Design Case study #2 Typical Plan View at Ground Floor and Below Typical Plan View at 2 nd Floor and Above Code Design Code Design Shear Wall properties Shear wall thickness and

More information

IMPORTANT FEATURES OF THE RESPONSE OF INELASTIC STRUCTURES TO NEAR-FIELD GROUND MOTION

IMPORTANT FEATURES OF THE RESPONSE OF INELASTIC STRUCTURES TO NEAR-FIELD GROUND MOTION IMPORTANT FEATURES OF THE RESPONSE OF INELASTIC STRUCTURES TO NEAR-FIELD GROUND MOTION Wilfred D IWAN 1, Ching-Tung HUANG 2 And Andrew C GUYADER 3 SUMMARY Idealized structural models are employed to reveal

More information

SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXIBLE FIBER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS

SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXIBLE FIBER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXILE FIER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS Hu Shaoqing Supervisor: Susumu KONO ** MEE8165 ASTRACT FRP with low Young

More information

A PROGRESS REPORT ON ATC 55: EVALUATION AND IMPROVEMENT OF INELASTIC SEISMIC ANALYSIS PROCEDURES (FALL 2002)

A PROGRESS REPORT ON ATC 55: EVALUATION AND IMPROVEMENT OF INELASTIC SEISMIC ANALYSIS PROCEDURES (FALL 2002) A PROGRESS REPORT ON ATC 55: EVALUATION AND IMPROVEMENT OF INELASTIC SEISMIC ANALYSIS PROCEDURES (FALL 2002) CRAIG D. COMARTIN 1 INTRODUCTION AND BACKGROUND The objectives of the ATC 55 project are the

More information

Earthquake Loads According to IBC IBC Safety Concept

Earthquake Loads According to IBC IBC Safety Concept Earthquake Loads According to IBC 2003 The process of determining earthquake loads according to IBC 2003 Spectral Design Method can be broken down into the following basic steps: Determination of the maimum

More information

Seismic Response of Bridges Considering Different Ground Motion Selection Methods

Seismic Response of Bridges Considering Different Ground Motion Selection Methods Seismic Response of Bridges Considering Different Ground Motion Selection Methods X. Liang, S. Günay and K.M. Mosalam Abstract This paper makes use of different ground motion selection and scaling methods

More information

Understanding Seismic Hazard Needs for Infrastructure Risk Analysis: Lessons from SYNER-G

Understanding Seismic Hazard Needs for Infrastructure Risk Analysis: Lessons from SYNER-G Systemic Seismic Vulnerability and Risk Analysis for Buildings, Lifeline Networks and Infrastructures Safety Gain Understanding Seismic Hazard Needs for Infrastructure Risk Analysis: Lessons from SYNER-G

More information

SEISMIC PERFORMANCE OF CONCRETE COLUMNS WITH INADEQUATE TRANSVERSE REINFORCEMENT. Alistair Boys 1 Des K. Bull 2 Stefano Pampanin 3 ABSTRACT

SEISMIC PERFORMANCE OF CONCRETE COLUMNS WITH INADEQUATE TRANSVERSE REINFORCEMENT. Alistair Boys 1 Des K. Bull 2 Stefano Pampanin 3 ABSTRACT SEISMIC PERFORMANCE OF CONCRETE COLUMNS WITH INADEQUATE TRANSVERSE REINFORCEMENT. Alistair Boys 1 Des K. Bull 2 Stefano Pampanin 3 ABSTRACT Existing New Zealand building stock contains a significant number

More information

A Modified Response Spectrum Analysis Procedure (MRSA) to Determine the Nonlinear Seismic Demands of Tall Buildings

A Modified Response Spectrum Analysis Procedure (MRSA) to Determine the Nonlinear Seismic Demands of Tall Buildings Fawad A. Najam Pennung Warnitchai Asian Institute of Technology (AIT), Thailand Email: fawad.ahmed.najam@ait.ac.th A Modified Response Spectrum Analysis Procedure (MRSA) to Determine the Nonlinear Seismic

More information

Earthquake Simulation Tests on a 1:5 Scale 10 - Story RC Residential Building Model

Earthquake Simulation Tests on a 1:5 Scale 10 - Story RC Residential Building Model Earthquake Simulation Tests on a 1:5 Scale 1 - Story RC Residential Building Model H. S. Lee, S. J. Hwang, K. B. Lee, & C. B. Kang Korea University, Seoul, Republic of Korea S. H. Lee & S. H. Oh Pusan

More information

EFFECTS OF CONFINED CONCRETE MODELS ON SIMULATING RC COLUMNS UNDER LOW-CYCLIC LOADING

EFFECTS OF CONFINED CONCRETE MODELS ON SIMULATING RC COLUMNS UNDER LOW-CYCLIC LOADING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1498 EFFECTS OF CONFINED CONCRETE MODELS ON SIMULATING RC COLUMNS UNDER LOW-CYCLIC LOADING Zongming HUANG

More information

INELASTIC SEISMIC DISPLACEMENT RESPONSE PREDICTION OF MDOF SYSTEMS BY EQUIVALENT LINEARIZATION

INELASTIC SEISMIC DISPLACEMENT RESPONSE PREDICTION OF MDOF SYSTEMS BY EQUIVALENT LINEARIZATION INEASTIC SEISMIC DISPACEMENT RESPONSE PREDICTION OF MDOF SYSTEMS BY EQUIVAENT INEARIZATION M. S. Günay 1 and H. Sucuoğlu 1 Research Assistant, Dept. of Civil Engineering, Middle East Technical University,

More information

Lecture-08 Gravity Load Analysis of RC Structures

Lecture-08 Gravity Load Analysis of RC Structures Lecture-08 Gravity Load Analysis of RC Structures By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Contents Analysis Approaches Point of Inflection Method Equivalent

More information

Structural behavior of a high-rise RC structure under vertical earthquake motion

Structural behavior of a high-rise RC structure under vertical earthquake motion Structural behavior of a high-rise RC structure under vertical earthquake motion Selcuk Bas 1), Ilker Kalkan 2) and *Jong-Han Lee 3) 1) Department of Civil Engineering, Bartin University, 74100 Central,

More information

Design of Earthquake-Resistant Structures

Design of Earthquake-Resistant Structures NATIONAL TECHNICAL UNIVERSITY OF ATHENS LABORATORY OF EARTHQUAKE ENGINEERING Design of Earthquake-Resistant Structures Basic principles Ioannis N. Psycharis Basic considerations Design earthquake: small

More information

Design of a Multi-Storied RC Building

Design of a Multi-Storied RC Building Design of a Multi-Storied RC Building 16 14 14 3 C 1 B 1 C 2 B 2 C 3 B 3 C 4 13 B 15 (S 1 ) B 16 (S 2 ) B 17 (S 3 ) B 18 7 B 4 B 5 B 6 B 7 C 5 C 6 C 7 C 8 C 9 7 B 20 B 22 14 B 19 (S 4 ) C 10 C 11 B 23

More information

CALIBRATED RESPONSE SPECTRA FOR COLLAPSE ASSESSMENT UNDER MULTIVARIATE HAZARD AND STRUCTURAL RESPONSE UNCERTAINTIES

CALIBRATED RESPONSE SPECTRA FOR COLLAPSE ASSESSMENT UNDER MULTIVARIATE HAZARD AND STRUCTURAL RESPONSE UNCERTAINTIES 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska CALIBRATED RESPONSE SPECTRA FOR COLLAPSE ASSESSMENT UNDER MULTIVARIATE

More information

IZMIT BAY BRIDGE SOUTH APPROACH VIADUCT: SEISMIC DESIGN NEXT TO THE NORTH ANATOLIAN FAULT

IZMIT BAY BRIDGE SOUTH APPROACH VIADUCT: SEISMIC DESIGN NEXT TO THE NORTH ANATOLIAN FAULT Istanbul Bridge Conference August 11-13, 2014 Istanbul, Turkey IZMIT BAY BRIDGE SOUTH APPROACH VIADUCT: SEISMIC DESIGN NEXT TO THE NORTH ANATOLIAN FAULT A. Giannakou 1, J. Chacko 2 and W. Chen 3 ABSTRACT

More information

DEVELOPMENT OF FRAGILITY CURVES USING HIGH DIMENSIONAL MODEL REPRESENTATION

DEVELOPMENT OF FRAGILITY CURVES USING HIGH DIMENSIONAL MODEL REPRESENTATION DEVELOPMENT OF FRAGILITY CURVES USING HIGH DIMENSIONAL MODEL REPRESENTATION U. Vipin Unnithan 1, A. Meher Prasad 2 and B. N. Rao 3 1 Student, Dept. of Civil Engineering, Indian Institute of Technology

More information

Seismic resistance of a reinforced concrete building before and after retrofitting Part II: The retrofitted building

Seismic resistance of a reinforced concrete building before and after retrofitting Part II: The retrofitted building Seismic resistance of a reinforced concrete building before and after retrofitting Part II: The retrofitted building M. Marletta, S. Vaccaro & I. Caliò Department of Civil and Environmental Engineering

More information

SECANT MODES SUPERPOSITION: A SIMPLIFIED METHOD FOR SEISMIC ASSESSMENT OF RC FRAMES

SECANT MODES SUPERPOSITION: A SIMPLIFIED METHOD FOR SEISMIC ASSESSMENT OF RC FRAMES The 4 th World Conference on Earthquake Engineering October -7, 008, Beijing, China SECANT ODES SUPERPOSITION: A SIPLIFIED ETHOD FOR SEISIC ASSESSENT OF RC FRAES S. Peloso and A. Pavese Post-doc Researcher,

More information

SHAKING TABLE TEST OF STEEL FRAME STRUCTURES SUBJECTED TO NEAR-FAULT GROUND MOTIONS

SHAKING TABLE TEST OF STEEL FRAME STRUCTURES SUBJECTED TO NEAR-FAULT GROUND MOTIONS 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 24 Paper No. 354 SHAKING TABLE TEST OF STEEL FRAME STRUCTURES SUBJECTED TO NEAR-FAULT GROUND MOTIONS In-Kil Choi, Young-Sun

More information

Model parameter uncertainties and correlations: quantification and assessment of impacts on seismic collapse risk

Model parameter uncertainties and correlations: quantification and assessment of impacts on seismic collapse risk IASSAR Safety, Reliability, Risk, Resilience and Sustainability of Structures and Infrastructure 12th Int. Conf. on Structural Safety and Reliability, Vienna, Austria, 6 10 August 2017 Christian Bucher,

More information

AXIAL COLLAPSE OF REINFORCED CONCRETE COLUMNS

AXIAL COLLAPSE OF REINFORCED CONCRETE COLUMNS 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 4 Paper No. 699 AXIAL COLLAPSE OF REINFORCED CONCRETE COLUMNS Manabu YOSHIMURA, Yoshikazu TAKAINE and Takaya NAKAMURA

More information

Influence of column web stiffening on the seismic behaviour of beam-tocolumn

Influence of column web stiffening on the seismic behaviour of beam-tocolumn Influence of column web stiffening on the seismic behaviour of beam-tocolumn joints A.L. Ciutina & D. Dubina The Politehnica University of Timisoara, Romania ABSTRACT: The present paper summarises the

More information

A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECOND-ORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES

A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECOND-ORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECOND-ORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES Konuralp Girgin (Ph.D. Thesis, Institute of Science and Technology,

More information

Shake Table Tests of Reinforced Concrete Bridge Columns Under Long Duration Ground Motions

Shake Table Tests of Reinforced Concrete Bridge Columns Under Long Duration Ground Motions 6 th International Conference on Advances in Experimental Structural Engineering 11 th International Workshop on Advanced Smart Materials and Smart Structures Technology August 1-2, 2015, University of

More information

Earthquake-resistant design of indeterminate reinforced-concrete slender column elements

Earthquake-resistant design of indeterminate reinforced-concrete slender column elements Engineering Structures 29 (2007) 163 175 www.elsevier.com/locate/engstruct Earthquake-resistant design of indeterminate reinforced-concrete slender column elements Gerasimos M. Kotsovos a, Christos Zeris

More information

DETERMINATION OF PERFORMANCE POINT IN CAPACITY SPECTRUM METHOD

DETERMINATION OF PERFORMANCE POINT IN CAPACITY SPECTRUM METHOD ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

Seismic Collapse Margin of Structures Using Modified Mode-based Global Damage Model

Seismic Collapse Margin of Structures Using Modified Mode-based Global Damage Model Seismic Collapse Margin of Structures Using Modified Mode-based Global Damage Model X. Y. Ou, Z. He & J. P. Ou Dalian University of Technology, China SUMMARY: Collapse margin ratio (CMR) introduced in

More information

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Engineering endorsed in Earthquake Engineering

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Engineering endorsed in Earthquake Engineering SEISMIC RATCHETING OF RC COLUMNS WITH ECCENTRIC GRAVITY LOADINGS AND NON-SYMMETRIC LATERAL STIFFNESS AND STRENGTH KHALED ZUHAIR M. SAIF A thesis submitted in partial fulfillment of the requirements for

More information

INFLUENCE OF EARTHQUAKE INTENSITY MEASURE ON THE PROBABILISTIC EVALUATION OF RC BUILDINGS

INFLUENCE OF EARTHQUAKE INTENSITY MEASURE ON THE PROBABILISTIC EVALUATION OF RC BUILDINGS INFLUENCE OF EARTHQUAKE INTENSITY MEASURE ON THE PROBABILISTIC EVALUATION OF RC BUILDINGS ABSTRACT: M. Bianchini, P.P. Diotallevi and L. Landi 3 Assistant Lecturer, DISTART, Dept. of Civil Engineering,

More information

PsD Testing Quality Control

PsD Testing Quality Control COMMISSION OF THE EUROPEAN COMMUNITIES FP7- INFRASTRUCTURES-2008-1 SP4-Capacities SERIES SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES PsD Testing Quality Control ELSA Laboratory

More information

INCLUSION OF P EFFECT IN THE ESTIMATION OF HYSTERETIC ENERGY DEMAND BASED ON MODAL PUSHOVER ANALYSIS

INCLUSION OF P EFFECT IN THE ESTIMATION OF HYSTERETIC ENERGY DEMAND BASED ON MODAL PUSHOVER ANALYSIS ISET Journal of Earthquake Technology, Paper No. 511, Vol. 47, No. 2-4, June-Dec. 2010, pp. 75 86 INCLUSION OF EFFECT IN THE ESTIMATION OF HYSTERETIC ENERGY DEMAND BASED ON MODAL PUSHOVER ANALYSIS Amarnath

More information

EVALUATION OF CURRENT APPROACHES FOR THE ANALYSIS AND DESIGN OF MULTI-STOREY TORSIONALLY UNBALANCED FRAMES

EVALUATION OF CURRENT APPROACHES FOR THE ANALYSIS AND DESIGN OF MULTI-STOREY TORSIONALLY UNBALANCED FRAMES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 334 EVALUATION OF CURRENT APPROACHES FOR THE ANALYSIS AND DESIGN OF MULTI-STOREY TORSIONALLY UNBALANCED

More information

Vertical acceleration and torsional effects on the dynamic stability and design of C-bent columns

Vertical acceleration and torsional effects on the dynamic stability and design of C-bent columns Vertical acceleration and torsional effects on the dynamic stability and design of C-bent columns A. Chen, J.O.C. Lo, C-L. Lee, G.A. MacRae & T.Z. Yeow Department of Civil Engineering, University of Canterbury,

More information

Giacomo Boffi. Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano

Giacomo Boffi.  Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano April 21, 2017 Outline of Structural Members Elastic-plastic Idealization

More information

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

More information

Force Based Design Fundamentals. Ian Buckle Director Center for Civil Engineering Earthquake Research University of Nevada, Reno

Force Based Design Fundamentals. Ian Buckle Director Center for Civil Engineering Earthquake Research University of Nevada, Reno Force Based Design Fundamentals Ian Buckle Director Center for Civil Engineering Earthquake Research University of Nevada, Reno Learning Outcomes Explain difference between elastic forces, actual forces

More information

SEISMIC RESPONSE EVALUATION OF AN RC BEARING WALL BY DISPLACEMENT-BASED APPROACH

SEISMIC RESPONSE EVALUATION OF AN RC BEARING WALL BY DISPLACEMENT-BASED APPROACH 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -, 4 Paper No. 49 SEISMIC RESPONSE EVALUATION OF AN RC BEARING WALL BY DISPLACEMENT-BASED APPROACH Chang-Hun HYUN, Sanghyun

More information

Seismic performance evaluation of existing RC buildings designed as per past codes of practice

Seismic performance evaluation of existing RC buildings designed as per past codes of practice Sādhanā Vol. 37, Part 2, April 2012, pp. 281 297. c Indian Academy of Sciences Seismic performance evaluation of existing RC buildings designed as per past codes of practice 1. Introduction K RAMA RAJU,

More information

Evaluation of the ductility demand in partial strength steel structures in seismic areas using non-linear static analysis

Evaluation of the ductility demand in partial strength steel structures in seismic areas using non-linear static analysis Evaluation of the ductility demand in partial strength steel structures in seismic areas using non-linear static analysis Pedro Nogueiro Department of Applied Mechanics, ESTiG, Polytechnic Institute of

More information

Seismic Fragility Analysis of Highway Bridges. Sponsored by Mid-America Earthquake Center Technical Report MAEC RR-4 Project

Seismic Fragility Analysis of Highway Bridges. Sponsored by Mid-America Earthquake Center Technical Report MAEC RR-4 Project Seismic Fragility Analysis of Highway Bridges Sponsored by Mid-America Earthquake Center Technical Report MAEC RR-4 Project Prepared by Howard Hwang, Jing Bo Liu, and Yi-Huei Chiu Center for Earthquake

More information

A STUDY ON IMPROVEMENT OF PUSHOVER ANALYSIS

A STUDY ON IMPROVEMENT OF PUSHOVER ANALYSIS A SUDY ON IMPROVEMEN OF PUSHOVER ANALYSIS Pu YANG And Yayong WANG SUMMARY he static pushover analysis, POA, is becoming popular as a simplified computer method for seismic performance evaluation of structures.

More information

September 28, 2004 Parkfield Earthquake

September 28, 2004 Parkfield Earthquake PRELIMINARY REPORT ON SEPTEMBER 28, 2004 PARKFIELD EARTHQUAKE By Rakesh K. Goel, M.EERI and Charles B. Chadwell, M. EERI Department of Civil & Environmental Engineering, California Polytechnic State University,

More information

Permanent City Research Online URL:

Permanent City Research Online URL: Stefanidou, S.P. & Kappos, A. J. (2017). Methodology for the development of bridge-specific fragility curves. Earthquake Engineering and Structural Dynamics, 46(1), pp. 73-93. doi: 10.1002/eqe.2774 City

More information

Influence of Vertical Ground Shaking on Design of Bridges Isolated with Friction Pendulum Bearings. PI: Keri Ryan GSR: Rushil Mojidra

Influence of Vertical Ground Shaking on Design of Bridges Isolated with Friction Pendulum Bearings. PI: Keri Ryan GSR: Rushil Mojidra Influence of Vertical Ground Shaking on Design of Bridges Isolated with Friction Pendulum Bearings PI: Keri Ryan GSR: Rushil Mojidra 1 Objective/Scope of PEER Pendulum Bearing Study Objective 1: Comprehensively

More information

Response Modification of Urban Infrastructure. 7 Chapter 7 Rocking Isolation of Foundations. Kazuhiko Kawashima Tokyo Institute of Technology

Response Modification of Urban Infrastructure. 7 Chapter 7 Rocking Isolation of Foundations. Kazuhiko Kawashima Tokyo Institute of Technology Response Modification of Urban Infrastructure 7 Chapter 7 Rocking Isolation of Foundations Kazuhiko Kawashima Tokyo Institute of Technology Requirements of Foundations in Seismic Design Static Seismic

More information

THE EFFECTS OF LONG-DURATION EARTHQUAKES ON CONCRETE BRIDGES WITH POORLY CONFINED COLUMNS THERON JAMES THOMPSON

THE EFFECTS OF LONG-DURATION EARTHQUAKES ON CONCRETE BRIDGES WITH POORLY CONFINED COLUMNS THERON JAMES THOMPSON THE EFFECTS OF LONG-DURATION EARTHQUAKES ON CONCRETE BRIDGES WITH POORLY CONFINED COLUMNS By THERON JAMES THOMPSON A thesis submitted in partial fulfillment of the requirement for the degree of MASTERS

More information

Lecture-09 Introduction to Earthquake Resistant Analysis & Design of RC Structures (Part I)

Lecture-09 Introduction to Earthquake Resistant Analysis & Design of RC Structures (Part I) Lecture-09 Introduction to Earthquake Resistant Analysis & Design of RC Structures (Part I) By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Topics Introduction Earthquake

More information

[Hussain, 4(9): September 2017] ISSN DOI /zenodo Impact Factor

[Hussain, 4(9): September 2017] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES SEISMIC ANALYSIS OF MULTI STOREYED BUILDING WITH SOFT STOREY Mohammed Irfan Hussain* *Asst. Professor, Department of Civil Engineering, Chaitanya Institute

More information

Between Seismology and Seismic Design

Between Seismology and Seismic Design Between Seismology and Seismic Design Prof. Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano Milano, 10 dicembre 2013 Outline 2 Seismic hazard analysis for critical facilities SIGMA

More information

1. Background. 2. Objectives of Project. Page 1 of 29

1. Background. 2. Objectives of Project. Page 1 of 29 1. Background In close collaboration with local partners, Earthquake Damage Analysis Center (EDAC) of Bauhaus Universität Weimar initiated a Turkish German joint research project on Seismic Risk Assessment

More information