The Effect of Impervious Clay Core Shape on the Stability of Embankment Dams

Size: px
Start display at page:

Download "The Effect of Impervious Clay Core Shape on the Stability of Embankment Dams"

Transcription

1 Geotech Geol Eng (211) 29: DOI 1.17/s z TECHNICAL NOTE The Effect of Impervious Clay Core Shape on the Stability of Embankment Dams R. Nayebzadeh M. Mohammadi Received: 1 June 29 / Accepted: 4 February 211 / Published online: 4 March 211 Ó Springer Science+Business Media B.V. 211 Abstract One of the most important dangers that treat earth dams which can lead to interior failure over a prolonged period is the hydraulic fracturing factor. In the case of zoned dams, due to differences in stiffness of the core and its abutment zone, differential settlements occur between them. This factor is responsible for the arching phenomenon. Differential settlements between core and shell cause cracks within the core initially sub-surface, Those cracks may develop the first impounding causing internal erosion on the dam core. In this research, using a computer modeling of Ghavoshan rockfill dam (located the west part of Iran) as a case study computed by SIGMA/W program, the role of the dam core shape on those factors is demonstrated. It is found that an inclined core shape is preferred in a condition that is especially important settlements of construction during for dam body. The result of finite element analysis indicates desired conditions from the point of view of stress, deformation and resistance against hydraulic fracturing for the same width of R. Nayebzadeh Faculty of Engineering, Urmia University, P O Box 165, Urmia, Iran Rezvan_7@yahoo.com M. Mohammadi (&) Faculty of Engineering, Urmia University, P O Box 165, Urmia, Iran m.mohammadi@mail.urmia.ac.ir dam designs. Moreover, this can be higher priority for embankment dam designs. Keywords Embankment dam Clay core shape Arching Hydraulic fracturing SIGMA/W software 1 Introduction The main purpose of stability analysis of an embankment dam is to answer the following two fundamental questions: (1) How safe is the structure against a total or partial failure? (2) Will the deformations of the structure remain within tolerable limits for the operation and function of the structure? The integration of dam structure should be protected in its operation period or probable events that occur in the dam operation. The stability of an embankment dam should be secured by resting stress at acceptable levels and dam core integrity in all of anticipated events. One of the important subjects in embankment dams is arching phenomenon occurring in the interior body of the dam. Arching action is also one of the hydraulic fracturing factors for embankment dams (see Ng and Small 1999; Sherard 1991; Narita 2 for more detail). To minimize the

2 628 Geotech Geol Eng (211) 29: horizontal cracking potential due to the arching action such factors have important roles namely core size and shape, material selection and its placement. In this research, by considering much usage of clay material on the core part of the earth and rockfill dams is used for evaluation of the hydraulic fracturing problem and core arching phenomenon. The Ghavoshan storage dam located at the western part of Iran is selected as a case study that has been considered with changes at the geometric core shape from vertical to inclined one. 2 Background and Literature Survey Arching importance and its existence in rockfill dams was reported for the first time by Lofquist in the year 1951 (Ohne and Narita 1977). Using pressure measurements, he turned to considerable stress decrease of lateral and vertical pressures of rockfill dam having weak cores. Lofquist showed stress decrease is greatly relevant to core settlements towards the shell with the consequent load transfer from core towards the shell. By the year 196, a few considerations about load transfer subject has been taken into account, while by the year 1961, Nonvieller and Anognosti had developed stress theories in respect to the settlement of the core towards the shell (Ohne and Narita 1977). By the year 1976, Kulhawy and Gurtowski had considered load transfer and hydraulic fracturing phenomenon in zoned dams and found that load transfer within zoned dams will take place due to the hardness differences of the adjacent zones (see Ng and Small 1999; Sherard 1991 for more detail). However, it is believed that the arching phenomenon is still one of the key issues in embankment dams anguishing any civil and embankment dam engineers. 2.1 Zoned Dam Cores The seepage preventative in zoned embankment dams usually comprises a central or inclined compacted toward upstream impermeable earthen core or puddle clay core. Core size will depend on accessibility, locality, and the properties of material. It will also need to prevent high seepage gradient. Impermeable clay cores are constructed in embankment dam sections at three major location and shapes, namely: central vertical core, moderately sloping core, sloping (inclined) core (see Fig. 1a c). When core downstream slopes are at 1V:.5H or more towards upstream, it is called moderately sloping core. It is called sloping (inclined) core, if the downstream shell and core contain a self-stable slope about 1V:1.25H or less, This slope is usually used in rockfill dams that downstream rockfill shell is constructed in the form independent and the post time, the upstream filter and core are performed (French National Committee 1973; Reinus 1973). 2.2 Interior Erosion (Internal Failure) By uncontrolled releasing of the water stored in dam, it cab be distinct that a small amount of failure occurred. Any abnormal appearance at soil shear resistance which is against the original water operation suitably shows failure may be due to the differential settlements made by arching action. On the basis of studies given by Babb and Mermel (1968) after overtopping, a commonly important factor in embankment dam failures is piping (or hydraulic erosion) (Ohne and Fig. 1 Core shapes and their location in embankment dams sections

3 Geotech Geol Eng (211) 29: Hydraulic Fracturing Phenomenon Fig. 2 Differential settlement and cracking in core for embankment dam (Ohne and Narita 1977) Narita 1977; Babb and Mermel 1968). One of the factors is cracking due to negative effective stress arising from imported forces on dam body that can be estimated by Finite Element Method (FEM). 2.3 Load Transfer or Arching Phenomenon Since core is softer than shell, load transfer occurs from core to shell. As a result of this action, pore water pressure can become more than total stress within core (Sherard 1991; Ono and Yamada 1993). This action may lead to hydraulic fracturing and make of cracks due to excessive water pressure. There is also the possibility of piping in this case. Since more settlements are within core with respect to the shell causing differential settlements and core leaning to shell as a result of much transformation of loads. Consequently, it can create longitudinal cracks between them in beneath the surface. Figure 2 shows cracking on the zoned dams. If a zoned dam contains soft shell and hard core, its reverse occurs, in other words load will transfer from shell to core. This case of load transfer may cause over stresses on core and it can be led to the plastic yielding and brittle cracking on the core too. Load transfer is evaluated with calculation of vertical stresses (r v )in core toward overburden stresses (c t h)in each depth under crest. Less than 1 ratios shows that load of core will transfer on shell and transient zone, whereas more than 1 ratios indicates that load will transfer from shell and transient zone to core of dam. Arching coefficient (A coef. ) on dam core obtains from Eq. 1 as: A coef ¼ r v ð1þ c: h herein r v = Total vertical pressure (KPa), c = unit weight (KN/m 3 ), h = embankment height (m). One of the most important problems that dam designers confront with them is probability of the cracking in zoned dams. In recent years, hydraulic fracturing has been a matter of great concern in the design and construction of embankment dams (Ogita et al. 22). considerable attentions on this subject have been done with examination of previous samples. Extensive studies have been made on this subject, especially since failure of the Teton Dam (USA) occurred in the year Hydraulic fracturing can be considered equivalent to the well-known seepage failures such as quick sand and piping (Wang et al. 27). A typical pattern of cracking arises from arching, which engineers often encounter in the field, is shown illustrated in Fig. 3. With respect to Fig. 3, both stresses namely r 1 and r 3 decrease due to the arching action in the upper part of the core, which cause internal cracking. It can be seen that total stress circle becomes small (drop of r 1 may be larger in this case) and shifts left. The effective stress circle shifts left by the action of upstream water pressure (p w ) and touches failure envelope to occur cracking and seepage fracture. Two distinct patterns of hydraulic fracturing can be considered in embankment dams: One is the case where differential settlement after construction is contributive to cause cracking in the embankment and erosion takes place due to the flow of the reservoir water passing through open cracks. When embankment deformation is accompanied by differential settlement, tensile strains develop on the surface or in the interior of the embankment, and the minor principal stress (r 3 ) tends to decrease locally to open tension cracks. The criterion for the possibility of hydraulic fracturing in this case is given by the following condition: r 3 \ p t ð2þ where, p t is the tensile strength in terms of total stress. Corresponding stress state is indicated in Fig. 4a, where the initial stress circle (I) grows on the left side due to the decrease in r 3 and touches the failure envelop at the circle (II) to open tension cracks.

4 63 Geotech Geol Eng (211) 29: Fig. 3 Cracking arised in dam core due to the arching action (Ohne and Narita 1977) Fig. 4 The hydraulic fracturing phenomenon in embankment dams. a conditions for cracking: differential settlement after construction causes decrease in minor principal stress (r 3 ) which leads to open cracks and internal erosion in embankment. b conditions for seepage fracture: effective stresses in the core decrease as reservoir filling proceeds, where decrease in effective stress (r 3 ) beyond tensile strength (p ) causes open t cracks and erosion The other pattern is the case where pore water pressure in the core increases according as the reservoir filling proceeds and the effective stress (r ) decreases up to the effective tensile 3 strength (p ) to open hidden or latent cracks t and stress states are illustrated in Fig. 4b, where the initial stress circle (I) shifts to the left without diameter change and touches the envelope at the circle (II). The criterion in this case is given by: r \ 3 p t ð3þ Hydraulic fracturing has been considered with compare of principle stresses at construction final stage to hydrostatic pressures that occurs under reservoir loading. 3 A Brief Summary of Ghavoshan Dam (A Case Study) Ghavoshan rockfill dam has a vertical clay core including 125 m height that is upon Gave Roud River located the western part of Iran. It is 38 km away from Sanandaj city that it has been constructed to provide the drinking water of Kermanshah city and also needing water for irrigation. By consider of done tests and reports on stability analysis of dam foundation, it is assumed as rigid materials. 4 Geotechnical Parameters and Modeling of Dam Stress and strain behavior of dam materials has been considered by using finite element modeling and computer simulating by plane strain method (Krahn 28). So one case of stress transfer that is observed in dam section, it can be expected with this analysis, thus possible conditions of cracking potential can be estimated with the analysis. To simulate in analysis of dam stage construction, the dam height can be divided into ten layers (12.5 m) at critical section (Zienkiewicz and Naylor 1986). Tables 1 and 2 present some geotechnical parameters of the hyperbolic model usage for effective and total stress analyses.

5 Geotech Geol Eng (211) 29: Table 1 Geotechnical parameters for effective stress analysis Materials type c wet (kn/m 3 ) c sat (kn/m 3 ) K K ur n R f C (kn/m 2 ) / degree K(m/s) n% Clay core Filter & transient zone Shell Table 2 Geotechnical parameters for total stress analysis Materials type c wet (kn/m 3 ) c sat (kn/m 3 ) K K ur n R f K b m C (kn/m 2 ) / degree Clay core Filter and transient zone Shell Fig. 5 Critical section of Ghavoshan dam (Ghavoshan Powerhouse and Dam Design 24) Fig. 6 Vertical stress contours in the dam sections: a vertical core b inclined core Tables 1, 2 give some geotechnical parameters of dam core for stability analysis (Ghavoshan Powerhouse and Dam Design 24). Figure 5 shows major section of the Ghavoshan dam that in this research it is analyzed at downstream and upstream critical sections (Ghavoshan Powerhouse and Dam Design 24). 5 Analysis of the Results According to the analysis done (as Fig. 6a), it has illustrated a lack of stress compatibility in the case of the vertical core: load transfer from core to the shell below the surface creates the possibility of brittle cracking, representing a risk to the stability of the dam. Stress concentrations exist on both upstream and downstream sides of the vertical core, but in the case of the inclined core, they occur only on the upstream side, as it can be seen in Fig. 6b. Here, brittle cracking might occur, but on the downstream side, stress concentration is lower and the conditions are more favorable than the vertical core. According to the relevant stress analysis in the upstream part of an inclined core, stress whirlpool phenomenon (we call it) appears, in this special case.

6 632 Geotech Geol Eng (211) 29: Fig. 7 Evaluation of horizontal cracks in the dam core comparing with vertical stress and hydrostatic pressure: a vertical core b inclined core Elevation (m) Hydraulic Fracturing P.W.P Total Vertical Stress Pressure (kpa) Elevation (m) Hydraulic Fracturing P.W.P Total Vetical Stress Pressure (kpa) Fig. 8 Evaluation of vertical cracks in dam s core comparing with horizontal stress and hydrostatic pressure: a vertical core b inclined core Elevation (m) Hydraulic Fracturing P.W.P Total Horizontal Stress Pressure (kpa) Elevation (m) Hydraulic Fracturing P.W.P Total Horizontal Stress Pressure (kpa) This phenomenon causes the concentration of stress and plastic yielding in an inclined core (see Fig. 6b). The probability of hydraulic fracturing becomes critical when the reservoir reaches its top level quickly and the core has not sufficient time for consolidation. Nobari and Duncan indicated that rapid reservoir filling does not cause considerable changes of core stresses (Nobari and Duncan 1972). Then the present research compares the core major stresses at the end of construction in the upstream surface along with hydrostatic pressures due to full reservoir loading that proceeded to detectable hydraulic fracturing (see Figs 7, 8). These Figures illustrate the relationship between reservoir water pressure (pore water pressure) and total vertical stress and consequently hydraulic fracturing. Horizontal cracks represent an important problem, because they are not observable and dam impairment may occur before they become detectable. Evaluation of vertical hydraulic fracturing in both of dam cores does not suggest cracking of the inclined core. but in the vertical core and comparison between horizontal stresses and hydrostatic pressures of the reservoir water at dam greater elevation indicates that the possibility of vertical cracking and long-term risk on the stability of the dam exist. In a case of hydraulic fracturing or cracking arising from arching, because of these cracks probability of destruction of core integrity exists. Although total collapse may not be occurred, however the operation of the dam could be at risk, because the possibility of obvious crack removes don t exist with passing of time. In a case of occurring hydraulic fracturing or deformation and or unsymmetrical displacement that dam endure duration of this movements it will be caused various cracks in dam. The importance of deformations is for this reason that cracking potential after construction of dam dependent to them. By reason of unsymmetrical settlement related to the different zones, longitudinal cracks often occur in zoned dams. Longitudinal cracks can develop parallel of dam axis at the excessive length. with considering the analysis made in the Fig. 9, concentration of settlement contours in both of sides of vertical core indicated differential settlements between core and shell that can be led to longitudinal cracks in the body of dam, but the settlement concentrations have seen in

7 Geotech Geol Eng (211) 29: Fig. 9 Vertical displacement contours in dams having: a vertical core b inclined core Fig. 1 Horizontal displacement contours in dams having: a vertical core b inclined core Fig. 11 Upstream core horizontal displacements in contact with shell: a vertical core, b inclined core Y-Coordinate (m) X-Displacement X-Displacement (m) Y-Coordiante (m) X-Displacement X-Displacement (m) downstream side of the inclined core that made differential cracks in back of reservoir. Horizontal displacement contours have been presented at Fig. 1 in two dams with vertical and inclined core sections. Presented in Fig. 11, horizontal displacements within upstream of dam cores in contact with the shell and also presented in Fig. 12 vertical displacements at central part of dams height. 6 Concluding On the basis of presented analyses and results in previous sections, the main conclusions are: 1. Concentration of settlement contours in both side of vertical core represents differential settlements between core and shell that can be led to longitudinal cracks in dam body but they are not seen in downstream of inclined core. However, differential settlements create cracks on joint surface in core that can be opened at the first reservoir filling and also it can be led to the piping phenomenon in core. 2. If reservoir reaches oneself to the top level quickly, there is hydraulic fracturing probability in upstream side of the vertical core dam that too possibility of destruction on obvious cracks risks don t exists with lapse of time, consequently vertical core shows unsuitable conditions for this action.

8 634 Geotech Geol Eng (211) 29: Fig. 12 Vertical displacements in core middle height: a vertical core, b inclined core Y-Settlement (m) Differential Settlement Differential Settlement -5 X-Coordinate (m) Y-Settlement (m) Diffrential Settlement Diffrential Settlement -5 X-Coordinate (m) 3. Using stress analyses, vertical core dam shows excess stress decrease because of the occurrence of arching in both sides namely downstream and upstream core. at near of foundation within shell, It then prepares shear stress concentration and plastic yield conditions. It consequently makes risk on the stability of the dam. In a case of inclined core, it may be seen only shear stress concentration and plastic yield conditions at the upstream side, which we call it stress whirlpool phenomenon. 4. Upper half of vertical core dam indicates that the shell lean towards to the core which can be led to brittle cracks on the dam crest. An interesting point is that within inclined core dam in its upper section, horizontal displacements of shell creates only in smallness zone and it shows some suitable conditions from the viewpoint of no cracking on the crest. 5. By considering the horizontal hydraulic fracturing in two cores, it doesn t exist in both of them. The vertical core stresses show excess difference towards water pressure, but differences between stresses and water pressures in an inclined core may increase in lower depth locally. 6. After discovering on the stress transfer problems from compressible thin core to its adjacent zones on dam section, from the viewpoint of settlements and total stability, it is concluded that an inclined core will show better behaviors than a vertical core. This is because of making stresses by rockfill zones of upstream and full reservoir and also seepage does exist naturally for consolidation of the core. Then arching potential will decrease in cases of that core is more compressible than rock fill. Acknowledgments The present study is funded by the University of Urmia. The support is gratefully acknowledged. Authors would also like to acknowledge Dr. Antony W. Wakefield of the University of Stanford of UK, for his valuable comments and discussions. Appendix Index n% = porosity percentage K = hydraulic conductivity c wet = Unit weight of wet soil c sat = Unit weight of saturated soil / = Friction angle of soil C = cohesive strength of soil Nonlinear Elastic (Hyperbolic) Model R f = ratio between the asymptote to the hyperbolic curve and the maximum shear strength K = modulus number describing the soil stiffness K ur = unloading-reloading modulus n = a value describing the rate of change of the soil stiffness as a function of the confining stress.

9 Geotech Geol Eng (211) 29: K b = bulk modulus m = a value describing the rate of change of the bulk mudulus as a function of the confining stress. References Babb AO, Mermel TW (1968) Catalog of dam disasters, failures and accidents. US Bureau of Reclamation, USA French National Committee (1973) International watertight cores. Proceedings 11th ICOLD congress, vol III, Q42, R28, Madrid Ghavoshan Powerhouse and Dam Design (24) Second process: technical reports, attachment 4. Mahab Ghodss Consultant Engineers, Iran Krahn J (28) Stress-deformation modeling with SIGMA/W, 3rd edn. An engineering methodology. GEO-SLOPE International Ltd, Calgary, Alberta Narita K (2) Design and construction of Embankment dams. Department of Civil Engineering, Aichi Institute of Technology, Aichi Ng AKL, Small JC (1999) A case study of hydraulic fracturing using finite element methods. Can Geotech J NRC Canada 36(5): Nobari ES, Duncan JM (1972) Movements in dams due to reservoir filling. Proceedings ASCE special conference on: performance of earth and earth supported structures. Purdue University, Lafayette, pp Ogita S, Okumura T, Narita K, One Y (22) Hydraulic fracturing in earth and rock-fill dams. Bulletin of Aichi Institute of Technology, Part B, no. 37, pp 13 Ohne Y, Narita K (1977) Discussion on cracking and hydraulic fracturing in fill-type dams. Special session 8, 9th ICSMFE Ono K, Yamada M (1993) Analysis of arching action in granular mass. Geotechnique 43(1):15 12 Reinus E (1973) Some stability properties of having an inclined core. Proceedings of 11th ICOLD congress, vol II, Q42, R-2, Madrid Sherard JL (1991) Cracking and hydraulic fracturing in Embankment dams. US Army Corps of Engineers, pp Wang J-J, Zhu J-G, Mroueh H, Chiu CF (27) Hydraulic fracturing of rock-fill dam. Multi-Science Publishing Co Ltd, Internat J Multiphy, vol 1,No. 2, pp (21) Zienkiewicz OC, Naylor DJ (1986) Static analysis of embankment dams, ICOLD, Bulletin No. 53

Jurnal Teknologi EFFECTS OF UPSTREAM SLOPE OF CLAY CORE AND HEIGHT OF THE ROCK FILL DAMS AGAINST HYDRAULIC FRACTURING. Full Paper

Jurnal Teknologi EFFECTS OF UPSTREAM SLOPE OF CLAY CORE AND HEIGHT OF THE ROCK FILL DAMS AGAINST HYDRAULIC FRACTURING. Full Paper Jurnal Teknologi EFFECTS OF UPSTREAM SLOPE OF CLAY CORE AND HEIGHT OF THE ROCK FILL DAMS AGAINST HYDRAULIC FRACTURING Didiek Djarwadi a*, Kabul Basah Suryolelono b, Bambang Suhendro b, Hari Christady Hardiyatmo

More information

Determination of Excess Pore Pressure in Earth Dam after Earthquake

Determination of Excess Pore Pressure in Earth Dam after Earthquake ABSTRACT: Determination of Excess Pore Pressure in Earth Dam after Earthquake S.M. Nasrollahi Faculty of Islamic Azad University Qaenat Branch, Qaen, Iran. Email: s.m.nasrollahi@gmail.com Pore pressure

More information

Cubzac-les-Ponts Experimental Embankments on Soft Clay

Cubzac-les-Ponts Experimental Embankments on Soft Clay Cubzac-les-Ponts Experimental Embankments on Soft Clay 1 Introduction In the 197 s, a series of test embankments were constructed on soft clay at Cubzac-les-Ponts in France. These full-scale field tests

More information

Ch 4a Stress, Strain and Shearing

Ch 4a Stress, Strain and Shearing Ch. 4a - Stress, Strain, Shearing Page 1 Ch 4a Stress, Strain and Shearing Reading Assignment Ch. 4a Lecture Notes Sections 4.1-4.3 (Salgado) Other Materials Handout 4 Homework Assignment 3 Problems 4-13,

More information

Deformation And Stability Analysis Of A Cut Slope

Deformation And Stability Analysis Of A Cut Slope Deformation And Stability Analysis Of A Cut Slope Masyitah Binti Md Nujid 1 1 Faculty of Civil Engineering, University of Technology MARA (Perlis), 02600 Arau PERLIS e-mail:masyitahmn@perlis.uitm.edu.my

More information

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February ISSN

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February ISSN P P International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 1053 Effect of Impervious Core on Seepage through Zoned Earth Dam (Case Study: Khassa Chai Dam) Abstract

More information

Practical methodology for inclusion of uplift and pore pressures in analysis of concrete dams

Practical methodology for inclusion of uplift and pore pressures in analysis of concrete dams Practical methodology for inclusion of uplift and pore pressures in analysis of concrete dams Michael McKay 1 and Francisco Lopez 2 1 Dams Engineer, GHD Pty 2 Principal Dams/Structural Engineer, GHD Pty

More information

Behaviour of Earth Dam under Seismic Load Considering Nonlinearity of the Soil

Behaviour of Earth Dam under Seismic Load Considering Nonlinearity of the Soil Open Journal of Civil Engineering, 216, 6, 75-83 Published Online March 216 in SciRes. http://www.scirp.org/journal/ojce http://dx.doi.org/1.4236/ojce.216.627 Behaviour of Earth Dam under Seismic Load

More information

Endochronic model applied to earthfill dams with impervious core: design recommendation at seismic sites

Endochronic model applied to earthfill dams with impervious core: design recommendation at seismic sites Proceedings of the 1st IASME / WSEAS International Conference on Geology and Seismology (GES'7), Portoroz, Slovenia, May 15-17, 27 51 Endochronic model applied to earthfill dams with impervious core: design

More information

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading Jorge Castillo, Yong-Beom Lee Ausenco, USA Aurelian C. Trandafir Fugro GeoConsulting Inc., USA ABSTRACT

More information

RESEARCH ON CAUSE OF DAM FAILURE FROM VIEWPOINT OF HYDRAULIC FRACTURING CASE STUDY OF A DAM FAILURE IN VIETNAM

RESEARCH ON CAUSE OF DAM FAILURE FROM VIEWPOINT OF HYDRAULIC FRACTURING CASE STUDY OF A DAM FAILURE IN VIETNAM Geotec., Const. Mat. & Env., DOI: https://doi.org/10.21660/2018.41.57454 ISSN: 2186-2982 (Print), 2186-2990 (Online), Japan RESEARCH ON CAUSE OF DAM FAILURE FROM VIEWPOINT OF HYDRAULIC FRACTURING CASE

More information

Seismic Evaluation of Tailing Storage Facility

Seismic Evaluation of Tailing Storage Facility Australian Earthquake Engineering Society 2010 Conference, Perth, Western Australia Seismic Evaluation of Tailing Storage Facility Jonathan Z. Liang 1, David Elias 2 1 Senior Geotechnical Engineer, GHD

More information

Application of pseudo-symmetric technique in dynamic analysis of concrete gravity dams

Application of pseudo-symmetric technique in dynamic analysis of concrete gravity dams Application of pseudo-symmetric technique in dynamic analysis of concrete gravity dams V. Lotfi Department of Civil and Environmental Engineering, Amirkabir University, Iran Abstract A new approach is

More information

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation Yong-Beom Lee, Jorge Castillo Ausenco, USA Aurelian C. Trandafir Fugro GeoConsulting

More information

Instructor : Dr. Jehad Hamad. Chapter (7)

Instructor : Dr. Jehad Hamad. Chapter (7) Instructor : Dr. Jehad Hamad Chapter (7) 2017-2016 Soil Properties Physical Properties Mechanical Properties Gradation and Structure Compressibility Soil-Water Relationships Shear Strength Bearing Capacity

More information

GEO-SLOPE International Ltd, Calgary, Alberta, Canada Wick Drain

GEO-SLOPE International Ltd, Calgary, Alberta, Canada   Wick Drain 1 Introduction Wick Drain This example is about modeling the behavior of a wick drain. The primary purpose here is to illustrate how interface elements can conveniently be used to include the effects of

More information

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method E. Yıldız & A.F. Gürdil Temelsu International Engineering Services Inc., Ankara, Turkey SUMMARY: Time history analyses conducted

More information

2D & 3D Nonlinear Dynamic Analysis of an Asphaltic Concrete Core Rockfill Dam (a Case Study)

2D & 3D Nonlinear Dynamic Analysis of an Asphaltic Concrete Core Rockfill Dam (a Case Study) 1 2D & 3D Nonlinear Dynamic Analysis of an Asphaltic Concrete Core Rockfill Dam (a Case Study) A. Akhtarpour Ph.D., Maharab Consulting Engineers Co., Mashhad, Iran. A_akhtarpur@aut.ac.ir A. Khodaii Ph.D.,

More information

VERIFICATION OF MATERIAL PARAMETERS OF EARTHEN DAMS AT DIAMOND VALLEY LAKE USING GEODETIC MEASUREMENTS

VERIFICATION OF MATERIAL PARAMETERS OF EARTHEN DAMS AT DIAMOND VALLEY LAKE USING GEODETIC MEASUREMENTS VERIFICATION OF MATERIAL PARAMETERS OF EARTHEN DAMS AT DIAMOND VALLEY LAKE USING GEODETIC MEASUREMENTS Anna SZOSTAK-CHRZANOWSKI, Canada, Michel MASSIERA, Canada, Adam CHRZANOWSKI, Canada, Fabien LE HOAN,

More information

SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS

SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 48, NO. 1 2, PP. 53 63 (2004) SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS Gabriella VARGA and Zoltán CZAP Geotechnical Department Budapest University of Technology

More information

1.8 Unconfined Compression Test

1.8 Unconfined Compression Test 1-49 1.8 Unconfined Compression Test - It gives a quick and simple measurement of the undrained strength of cohesive, undisturbed soil specimens. 1) Testing method i) Trimming a sample. Length-diameter

More information

COMPARISION OF HYDRAULIC GRADIENT AND UPLIFT PRESSURE IN THREE TYPES OF DAMS: HOMOGENEOUS, HETEROGENEOUS EARTHFILL DAMS AND CONCRETE GRAVITY DAM

COMPARISION OF HYDRAULIC GRADIENT AND UPLIFT PRESSURE IN THREE TYPES OF DAMS: HOMOGENEOUS, HETEROGENEOUS EARTHFILL DAMS AND CONCRETE GRAVITY DAM SAJCCE 1:1 (2015) 91-103 October 2015 ISSN: 2394-2258 Available at http://scientificadvances.co.in DOI: http://dx.doi.org/10.18642/sajcce_7100121544 COMPARISION OF HYDRAULIC GRADIENT AND UPLIFT PRESSURE

More information

Safety analyses of Srinagarind dam induced by earthquakes using dynamic response analysis method.

Safety analyses of Srinagarind dam induced by earthquakes using dynamic response analysis method. Safety analyses of Srinagarind dam induced by earthquakes using dynamic response analysis method. S. Soralump Assistance Professor, Faculty of Engineering, Kasetsart University, Thailand. K. Tansupo Ph.D.

More information

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL Qassun S. Mohammed Shafiqu and Maarib M. Ahmed Al-Sammaraey Department of Civil Engineering, Nahrain University, Iraq

More information

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials 1.3 Scope of This Book 1.4 Historical Development of Geotechnical

More information

SAFETY CHECK OF SONDUR DAM FOR CHANGED SEISMIC CONDITION Aryak shori 1, R.K.Tripthi 2 and M. K. Verma 3

SAFETY CHECK OF SONDUR DAM FOR CHANGED SEISMIC CONDITION Aryak shori 1, R.K.Tripthi 2 and M. K. Verma 3 ABSTRACT SAFETY CHECK OF SONDUR DAM FOR CHANGED SEISMIC CONDITION Aryak shori 1, R.K.Tripthi 2 and M. K. Verma 3 The paper presents Seismic Hazard Analysis (SHA) of Sondur dam situated in Chhattisgarh

More information

Verification of the Hyperbolic Soil Model by Triaxial Test Simulations

Verification of the Hyperbolic Soil Model by Triaxial Test Simulations 1 Introduction Verification of the Hyperbolic Soil Model by Triaxial Test Simulations This example simulates a series of triaxial tests that can be used to verify that the Hyperbolic constitutive model

More information

Modelling the Construction of a High Embankment Dam

Modelling the Construction of a High Embankment Dam KSCE Journal of Civil Engineering (2014) 18(1):93-102 Copyright c2014 Korean Society of Civil Engineers DOI 10.1007/s12205-014-0180-4 TECHNICAL NOTE Geotechnical Engineering pissn 1226-7988, eissn 1976-3808

More information

1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION

1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION Module 6 Lecture 40 Evaluation of Soil Settlement - 6 Topics 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5.1 Definition of Stress Path 1.5. Stress and Strain Path for Consolidated Undrained Undrained

More information

QUESTION BANK DEPARTMENT: CIVIL SUBJECT CODE / Name: CE 2251 / SOIL MECHANICS SEMESTER: IV UNIT 1- INTRODUCTION PART - A (2 marks) 1. Distinguish between Residual and Transported soil. (AUC May/June 2012)

More information

*** ***! " " ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14. " > /' ;-,=. / ١

*** ***!   ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14.  > /' ;-,=. / ١ ١ ******!" #$ % & '!( ) % * ") +,-./ % 01. 3 ( 4 56 7/4 ) 8%9 % : 7 ;14 < 8%9 % : *7./ = ;-, >/'." Soil Permeability & Seepage ٢ Soil Permeability- Definition ٣ What is Permeability? Permeability is the

More information

Observed and calculated arching in the clayey silt of an earth dam

Observed and calculated arching in the clayey silt of an earth dam Observed and calculated arching in the clayey silt of an earth dam Reza Imam, Assistant Professor, & Nariman Mahabadi, MSc Student Department of Civil and Environmental Engineering Amirkabir University

More information

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm 444 Chapter : Shear Strength of Soil Example. Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 5 mm Normal Shear force

More information

Triaxial Shear Test. o The most reliable method now available for determination of shear strength parameters.

Triaxial Shear Test. o The most reliable method now available for determination of shear strength parameters. TOPICS Introduction Components of Shear Strength of Soils Normal and Shear Stresses on a Plane Mohr-Coulomb Failure Criterion Laboratory Shear Strength Testing Direct Shear Test Triaxial Compression Test

More information

COMPARISON BETWEEN 2D AND 3D ANALYSES OF SEISMIC STABILITY OF DETACHED BLOCKS IN AN ARCH DAM

COMPARISON BETWEEN 2D AND 3D ANALYSES OF SEISMIC STABILITY OF DETACHED BLOCKS IN AN ARCH DAM COMPARISON BETWEEN 2D AND 3D ANALYSES OF SEISMIC STABILITY OF DETACHED BLOCKS IN AN ARCH DAM Sujan MALLA 1 ABSTRACT The seismic safety of the 147 m high Gigerwald arch dam in Switzerland was assessed for

More information

Chapter 5 Shear Strength of Soil

Chapter 5 Shear Strength of Soil Page 5 Chapter 5 Shear Strength of Soil. The internal resistance per unit area that the soil mass can offer to resist failure and sliding along any plane inside it is called (a) strength (b) shear strength

More information

Theory of Shear Strength

Theory of Shear Strength SKAA 1713 SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 SOIL STRENGTH DEFINITION Shear strength of a soil is the maximum internal resistance to applied shearing forces The maximum or

More information

Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil

Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil [Jafar Bolouri Bazaz, Javad Keshavarz] Abstract Almost all types of piles are subjected to lateral loads. In many cases,

More information

Stability Analysis of Landslide Dam under Rainfall

Stability Analysis of Landslide Dam under Rainfall Stability Analysis of Landslide Dam under Rainfall Pei-Hsun Tsai, Zheng-Yi Feng 2, Fan-Chieh Yu 3 and Jian-Han Lin 4 Associate Professor, Department of Construction Engineering, Chaoyang University of

More information

Distribution of pore water pressure in an earthen dam considering unsaturated-saturated seepage analysis

Distribution of pore water pressure in an earthen dam considering unsaturated-saturated seepage analysis E3S Web of Conferences 9, 194 (16) DOI: 1.11/ e3sconf/169194 E-UNSAT 16 Distribution of pore water in an earthen dam considering unsaturated-saturated seepage analysis 1a Kumar Venkatesh, Siva Ram Karumanchi

More information

Study of Pile Interval of Landslide Restraint Piles by Centrifuge Test and FEM Analysis

Study of Pile Interval of Landslide Restraint Piles by Centrifuge Test and FEM Analysis Disaster Mitigation of Debris Flows, Slope Failures and Landslides 113 Study of Pile Interval of Landslide Restraint Piles by Centrifuge Test and FEM Analysis Yasuo Ishii, 1) Hisashi Tanaka, 1) Kazunori

More information

Soft Ground Coupled Consolidation

Soft Ground Coupled Consolidation 1 Introduction Soft Ground Coupled Consolidation This example is about constructing an embankment in delayed stages on a soft foundation so that some of the excess pore-pressure is allowed to dissipate

More information

Laboratory Testing Total & Effective Stress Analysis

Laboratory Testing Total & Effective Stress Analysis SKAA 1713 SOIL MECHANICS Laboratory Testing Total & Effective Stress Analysis Prepared by: Dr. Hetty Mohr Coulomb failure criterion with Mohr circle of stress 2 ' 2 ' ' ' 3 ' 1 ' 3 ' 1 Cot Sin c ' ' 2

More information

THEME A. Analysis of the elastic behaviour of La Aceña arch-gravity dam

THEME A. Analysis of the elastic behaviour of La Aceña arch-gravity dam THEME A Analysis of the elastic behaviour of La Aceña arch-gravity dam Gjorgi KOKALANOV, Professor, Faculty of Civil Eng., Skopje, Republic of Macedonia Ljubomir TANČEV, Professor, Faculty of Civil Eng.,

More information

GEO-SLOPE International Ltd, Calgary, Alberta, Canada Rapid Drawdown

GEO-SLOPE International Ltd, Calgary, Alberta, Canada   Rapid Drawdown Elevation - m 1 Introduction Rapid Drawdown This example is about the rapid drawdown of a reservoir and the excess pore-pressures that remain in the ground once the ponded water has been removed. The excess

More information

Assessment of the Post-earthquake Safety and the Maximum Anti-Seismic Capability of Zipingpu Concrete Face Rockfill Dam

Assessment of the Post-earthquake Safety and the Maximum Anti-Seismic Capability of Zipingpu Concrete Face Rockfill Dam Assessment of the Post-earthquake Safety and the Maximum Anti-Seismic Capability of Zipingpu Concrete Face Rockfill Dam Jian-ming Zhao, Jinsheng Jia, Yanfeng Wen China Institute of Water Resources and

More information

Lateral Earth Pressure

Lateral Earth Pressure 1 of 11 6/2/2012 4:28 AM Lateral Earth Pressure The magnitude of lateral earth pressure depends on: 1. Shear strength characteristics of soil 2. Lateral strain condition 3. Pore water pressure 4. State

More information

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room 2017 Soil Mechanics II and Exercises Final Exam 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room Attention: The exam consists of five questions for which you are provided with five answer sheets. Write

More information

Seepage Analysis for Shurijeh Reservoir Dam Using Finite Element Method. S. Soleymani 1, A. Akhtarpur 2

Seepage Analysis for Shurijeh Reservoir Dam Using Finite Element Method. S. Soleymani 1, A. Akhtarpur 2 Seepage Analysis for Shurijeh Reservoir Dam Using Finite Element Method S. Soleymani 1, A. Akhtarpur 2 1 Group of Dam Construction, Toossab Company, P.O. Box 917751569, Mashhad City, Iran, PH (+98) 511-7684091;

More information

CHARACTERISTICS OF VACUUM CONSOLIDATION COMPARING WITH SURCHARGE LOAD INDUCED CONSOLIDATION

CHARACTERISTICS OF VACUUM CONSOLIDATION COMPARING WITH SURCHARGE LOAD INDUCED CONSOLIDATION International Symposium on Geotechnical Engineering, Ground Improvement and Geosynthetics for Human Security and Environmental preservation, Bangkok, Thailand CHARACTERISTICS OF VACUUM CONSOLIDATION COMPARING

More information

3-D DYNAMIC ANALYSIS OF TAIYUAN FLY ASH DAM

3-D DYNAMIC ANALYSIS OF TAIYUAN FLY ASH DAM 3-D DYNAMIC ANALYSIS OF TAIYUAN FLY ASH DAM Jian ZHOU 1, Peijiang QI 2 And Yong CHI 3 SUMMARY In this paper, the seismic stability of Taiyuan Fly Ash Dam in China is studied by using 3-D dynamic effective

More information

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression FAILURE CRITERIA OF ROCK AND ROCK MASSES Contents 5.1 Failure in rocks 5.1.1 Hydrostatic compression 5.1.2 Deviatoric compression 5.1.3 Effect of confining pressure 5.2 Failure modes in rocks 5.3 Complete

More information

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil Appendix F Notation a b B C c C k C N C s C u C wt C θ D r D 1 D 2 D 10 D 30 Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus

More information

PROBLEMS AND SOLUTIONS THAT MAY EMERGE IN THE FOUNDATION AND BODY OF A HOMOGENEOUS FILL DAM ON A WEAK CLAYEY-SILTY-SANDY FORMATION ÇIKRIKÇI DAM

PROBLEMS AND SOLUTIONS THAT MAY EMERGE IN THE FOUNDATION AND BODY OF A HOMOGENEOUS FILL DAM ON A WEAK CLAYEY-SILTY-SANDY FORMATION ÇIKRIKÇI DAM PROBLEMS AND SOLUTIONS THAT MAY EMERGE IN THE FOUNDATION AND BODY OF A HOMOGENEOUS FILL DAM ON A WEAK CLAYEY-SILTY-SANDY FORMATION ÇIKRIKÇI DAM Esen Yalım KARADUMAN BAR-SU Eng. & Conc. Inc. Ankara Turkey

More information

2D Liquefaction Analysis for Bridge Abutment

2D Liquefaction Analysis for Bridge Abutment D Liquefaction Analysis for Bridge Abutment Tutorial by Angel Francisco Martinez Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering

More information

J. Paul Guyer, P.E., R.A.

J. Paul Guyer, P.E., R.A. J. Paul Guyer, P.E., R.A. Paul Guyer is a registered mechanical engineer, civil engineer, fire protection engineer and architect with over 35 years experience in the design of buildings and related infrastructure.

More information

Finite Element Solutions for Geotechnical Engineering

Finite Element Solutions for Geotechnical Engineering Release Notes Release Date: July, 2015 Product Ver.: GTSNX 2015 (v2.1) Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering Enhancements

More information

Liquefaction Potential Variations Influenced by Building Constructions

Liquefaction Potential Variations Influenced by Building Constructions Earth Science Research; Vol. 1, No. 2; 2012 ISSN 1927-0542 E-ISSN 1927-0550 Published by Canadian Center of Science and Education Liquefaction Potential Variations Influenced by Building Constructions

More information

PRINCIPLES OF GEOTECHNICAL ENGINEERING

PRINCIPLES OF GEOTECHNICAL ENGINEERING PRINCIPLES OF GEOTECHNICAL ENGINEERING Fourth Edition BRAJA M. DAS California State University, Sacramento I(T)P Boston Albany Bonn Cincinnati London Madrid Melbourne Mexico City New York Paris San Francisco

More information

Introduction to Soil Mechanics

Introduction to Soil Mechanics Introduction to Soil Mechanics Sela Sode and Colin Jones WILEY Blackwell Contents Preface Dedication and Acknowledgments List of Symbols Soil Structure 1.1 Volume relationships 1.1.1 Voids ratio (e) 1.1.2

More information

EARTHQUAKE SAFETY OF AN ARCH-GRAVITY DAM WITH A HORIZONTAL CRACK IN THE UPPER PORTION OF THE DAM

EARTHQUAKE SAFETY OF AN ARCH-GRAVITY DAM WITH A HORIZONTAL CRACK IN THE UPPER PORTION OF THE DAM EARTHQUAKE SAFETY OF AN ARCH-GRAVITY DAM WITH A HORIZONTAL CRACK IN THE UPPER PORTION OF THE DAM Martin WIELAND 1 And Sujan MALLA 2 SUMMARY A horizontal crack first appeared along the downstream wall of

More information

The Seismic Performance of Tousheh Dam During the Chi-Chi Earthquake

The Seismic Performance of Tousheh Dam During the Chi-Chi Earthquake ( C023) Proceedings of 9 th Conference on Current Researches in Geotechnical Engineering, Shihman Reservoir, Tai-Yuan, Taiwan, R.O.C. August 30-3 and September, 200 92 () (the semi-analysis-testing method)(2)

More information

Monitoring of underground construction

Monitoring of underground construction Monitoring of underground construction Geotechnical Aspects of Underground Construction in Soft Ground Yoo, Park, Kim & Ban (Eds) 2014 Korean Geotechnical Society, Seoul, Korea, ISBN 978-1-138-02700-8

More information

STABILITY ANALYSIS OF EARTH DAM SLOPES SUBJECTED TO EARTHQUAKE USING ERT RESULTS INTERPRETATION

STABILITY ANALYSIS OF EARTH DAM SLOPES SUBJECTED TO EARTHQUAKE USING ERT RESULTS INTERPRETATION STABILITY ANALYSIS OF EARTH DAM SLOPES SUBJECTED TO EARTHQUAKE USING ERT RESULTS INTERPRETATION Eko Andi Suryo Lecturer / Department of Civil Engineering, Faculty of Engineering / University of Brawijaya

More information

Theory of Shear Strength

Theory of Shear Strength MAJ 1013 ADVANCED SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 Strength of different materials Steel Concrete Soil Tensile strength Compressive strength Shear strength Complex behavior

More information

GEOMENGTER - Geomechanical and Geotechnical Engineering

GEOMENGTER - Geomechanical and Geotechnical Engineering Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 250 - ETSECCPB - Barcelona School of Civil Engineering 751 - DECA - Department of Civil and Environmental Engineering MASTER'S

More information

APPLICATION OF COMPOSITE CLAY AS CORE MATERIAL IN EARTHFILL EMBANKMENT DAMS

APPLICATION OF COMPOSITE CLAY AS CORE MATERIAL IN EARTHFILL EMBANKMENT DAMS International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 8, August 2018, pp. 790 797, Article ID: IJCIET_09_08_080 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=8

More information

Seismic Stability of Tailings Dams, an Overview

Seismic Stability of Tailings Dams, an Overview Seismic Stability of Tailings Dams, an Overview BY Gonzalo Castro, Ph.D., P.E. Principal International Workshop on Seismic Stability of Tailings Dams Case Western Reserve University, November 2003 Small

More information

Chapter (12) Instructor : Dr. Jehad Hamad

Chapter (12) Instructor : Dr. Jehad Hamad Chapter (12) Instructor : Dr. Jehad Hamad 2017-2016 Chapter Outlines Shear strength in soils Direct shear test Unconfined Compression Test Tri-axial Test Shear Strength The strength of a material is the

More information

Rapid Drawdown Stability Analysis of San Luis Dam

Rapid Drawdown Stability Analysis of San Luis Dam Rapid Drawdown Stability Analysis of San Luis Dam Stark, T.D., tstark@illinois.edu Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 Jafari,

More information

Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment

Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment Proc. of Second China-Japan Joint Symposium on Recent Development of Theory and Practice in Geotechnology, Hong Kong, China Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment J. C. Chai 1

More information

SOIL SHEAR STRENGTH. Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida

SOIL SHEAR STRENGTH. Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida SOIL SHEAR STRENGTH Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida What is shear strength Shear strength of a soil is the maximum internal resistance to applied shearing forces Why it is

More information

Analysis of Load-Settlement Relationship for Unpaved Road Reinforced with Geogrid

Analysis of Load-Settlement Relationship for Unpaved Road Reinforced with Geogrid ISGSR7 First International Symposium on Geotechnical Safety & Risk Oct. 8~9, 7 Shanghai Tongji University, China Analysis of Load-Settlement Relationship for Unpaved Road Reinforced with Geogrid Y. C.

More information

Modelling Progressive Failure with MPM

Modelling Progressive Failure with MPM Modelling Progressive Failure with MPM A. Yerro, E. Alonso & N. Pinyol Department of Geotechnical Engineering and Geosciences, UPC, Barcelona, Spain ABSTRACT: In this work, the progressive failure phenomenon

More information

Numerical Modeling of Interface Between Soil and Pile to Account for Loss of Contact during Seismic Excitation

Numerical Modeling of Interface Between Soil and Pile to Account for Loss of Contact during Seismic Excitation Numerical Modeling of Interface Between Soil and Pile to Account for Loss of Contact during Seismic Excitation P. Sushma Ph D Scholar, Earthquake Engineering Research Center, IIIT Hyderabad, Gachbowli,

More information

Module 9 : Foundation on rocks. Content

Module 9 : Foundation on rocks. Content FOUNDATION ON ROCKS Content 9.1 INTRODUCTION 9.2 FOUNDATION TYPES ON ROCKS 9.3 BEARING CAPCITY- SHALLOW FOUNDATION 9.3.1 Ultimate bearing capacity 9.3.2 Safe bearing pressure 9.3.3 Estimation of bearing

More information

PREDICTION OF FROST HEAVE INDUCED DEFORMATION OF DYKE KA-7 IN NORTHERN QUEBEC

PREDICTION OF FROST HEAVE INDUCED DEFORMATION OF DYKE KA-7 IN NORTHERN QUEBEC PREDICTION OF FROST HEAVE INDUCED DEFORMATION OF DYKE KA-7 IN NORTHERN QUEBEC J.-M. Konrad 1, M. Shen 1, R. Ladet 2 1. Dept. of Civil Engineering UniversitŽ Laval,QuŽbec, Canada, G1K 7P4 2. Hydro-QuŽbec,

More information

Landslide FE Stability Analysis

Landslide FE Stability Analysis Landslide FE Stability Analysis L. Kellezi Dept. of Geotechnical Engineering, GEO-Danish Geotechnical Institute, Denmark S. Allkja Altea & Geostudio 2000, Albania P. B. Hansen Dept. of Geotechnical Engineering,

More information

Peak and Post-Peak Shear Strength of Cement-Bentonite

Peak and Post-Peak Shear Strength of Cement-Bentonite Peak and Post-Peak Shear Strength of Cement-Bentonite Paul J. Axtell, P.E., Dan Brown and Associates, Overland Park, Kansas; paxtell@danbrownandassociates.com Timothy D. Stark, Ph.D., P.E., University

More information

Effect of Location and Angle of Cutoff Wall on Uplift Pressure in Diversion Dam

Effect of Location and Angle of Cutoff Wall on Uplift Pressure in Diversion Dam Geotech Geol Eng (2014) 32:1165 1173 DOI 10.1007/s10706-014-9774-3 ORIGINAL PAPER Effect of Location and Angle of Cutoff Wall on Uplift Pressure in Diversion Dam Behnam Mansuri Farzin Salmasi Behrooz Oghati

More information

Slope Stability. loader

Slope Stability. loader Slope Stability Slope Stability loader Lower San Fernando Dam Failure, 1971 Outlines Introduction Definition of key terms Some types of slope failure Some causes of slope failure Shear Strength of Soils

More information

Nonlinear Time-Dependent Soil Behavior due to Construction of Buried Structures

Nonlinear Time-Dependent Soil Behavior due to Construction of Buried Structures Journal of Earth Sciences and Geotechnical Engineering, vol. 4, no. 1, 214, 71-88 ISSN: 172-4 (print), 172- (online) Scienpress Ltd, 214 Nonlinear Time-Dependent Soil Behavior due to Construction of Buried

More information

ASSESSMENT OF STRESS DISTRIBUTION IN DARAB'S ROODBAL EMBANKMEND DAM USING COMMERCIAL CODE FLAC

ASSESSMENT OF STRESS DISTRIBUTION IN DARAB'S ROODBAL EMBANKMEND DAM USING COMMERCIAL CODE FLAC Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi (CFD), Cilt:36, No: 4 Özel Sayı (2015) ISSN: 1300-1949 Cumhuriyet University Faculty of Science Science Journal (CSJ), Vol. 36, No: 4 Special

More information

SHEAR STRENGTH OF SOIL. Chapter 10: Sections Chapter 12: All sections except

SHEAR STRENGTH OF SOIL. Chapter 10: Sections Chapter 12: All sections except SHEAR STRENGTH OF SOIL Chapter 10: Sections 10. 10.3 Chapter 1: All sections ecept 1.13 1.14 1.15 1.17 1.18 TOPICS Introduction Components of Shear Strength of Soils Normal and Shear Stresses on a Plane

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 19 Module 5: Lecture -1 on Stability of Slopes Contents Stability analysis of a slope and finding critical slip surface; Sudden Draw down condition, effective stress and total stress analysis; Seismic

More information

Landslide stability analysis using the sliding block method

Landslide stability analysis using the sliding block method Landslide stability analysis using the sliding block method E. Lino, R. Norabuena, M. Villanueva & O. Felix SRK Consulting (Peru) S.A., Lima, Peru A. Lizcano SRK Consulting (Vancouver) S.A., British Columbia,

More information

Stability Analysis of Hongsa Coal Mine s Pit Walls, Xaignabouli Province, Laos PDR. Thanachot Harnpa* Dr.Schradh Saenton**

Stability Analysis of Hongsa Coal Mine s Pit Walls, Xaignabouli Province, Laos PDR. Thanachot Harnpa* Dr.Schradh Saenton** IPMO3-1 Stability Analysis of Hongsa Coal Mine s Pit Walls, Xaignabouli Province, Laos PDR Thanachot Harnpa* Dr.Schradh Saenton** ABSTRACT The slope stability analysis is an important requirement for routine

More information

STUDY OF DYNAMIC SOIL-STRUCTURE INTERACTION OF CONCRETE GRAVITY DAMS

STUDY OF DYNAMIC SOIL-STRUCTURE INTERACTION OF CONCRETE GRAVITY DAMS STUDY OF DYNAMIC SOIL-STRUCTURE INTERACTION OF CONCRETE GRAVITY DAMS Djamel OUZANDJA 1, Fatiha BENKECHIDA 2, Toufiq OUZANDJA 3, Hamza BELHADED 4 ABSTRACT The safety evaluation of the dams subjected to

More information

Introduction and Background

Introduction and Background Introduction and Background Itasca Consulting Group, Inc. (Itasca) has been participating in the geomechanical design of the underground 118-Zone at the Capstone Minto Mine (Minto) in the Yukon, in northwestern

More information

Finite Element analysis of Laterally Loaded Piles on Sloping Ground

Finite Element analysis of Laterally Loaded Piles on Sloping Ground Indian Geotechnical Journal, 41(3), 2011, 155-161 Technical Note Finite Element analysis of Laterally Loaded Piles on Sloping Ground K. Muthukkumaran 1 and N. Almas Begum 2 Key words Lateral load, finite

More information

CURRENT METHODOLOGY AT THE BUREAU OF RECLAMATION FOR THE NONLINEAR ANALYSES OF ARCH DAMS USING EXPLICIT FINITE ELEMENT TECHNIQUES

CURRENT METHODOLOGY AT THE BUREAU OF RECLAMATION FOR THE NONLINEAR ANALYSES OF ARCH DAMS USING EXPLICIT FINITE ELEMENT TECHNIQUES CURRENT METHODOLOGY AT THE BUREAU OF RECLAMATION FOR THE NONLINEAR ANALYSES OF ARCH DAMS USING EXPLICIT FINITE ELEMENT TECHNIQUES Barbara Mills-Bria, P.E., 1 Larry Nuss, P.E. 2 and Dr. Anil Chopra 2 1

More information

APPENDIX I. Deformation Analysis of the Left Abutment

APPENDIX I. Deformation Analysis of the Left Abutment APPENDIX I Deformation Analysis of the Left Abutment August 25, 2016 Appendix I Deformation Analysis of the Left Abutment TABLE OF CONTENTS I1 INTRODUCTION... 1 I2 MODEL DEVELOPMENT... 2 I2.1 General...

More information

Evaluation of the behaviour of an arch-gravity dam. featuring a pre-existing crack

Evaluation of the behaviour of an arch-gravity dam. featuring a pre-existing crack Evaluation of the behaviour of an arch-gravity dam featuring a pre-existing crack Dr Aïssa Mellal, Civil Engineer STUCKY SA, Switzerland NUMERICS IN GEOTECHNICS AND STRUCTURES - ZSoil Days - 1-2 September

More information

Fluid driven cohesive crack propagation in quasi-brittle materials

Fluid driven cohesive crack propagation in quasi-brittle materials Fluid driven cohesive crack propagation in quasi-brittle materials F. Barpi 1, S. Valente 2 Department of Structural and Geotechnical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129

More information

Seismic Analysis of Siri Dam Using Pseudo-Static Approach

Seismic Analysis of Siri Dam Using Pseudo-Static Approach Seismic Analysis of Siri Dam Using Pseudo-Static Approach Shabbir Ahmed Osmani 1, Md. Jahir Bin Alam 2 1 Department of Civil Engineering, Leading University, Bangladesh 2 Department of Civil and Environmental

More information

LIQUEFACTION OF EARTH EMBANKMENT DAMS TWO CASE HISTORIES: (1) LIQUEFACTION OF THE EMBANKMENT SOILS, AND (2) LIQUEFACTION OF THE FOUNDATIONS SOILS

LIQUEFACTION OF EARTH EMBANKMENT DAMS TWO CASE HISTORIES: (1) LIQUEFACTION OF THE EMBANKMENT SOILS, AND (2) LIQUEFACTION OF THE FOUNDATIONS SOILS LIQUEFACTION OF EARTH EMBANKMENT DAMS TWO CASE HISTORIES: (1) LIQUEFACTION OF THE EMBANKMENT SOILS, AND (2) LIQUEFACTION OF THE FOUNDATIONS SOILS Antonio Fernandez, Ph.D. 1 ABSTRACT Paul C. Rizzo Associates,

More information

Fujinuma Dam Performance during 2011 Tohoku Earthquake, Japan and Failure Mechanism by FEM

Fujinuma Dam Performance during 2011 Tohoku Earthquake, Japan and Failure Mechanism by FEM Fujinuma Dam Performance during 2011 Tohoku Earthquake, Japan and Failure Mechanism by FEM Mahdavian Abbas Powue and Water University of Technology, Tehran, Iran Shiro Takada Tehran University, Tehran,

More information

Research Article Soil Saturated Simulation in Embankment during Strong Earthquake by Effect of Elasticity Modulus

Research Article Soil Saturated Simulation in Embankment during Strong Earthquake by Effect of Elasticity Modulus Modelling and Simulation in Engineering, Article ID 191460, 7 pages http://dx.doi.org/10.1155/2014/191460 Research Article Soil Saturated Simulation in Embankment during Strong Earthquake by Effect of

More information

Predicting Hydraulic Fracturing in Hyttejuvet Dam

Predicting Hydraulic Fracturing in Hyttejuvet Dam Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in Geotechnical Engineering (2008) - Sixth International Conference on Case Histories in Geotechnical

More information

SEEPAGE ANALYSIS AND SEISMIC BEHAVIOUR OF EARTH FILL DAM USING GEO-STUDIO

SEEPAGE ANALYSIS AND SEISMIC BEHAVIOUR OF EARTH FILL DAM USING GEO-STUDIO SEEPAGE ANALYSIS AND SEISMIC BEHAVIOUR OF EARTH FILL DAM USING GEO-STUDIO Mr. PAVAN N¹, Mrs. BARNALI GHOSH², Dr.S.K.PRASAD³ 1 P.G STUDENT, East Point College Of Engineering & Technology 2 ASSOCIATE PROFESSOR,

More information