Estimation of Dimension of a Regular-Type Sinkhole Activated by Abandoned Shafts

Size: px
Start display at page:

Download "Estimation of Dimension of a Regular-Type Sinkhole Activated by Abandoned Shafts"

Transcription

1 PUBLS. INST. GEOPHYS. POL. ACAD. SC., M-9 (395), 006 Estimation of Dimension of a Regular-Type Sinkhole Activated by Abandoned Shafts Zenon PILECKI 1, and Adam BARANOWSKI 1 AGH University of Science and Technology Mickiewicza 30, Kraków, Poland pilecki@min-pan.krakow.pl Mineral and Energy Economy Research Institute Polish Academy of Sciences Wybickiego 7, Kraków, Poland Abstract Sinkholes are natural phenomena in the landscape that cover the majority of old mining sites of shallow hard coal and zinc-lead exploitation in the Silesian Coal Basin and in the Olkusz area. Each sinkhole has unique characteristics due to the mechanism of its occurrence. Some of them are related to old, abandoned shafts, often not quite well closed. Dependence of sinkhole diameter upon overburden soil parameters has been established by numerical modelling. This dependence correlates quite well with the hypothesis of Professor Chudek, which has not been proved yet. The paper discusses some theoretical aspects of sinkhole occurrence in the conditions of the Silesian Coal Basin. In the core part, basic assumptions and results of numerical calculations are presented. Finally, the calculated dependence and the resultant graphs are compared to the analytical ones. 1. Introduction The origin of discontinuous surface deformations can be traced back not only to post-extraction voids, but also to inadequately safeguarded or abandoned shafts collapsing. The knowledge of the old small mine shafts used in the long past to extract shallow coal and ore deposits in the Upper Silesian Coal Basin (GZW) and in the Olkusz area is poor. The information on their locations is incomplete and the preserved old mine plans do not warrant finding their outlets on the surface.

2 Only a small portion, mere 5%, of all discontinuous surface deformations observed in the GZW area occurred due to improper closure practices of shafts and small pits (Chudek 00). This does not mean that the hazard they pose, mainly for civil engineering, is insignificant. The areas threatened by the possibility of sinkhole formation can be identified, but it is impossible to forecast the time of their occurrence. For instance, the probability of destruction of a shaft closed to the relatively modern standard, by being covered by a reinforced concrete plug, increases with time due to developing degradation of both its lining and the surrounding rockmass. It could also happen that the material filling a closed shaft shifted, creating voids. The fill material may be drawn off into the excavations adjacent to the shaft if the seal separating them from the shaft pipe is damaged or was not installed. The surface area around the shaft may gradually settle down or form a sinkhole in an abrupt manner. The following can be named as the major factors influencing the process of formation of shaft-related sinkholes: Unfavourable groundwater conditions resulting from heavy rainfalls, which may cause shaft fill to be washed away, suffosion of the medium surrounding the shaft barrel or physical or chemical corrosion of the shaft lining; Progressing disintegration of the shaft or pit lining; Washing out of the shaft fill material; Increased load on the ground surface from newly erected structures; Dynamic loads caused by traffic-related vibrations or seismicity. One of the most important parameters determining the level of risk for the land surface users is the maximal dimension of the sinkhole area. This work describes one of the methods, based on numerical modelling, of determining sinkhole size. The method may be used to forecast the diameter of a sinkhole not only when it is shaftrelated but also when it stems from other underground voids of more or less known dimensions. Available are also analytical methods, described in the works of Chudek (00) or Bell (1988), allowing to calculate the extent of a sinkhole and linking it to the properties of loose overburden. In this paper the authors compare the results obtained by numerical modelling with those calculated analytically.. Analytical Method of Calculating the Ground Level Size of a Sinkhole Discontinuous surface deformations are defined by Chudek (00) as such changes to the structure of the surface that break its continuity. To avoid misunderstanding, because of numerous meanings and understandings of the term, let us accept that in this paper a sinkhole shall mean such discontinuous deformation of the surface that is characterized by sinking of the ground surface. The rockmass prone to form sinkholes has to be divided into two distinct zones directly influencing the type and extent of discontinuous deformations (Chudek 00): The strata of competent rock (base rock), containing the void, The layer of loose overburden.

3 The process of deformation of the rockmass leading to the formation of a sinkhole on the surface has been described in numerous Polish and foreign publications, e.g. by Chudek (00), Fajklewicz et al. (004) or Popiołek and Pilecki (005). From these works the formation of a sinkhole may be outlined to proceed as follows: A zone of fractured rock is formed by tensile stresses occurring in the immediate roof of the void. Its shape is in general similar to that of a stress dome. Its height depends on the void s volume, the support and the properties of the surrounding rock (base rock), With time, the fragments of fractured and loosen rocks fall down, forming a fall at the bottom of the excavation. The position of the excavation s roof moves upward towards the surface. A secondary void is created between the roof and the collapsed rock, The developing rheological processes, which are usually intensified by water weathering, cause the fracture zone in the roof of the excavation to move towards the ground surface. At the same time, the volume of the void diminishes because the bulk volume of caved rock is greater than that of solid rock, If the thickness of the base rock strata through which the void travels on its way up is adequate, the secondary void may become completely filled. If it is too small for the void to be completely filled until its roof reaches the loose overburden, it is quite likely that a sinkhole will form on the land surface. If the overburden comprises loose soil, one has to expect the horizontal size of the sinkhole to be greater than that of the void propagating through the base rock. The size of the sinkhole will depend on the thickness of the loose soil overburden, soil strength properties, groundwater conditions and the criterion for the void to fill itself. In the case of old, closed shafts, sinkhole hazard exists if the shaft s lining installed in the loose soil layer disintegrates, or in the simplest cases if the plug closing the shaft s mouth collapses. The greatest diameter D of a sinkhole on the ground surface can be calculated from the equation (Bell 1988): o D Ztan(90 ) r = Θ +, (1) where Z is the thickness of the loose overburden, Θ is the angle of internal friction of the loose overburden material, and r is the radius of the shaft. The relationship (1) is illustrated in Fig. 1. The greater the thickness of the layer of loose overburden, the greater the area of the sinkhole. 3. Numerical Method of Calculating the Ground Level Size of a Sinkhole 3.1 Methodology of the calculations The quality of results obtained by numerical modelling to a great extent depends on a number of complex issues, beginning with the size and shape of the model, boundary and initial conditions, material property constants or the accepted calculation methodology. The numerical calculations were done for the small, old, closed

4 Z tan crown hole superficial deposits Z rock old open shaft Fig. 1. Method of calculating the diameter of a sinkhole formed in loose overburden above an old shaft (Bell 1988). shaft Andrzej situated in the Olkusz area. Normally, the input data collection consists in establishing the geomechanical properties of the rock medium. In the case of Andrzej shaft the material constants were obtained from the results of archival tests and complemented by the information available in the literature. The shaft was the cause of a medium-sized sinkhole (diameter of the funnel 6 m, depth m). The shaft s probable depth was 3 m and its cross-section was a square with a side of m. The calculations were made assuming plain strain conditions in an elasticplastic medium and the Mohr-Coulomb failure criterion. The modelling procedure consisted of the following basic stages: constructing the model, obtaining the equilibrium of forces in the field of primary stresses, calculating the model in several steps of shaft s constructing, obtaining in the end the equilibrium of forces in the field of secondary stresses, conducting a what-if analysis of stress and deformation for various overburden thickness and different types of overburden material. Figure shows the geometry of the model and its boundary and initial conditions. Axial symmetry of the model was assumed in order to increase the efficiency of the calculations. The values of the vertical and horizontal stress components were assumed as variable within the range defined by the model s depth, with the vertical to horizontal stress ratio assumed as λ = 0.4. The model had the shape of a 150 m high and 100 m wide rectangle. The computation zone size was m. When analyzing the relationship between the diameter of the sinkhole and the depth of the overburden it was assumed, according to eq. (1), that the value of the shaft diameter does not influence the behaviour of the overburden material but only the diameter of the sinkhole.

5 Z superficial deposits shale dolomite ore dolomite limestone Fig.. Computational model with the boundary and initial conditions. Geological structure of the model was compiled from archival information. The base rock zone comprised four layers and the overburden one. The parameters of the overburden material were varied according to soil type. The model did not take ground water into account as the rockmass was assumed to be self-draining. The influence of the seeping water on the behaviour of the medium was also disregarded as a separate issue to be considered. The numerical modelling was done with the use of FLAC D v.4.0. developed by Itasca, USA, which utilizes the finite difference method. 3. Material constants It was assumed that the overburden was composed of one type of material and separate calculations were conducted for three types of soil (Table 1). The base rock was taken to comprise four strata (Table ). 3.3 Analysis of the results Figure 3 shows an example of calculation results of predicted behaviour of the overburden (sand and gravel) in the shaft s influence zone. The diameter of the formed funnel was approx. 6 m, which matched the field observations (Fig. 3a). Increasing the thickness of the overburden, the funnel s diameter increased up to a certain boundary value (critical), above which a chimney effect took place (Fig. 3b). This effect is illustrated by the graph of the dependence of normalized sinkhole diameter on the overburden thickness (Fig. 4). Character of the changes is bimodal. The dependence is

6 Soil type Table 1 The overburden material properties assumed for the calculations Density [kg/m 3 ] Bulk modulus Shear modulus Friction angle [deg] Cohesion Sand and gravel E8 6.9E Clay E7 9.3E E4 Loam E7 5.11E E5 Stratum number Density [kg/m 3 ] Table The base rock material properties assumed for the calculations Bulk modulus Shear modulus Poisson ratio Friction angle [deg] Tensile strength Cohesion layer E9 3.85E E+07 7E4 3 layer E9 5.33E E+06 9E6 4 layer E9 5.96E E+06 9E6 5 layer 100.6E0 1.11E E+06 9E6 strata: (Keuper series) serpentine silt and mudstone; 3 (Middle Triassic) dolomite; 4 (Middle Triassic) ore-bearing dolomite; 5 (Middle Triassic) limestone nonlinear up to critical depth and linear below it. For example, the behavior of the model in the nonlinear mode can be approximated by polynomial or logarithmic equations (Fig. 5): for sands and gravels for clays for loam y = 0.004x x ; R = () y = Ln( x) ; R = (3) y = Ln( x) ; R = (4) where y is the maximum sinkhole diameter within the analyzed range x, and x is the overburden thickness. For comparison Figs. 4 and 5 show the graphical presentation of sinkhole diameter obtained by means of the analytical method from eq. (1). It can be seen in Fig. 4 that after the thickness of the overburden comprising loose material sand and

7 a) 3 m b) 3,5 m X Displacement [m] interval [m] - contour 0 m X Displacement [m] interval [m] - contour 0 m Fig. 3. An example of the distribution of horizontal displacements in the area of sinkhole formation above the shaft pipe for overburden thickness of 3.5 m (a) and greater than the boundary value, which is variable and depends on material type (b). gravel exceeds 45 m, the diameter of the sinkhole remains constant. The results obtained for a specific sinkhole diameter by analytical and numerical methods are roughly the same up to the overburden width boundary value. Figure 5 shows the dependence of sinkhole diameter on the overburden thickness for all the types of overburden material considered (Table ). In the case of clay and loam the boundary condition values of overburden thickness is approx. 10 and 13 m and the sinkhole diameter does not exceed 5 m. 4. Conclusions The results of numerical calculations show that if the overburden comprises loose material and the base rock formations are competent, the factors determining sinkhole size are the overburden thickness and properties. For the overburden thickness greater than a certain (critical) boundary value, the diameter of the sinkhole remains more or less constant. For typical loose sand-and-gravel formations this limit value is approximately 45 m. It may be assumed that when the overburden thickness

8 exceeds the limit value, a chimney formation process begins. During the process a characteristic bell-shaped deformation appears in the overburden foot. Fig. 4. Dependence of normalized sinkhole diameter on the thickness of overburden comprising sand and gravel. Fig. 5. Dependence of sinkhole diameter on the overburden thickness for various types of material.

9 The presented numerical analysis was conducted on a relatively simple model of rock mass. Numerical calculations can be used to analyze models of much greater complexity, specifically, the overburdens comprising several layers made of loose and competent material. References Bell, F.G., 1988, Land development. State-of-the-art in the location of old mine shafts, Bull. of the Int. Ass. of Eng. Geology 37, Chudek, M., 00, Geomechanika z podstawami ochrony środowiska górniczego i powierzchni terenu, Wyd. Politechniki Śl., Gliwice. Popiołek, E., and Z. Pilecki (red.), 005, Ocena przydatności do zabudowy terenów zagrozonych deformacjami nieciągłymi za pomoca metod geofizycznych, Wyd. IGSMiE PAN, Kraków. Accepted 10 April 006

16. Mining-induced surface subsidence

16. Mining-induced surface subsidence 16. Mining-induced surface subsidence 16.1 Types and effects of mining-induced subsidence Subsidence - Lowering of the ground surface following underground extraction of an orebody. - Types: continuous

More information

Piotr STRZAŁKOWSKI1, Roman ŚCIGAŁA2 Abstract Introduction

Piotr STRZAŁKOWSKI1, Roman ŚCIGAŁA2 Abstract Introduction Piotr STRZAŁKOWSKI 1, Roman ŚCIGAŁA 2 THE EXAMPLE OF LINEAR DISCONTINUOUS DEFORMATIONS CAUSED BY UNDERGROUND EXTRACTION PŘÍKLAD LINEÁRNÍCH NESPOJITÝCH DEFORMACÍ ZPŮSOBENÝCH DOLOVÁNÍM Abstract The example

More information

Introduction and Background

Introduction and Background Introduction and Background Itasca Consulting Group, Inc. (Itasca) has been participating in the geomechanical design of the underground 118-Zone at the Capstone Minto Mine (Minto) in the Yukon, in northwestern

More information

Further Research into Methods of Analysing the October 2000 Stability of Deep Open Pit Mines EXECUTIVE SUMMARY

Further Research into Methods of Analysing the October 2000 Stability of Deep Open Pit Mines EXECUTIVE SUMMARY EXECUTIVE SUMMARY This report presents the results of a program of further research into the use of a combined approach of numerical and centrifuge modeling in assessing the stability of deep open pit

More information

THE INFLUENCE OF ROOF BOLTS LOCATION ON ITS INTERACTION WITH THE ROCK MASS.

THE INFLUENCE OF ROOF BOLTS LOCATION ON ITS INTERACTION WITH THE ROCK MASS. THE INFLUENCE OF ROOF BOLTS LOCATION ON ITS INTERACTION WITH THE ROCK MASS. M. Cała 1, A. Tajduś 1 ABSTRACT This paper examines the influence of roof bolts location on its interaction with rock mass in

More information

Haulage Drift Stability Analysis- A Sensitivity Approach

Haulage Drift Stability Analysis- A Sensitivity Approach Haulage Drift Stability Analysis- A Sensitivity Approach W. Abdellah University of Assiut, Assiut, Egypt ABSTRACT Haulage drifts are the primary access to the mining blocks of an ore body in a multi-level

More information

Seismic analysis of horseshoe tunnels under dynamic loads due to earthquakes

Seismic analysis of horseshoe tunnels under dynamic loads due to earthquakes University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2010 Seismic analysis of horseshoe tunnels under dynamic loads due to earthquakes Navid

More information

Ch 4a Stress, Strain and Shearing

Ch 4a Stress, Strain and Shearing Ch. 4a - Stress, Strain, Shearing Page 1 Ch 4a Stress, Strain and Shearing Reading Assignment Ch. 4a Lecture Notes Sections 4.1-4.3 (Salgado) Other Materials Handout 4 Homework Assignment 3 Problems 4-13,

More information

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation Yong-Beom Lee, Jorge Castillo Ausenco, USA Aurelian C. Trandafir Fugro GeoConsulting

More information

Numerical Approach to Predict the Strength of St. Peter Sandstone Pillars acted upon by Vertical Loads A case study at Clayton, IA, USA.

Numerical Approach to Predict the Strength of St. Peter Sandstone Pillars acted upon by Vertical Loads A case study at Clayton, IA, USA. IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 05, Issue 01 (January. 2015), V2 PP 36-41 www.iosrjen.org Numerical Approach to Predict the Strength of St. Peter Sandstone

More information

ENCE 3610 Soil Mechanics. Site Exploration and Characterisation Field Exploration Methods

ENCE 3610 Soil Mechanics. Site Exploration and Characterisation Field Exploration Methods ENCE 3610 Soil Mechanics Site Exploration and Characterisation Field Exploration Methods Geotechnical Involvement in Project Phases Planning Design Alternatives Preparation of Detailed Plans Final Design

More information

Module 6: Stresses around underground openings. 6.2 STRESSES AROUND UNDERGROUND OPENING contd.

Module 6: Stresses around underground openings. 6.2 STRESSES AROUND UNDERGROUND OPENING contd. LECTURE 0 6. STRESSES AROUND UNDERGROUND OPENING contd. CASE : When σ x = 0 For σ x = 0, the maximum tangential stress is three times the applied stress and occurs at the boundary on the X-axis that is

More information

J. Paul Guyer, P.E., R.A.

J. Paul Guyer, P.E., R.A. J. Paul Guyer, P.E., R.A. Paul Guyer is a registered mechanical engineer, civil engineer, fire protection engineer and architect with over 35 years experience in the design of buildings and related infrastructure.

More information

THE IMPACT OF DEEP UNDERGROUND COAL MINING ON EARTH FISSURE OCCURRENCE

THE IMPACT OF DEEP UNDERGROUND COAL MINING ON EARTH FISSURE OCCURRENCE Acta Geodyn. Geomater., Vol. 13, No. 4 (184), 321 330, 2016 DOI: 10.13168/AGG.2016.0014 journal homepage: https://www.irsm.cas.cz/acta ORIGINAL PAPER THE IMPACT OF DEEP UNDERGROUND COAL MINING ON EARTH

More information

Theory of Shear Strength

Theory of Shear Strength SKAA 1713 SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 SOIL STRENGTH DEFINITION Shear strength of a soil is the maximum internal resistance to applied shearing forces The maximum or

More information

Theory of Shear Strength

Theory of Shear Strength MAJ 1013 ADVANCED SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 Strength of different materials Steel Concrete Soil Tensile strength Compressive strength Shear strength Complex behavior

More information

Landslide FE Stability Analysis

Landslide FE Stability Analysis Landslide FE Stability Analysis L. Kellezi Dept. of Geotechnical Engineering, GEO-Danish Geotechnical Institute, Denmark S. Allkja Altea & Geostudio 2000, Albania P. B. Hansen Dept. of Geotechnical Engineering,

More information

STRESS DROP AS A RESULT OF SPLITTING, BRITTLE AND TRANSITIONAL FAULTING OF ROCK SAMPLES IN UNIAXIAL AND TRIAXIAL COMPRESSION TESTS

STRESS DROP AS A RESULT OF SPLITTING, BRITTLE AND TRANSITIONAL FAULTING OF ROCK SAMPLES IN UNIAXIAL AND TRIAXIAL COMPRESSION TESTS Studia Geotechnica et Mechanica, Vol. 37, No. 1, 2015 DOI: 10.1515/sgem-2015-0003 STRESS DROP AS A RESULT OF SPLITTING, BRITTLE AND TRANSITIONAL FAULTING OF ROCK SAMPLES IN UNIAXIAL AND TRIAXIAL COMPRESSION

More information

Advanced numerical modelling methods of rock bolt performance in underground mines

Advanced numerical modelling methods of rock bolt performance in underground mines University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2010 Advanced numerical modelling methods of rock bolt performance in underground mines

More information

Numerical modelling for estimation of first weighting distance in longwall coal mining - A case study

Numerical modelling for estimation of first weighting distance in longwall coal mining - A case study University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2012 Numerical modelling for estimation of first weighting distance in longwall coal

More information

ON THE FACE STABILITY OF TUNNELS IN WEAK ROCKS

ON THE FACE STABILITY OF TUNNELS IN WEAK ROCKS 33 rd 33 Annual rd Annual General General Conference conference of the Canadian of the Canadian Society for Society Civil Engineering for Civil Engineering 33 e Congrès général annuel de la Société canadienne

More information

Soil strength. the strength depends on the applied stress. water pressures are required

Soil strength. the strength depends on the applied stress. water pressures are required Soil Strength Soil strength u Soils are essentially frictional materials the strength depends on the applied stress u Strength is controlled by effective stresses water pressures are required u Soil strength

More information

ROCK MASS CHARACTERISATION IN ENGINEERING PRACTICE

ROCK MASS CHARACTERISATION IN ENGINEERING PRACTICE Paul MARINOS NTUA, School of Civil Engineering, 9 Iroon Polytechniou str., Athens, 157 80, Greece, e-mail : marinos@central.ntua.gr ROCK MASS CHARACTERISATION IN ENGINEERING PRACTICE 1. INTRODUCTION The

More information

TWO DIMENSIONAL MODELING AND STABILITY ANALYSIS OF SLOPES OVERLAYING TO SHAHID RAGAEE POWER PLANT

TWO DIMENSIONAL MODELING AND STABILITY ANALYSIS OF SLOPES OVERLAYING TO SHAHID RAGAEE POWER PLANT 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1637 TWO DIMENSIONAL MODELING AND STABILITY ANALYSIS OF SLOPES OVERLAYING TO SHAHID RAGAEE POWER PLANT Mohammad

More information

Effect Of The In-Situ Stress Field On Casing Failure *

Effect Of The In-Situ Stress Field On Casing Failure * Effect Of The In-Situ Stress Field On Casing Failure * Tang Bo Southwest Petroleum Institute, People's Republic of China Lian Zhanghua Southwest Petroleum Institute, People's Republic of China Abstract

More information

25th International Conference on Ground Control in Mining

25th International Conference on Ground Control in Mining ANALYTICAL INVESTIGATION OF SHAFT DAMAGES AT WEST ELK MINE Tim Ross, Senior Associate Agapito Associates, Inc. Golden, CO, USA Bo Yu, Senior Engineer Agapito Associates, Inc. Grand Junction, CO, USA Chris

More information

Behaviour of Blast-Induced Damaged Zone Around Underground Excavations in Hard Rock Mass Problem statement Objectives

Behaviour of Blast-Induced Damaged Zone Around Underground Excavations in Hard Rock Mass Problem statement Objectives Behaviour of Blast-Induced Damaged Zone Around Underground Excavations in Hard Rock Mass Problem statement Blast-induced damaged zone can affect the affect stability and performance of tunnel. But, we

More information

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME:

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME: MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY EXAMINER: WM BESTER SUBJECT CODE: COMRMC EXAMINATION DATE: OCTOBER 2017 TIME: MODERATOR: H YILMAZ TOTAL MARKS: [100] PASS MARK: (60%)

More information

DESTRESS BLASTING AS A PROACTIVE MEASURE AGAINST ROCKBURSTS. PETR KONICEK Czech Academy of Sciences, Institute of Geonics

DESTRESS BLASTING AS A PROACTIVE MEASURE AGAINST ROCKBURSTS. PETR KONICEK Czech Academy of Sciences, Institute of Geonics 1 DESTRESS BLASTING AS A PROACTIVE MEASURE AGAINST ROCKBURSTS PETR KONICEK Czech Academy of Sciences, Institute of Geonics 1. Introduction 2. Natural and mining conditions 3. Destress blasting as an active

More information

SEISMIC PEAK PARTCILE VELOCITY AND ACCELERATION RESPONSE TO MINING FACES FIRING IN A LIGHT OF NUMERICAL MODELING AND UNDERGROUND MEASUREMENTS

SEISMIC PEAK PARTCILE VELOCITY AND ACCELERATION RESPONSE TO MINING FACES FIRING IN A LIGHT OF NUMERICAL MODELING AND UNDERGROUND MEASUREMENTS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Number of tremors SEISMIC PEAK PARTCILE VELOCITY AND ACCELERATION

More information

Minimization Solutions for Vibrations Induced by Underground Train Circulation

Minimization Solutions for Vibrations Induced by Underground Train Circulation Minimization Solutions for Vibrations Induced by Underground Train Circulation Carlos Dinis da Gama 1, Gustavo Paneiro 2 1 Professor and Head, Geotechnical Center of IST, Technical University of Lisbon,

More information

1. Rock Mechanics and mining engineering

1. Rock Mechanics and mining engineering 1. Rock Mechanics and mining engineering 1.1 General concepts Rock mechanics is the theoretical and applied science of the mechanical behavior of rock and rock masses; it is that branch of mechanics concerned

More information

EXAMINATION PAPER MEMORANDUM

EXAMINATION PAPER MEMORANDUM EXAMINATION PAPER MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 3.1 : HARD ROCK TABULAR EXAMINER: PJ LE ROUX SUBJECT CODE: COMRMC EXAMINATION DATE: MAY 2015 TIME: MODERATOR: WM BESTER TOTAL MARKS:

More information

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai Geosynthetics and Reinforced Soil Structures Reinforced Soil Walls continued Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai e-mail: gopalkr@iitm.ac.inac in Outline of the Lecture

More information

Calculation of periodic roof weighting interval in longwall mining using finite element method

Calculation of periodic roof weighting interval in longwall mining using finite element method Calculation of periodic roof weighting interval in longwall mining using finite element method Navid Hosseini 1, Kamran Goshtasbi 2, Behdeen Oraee-Mirzamani 3 Abstract The state of periodic loading and

More information

Cavity Expansion Methods in Geomechanics

Cavity Expansion Methods in Geomechanics Cavity Expansion Methods in Geomechanics by Hai-Sui Yu School of Civil Engineering, University of Nottingham, U. K. KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON TABLE OF CONTENTS Foreword Preface

More information

Instructor : Dr. Jehad Hamad. Chapter (7)

Instructor : Dr. Jehad Hamad. Chapter (7) Instructor : Dr. Jehad Hamad Chapter (7) 2017-2016 Soil Properties Physical Properties Mechanical Properties Gradation and Structure Compressibility Soil-Water Relationships Shear Strength Bearing Capacity

More information

A STUDY ON THE BLASTING VIBRATION CONTROL OF CREEP MASS HIGH SLOPE

A STUDY ON THE BLASTING VIBRATION CONTROL OF CREEP MASS HIGH SLOPE A STUDY ON THE BLASTING VIBRATION CONTROL OF CREEP MASS HIGH SLOPE CEN Li, JIANG Cang-ru School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, P.R.China Email: myfqp@tom.com

More information

Engineering Geophysical Application to Mine Subsidence Risk Assessment

Engineering Geophysical Application to Mine Subsidence Risk Assessment Engineering Geophysical Application to Mine Subsidence Risk Assessment By: Kanaan Hanna, Sr. Mining Engineer Steve Hodges, Sr. Geophysicist Jim Pfeiffer, Sr. Geophysicist Dr. Keith Heasley, Professor West

More information

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes Section 19.1 - Forces Within Earth 8 th Grade Earth & Space Science - Class Notes Stress and Strain Stress - is the total force acting on crustal rocks per unit of area (cause) Strain deformation of materials

More information

Lecture 15: Subsidence

Lecture 15: Subsidence Lecture 15: Subsidence Key Questions 1. How does removal of groundwater cause subsidence on a regional scale? 2. Under what conditions does a building sink into sediment? 3. Why do clays consolidate more

More information

Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities

Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities Hany El Naggar, Ph.D., P. Eng. and M. Hesham El Naggar, Ph.D., P. Eng. Department of Civil Engineering

More information

KEY ASPECTS OF THE PROPER FORMULATION OF THE MODEL IN NUMERICAL ANALYSIS OF THE INFLUENCE OF MINING EXPLOITATION ON BUILDINGS

KEY ASPECTS OF THE PROPER FORMULATION OF THE MODEL IN NUMERICAL ANALYSIS OF THE INFLUENCE OF MINING EXPLOITATION ON BUILDINGS Studia Geotechnica et Mechanica, Vol. XXXVI, No. 2, 2014 DOI: 10.2478/sgem-2014-0016 KEY ASPECTS OF THE PROPER FORMULATION OF THE MODEL IN NUMERICAL ANALYSIS OF THE INFLUENCE OF MINING EXPLOITATION ON

More information

Background. Valley fills Sites in the Area. Construction over Mine Spoil Fills

Background. Valley fills Sites in the Area. Construction over Mine Spoil Fills Construction over Mine Spoil Fills Wayne A. Karem, PhD, PE, PG, D.GE 2014 KSPE Annual Conference Background Strip mining; mountaintop and contour mining Creates huge quantities of mine spoil The mine spoil

More information

Numerical Simulation of Unsaturated Infilled Joints in Shear

Numerical Simulation of Unsaturated Infilled Joints in Shear University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2018 Numerical Simulation of Unsaturated Infilled Joints in Shear Libin Gong University

More information

Finite difference modelling in underground coal mine roadway

Finite difference modelling in underground coal mine roadway University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2017 Finite difference modelling in underground coal mine roadway Ali Akbar Sahebi University

More information

16 Rainfall on a Slope

16 Rainfall on a Slope Rainfall on a Slope 16-1 16 Rainfall on a Slope 16.1 Problem Statement In this example, the stability of a generic slope is analyzed for two successive rainfall events of increasing intensity and decreasing

More information

Y. Shioi 1, Y. Hashizume 2 and H. Fukada 3

Y. Shioi 1, Y. Hashizume 2 and H. Fukada 3 Y. Shioi 1, Y. Hashizume 2 and H. Fukada 3 1 Emeritus Professor, Hachinohe Institute of Technology, Hachinohe, Japan 2 Chief Engineer, Izumo, Misawa, Aomori, Japan 3 Profesr, Geo-Technical Division, Fudo

More information

Deep Foundations 2. Load Capacity of a Single Pile

Deep Foundations 2. Load Capacity of a Single Pile Deep Foundations 2 Load Capacity of a Single Pile All calculations of pile capacity are approximate because it is almost impossible to account for the variability of soil types and the differences in the

More information

Three-dimensional settlement analysis of a primary crusher station at a copper mine in Chile

Three-dimensional settlement analysis of a primary crusher station at a copper mine in Chile Three-dimensional settlement analysis of a primary crusher station at a copper mine in Chile B. Méndez Rizzo Associates Chile S.A., Santiago, Chile D. Rivera Rizzo Associates Inc., Pittsburgh, PA, USA

More information

A circular tunnel in a Mohr-Coulomb medium with an overlying fault

A circular tunnel in a Mohr-Coulomb medium with an overlying fault MAP3D VERIFICATION EXAMPLE 9 A circular tunnel in a Mohr-Coulomb medium with an overlying fault 1 Description This example involves calculating the stresses and displacements on a fault overlying a 5 m

More information

Application of a transversely isotropic brittle rock mass model in roof support design

Application of a transversely isotropic brittle rock mass model in roof support design University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2012 Application of a transversely isotropic brittle rock mass model in roof support

More information

Numerical Analysis of the Influence of Seepage on the Displacement Law of Different Overburden Strata

Numerical Analysis of the Influence of Seepage on the Displacement Law of Different Overburden Strata 2nd International Forum on lectrical ngineering and Automation (IFA 2015) Numerical Analysis of the Influence of Seepage on the Displacement Law of Different Overburden Strata WANG Yun-ping1, a, ZHAO De-shen2,

More information

Module 9 : Foundation on rocks. Content

Module 9 : Foundation on rocks. Content FOUNDATION ON ROCKS Content 9.1 INTRODUCTION 9.2 FOUNDATION TYPES ON ROCKS 9.3 BEARING CAPCITY- SHALLOW FOUNDATION 9.3.1 Ultimate bearing capacity 9.3.2 Safe bearing pressure 9.3.3 Estimation of bearing

More information

Estimating the Probability of Mining-Induced Seismic Events Using Mine-Scale, Inelastic Numerical Models

Estimating the Probability of Mining-Induced Seismic Events Using Mine-Scale, Inelastic Numerical Models Deep Mining 07 Y. Potvin (ed) 2007 Australian Centre for Geomechanics, Perth, ISBN 978-0-9804185-2-1 https://papers.acg.uwa.edu.au/p/711_2_beck/ Estimating the Probability of Mining-Induced Seismic Events

More information

NUMERICAL VERIFICATION OF GEOTECHNICAL STRUCTURE IN UNFAVOURABLE GEOLOGICAL CONDITIONS CASE STUDY

NUMERICAL VERIFICATION OF GEOTECHNICAL STRUCTURE IN UNFAVOURABLE GEOLOGICAL CONDITIONS CASE STUDY NUMERICAL VERIFICATION OF GEOTECHNICAL STRUCTURE IN UNFAVOURABLE GEOLOGICAL CONDITIONS CASE STUDY Abstract Marián DRUSA Department of Geotechnics, Faculty of Civil Engineering, Univerzity of Žilina, Univerzitná

More information

Geology 229 Engineering and Environmental Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

Geology 229 Engineering and Environmental Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6) Geology 229 Engineering and Environmental Geology Lecture 5 Engineering Properties of Rocks (West, Ch. 6) Outline of this Lecture 1. Triaxial rock mechanics test Mohr circle Combination of Coulomb shear

More information

Monitoring of underground construction

Monitoring of underground construction Monitoring of underground construction Geotechnical Aspects of Underground Construction in Soft Ground Yoo, Park, Kim & Ban (Eds) 2014 Korean Geotechnical Society, Seoul, Korea, ISBN 978-1-138-02700-8

More information

Study of the Stress-Strain State in the Mined Potassium Massif with Inclined Bedding

Study of the Stress-Strain State in the Mined Potassium Massif with Inclined Bedding Geomaterials, 2014, 4, 1-10 Published Online January 2014 (http://www.scirp.org/journal/gm) http://dx.doi.org/10.4236/gm.2014.41001 Study of the Stress-Strain State in the Mined Potassium Massif with Inclined

More information

Simplify the Structure of The Surface Mining and Analytic Calculation

Simplify the Structure of The Surface Mining and Analytic Calculation Research Paper Simplify the Structure of The Surface Mining and Analytic Calculation Zhang Mei 1, Meng Da 2 1.Agricultural University of Hebei, College of Urban and Rural Construction, Baoding, 071000,

More information

SINKHOLES WHERE AND WHY THEY FORM

SINKHOLES WHERE AND WHY THEY FORM SINKHOLES WHERE AND WHY THEY FORM In the wake of the sinkhole that developed beneath a Florida man s bedroom, tragically killing the man as he was sucked into the earth, many people are searching for information.

More information

Numerical Study of Relationship Between Landslide Geometry and Run-out Distance of Landslide Mass

Numerical Study of Relationship Between Landslide Geometry and Run-out Distance of Landslide Mass Numerical Study of Relationship Between Landslide Geometry and Run-out Distance of Landslide Mass Muneyoshi Numada Research Associate, Institute of Industrial Science, The University of Tokyo, Japan Kazuo

More information

Influences of material dilatancy and pore water pressure on stability factor of shallow tunnels

Influences of material dilatancy and pore water pressure on stability factor of shallow tunnels Influences of material dilatancy and pore water pressure on stability factor of shallow tunnels YANG Xiao-li( ), HUANG Fu( ) School of Civil and Architectural Engineering, Central South University, Changsha

More information

THE VOUSSOIR BEAM REACTION CURVE

THE VOUSSOIR BEAM REACTION CURVE THE VOUSSOIR BEAM REACTION CURVE Yossef H. Hatzor Ben-Gurion University, Department of Geological and Environmental Sciences Beer-Sheva, Israel, 84105 ABSTRACT: The influence of joint spacing (s) on the

More information

An introduction to the Rock Mass index (RMi) and its applications

An introduction to the Rock Mass index (RMi) and its applications Reference: A. Palmström, www.rockmass.net An introduction to the Rock Mass index (RMi) and its applications by Arild Palmström, Ph.D. 1 Introduction Construction materials commonly used in civil engineering

More information

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression FAILURE CRITERIA OF ROCK AND ROCK MASSES Contents 5.1 Failure in rocks 5.1.1 Hydrostatic compression 5.1.2 Deviatoric compression 5.1.3 Effect of confining pressure 5.2 Failure modes in rocks 5.3 Complete

More information

Global Monitoring of Changes in the Rock Mass Arising as a Result of Filling the Mining Workings with Wastes.

Global Monitoring of Changes in the Rock Mass Arising as a Result of Filling the Mining Workings with Wastes. Global Monitoring of Changes in the Rock Mass Arising as a Result of Filling the Mining Workings with Krzysztof PIETRUSZKA, Poland Key words: rock mass deformations, FEM modeling, geoinformatics SUMMARY

More information

Rock Slope Analysis Small and Large Scale Failures Mode of Failure Marklands Test To establish the possibility of wedge failure. Plane failure is a special case of wedge failure. Sliding along

More information

Numerical Study on an Applicable Underground Mining Method for Soft Extra-Thick Coal Seams in Thailand

Numerical Study on an Applicable Underground Mining Method for Soft Extra-Thick Coal Seams in Thailand Engineering, 2012, 4, 739-745 http://dx.doi.org/10.4236/eng.2012.411095 Published Online November 2012 (http://www.scirp.org/journal/eng) Numerical Study on an Applicable Underground Mining Method for

More information

Underground Excavation Design Classification

Underground Excavation Design Classification Underground Excavation Design Underground Excavation Design Classification Alfred H. Zettler alfred.zettler@gmx.at Rock Quality Designation Measurement and calculation of RQD Rock Quality Designation index

More information

ANALYSIS OF NATM TUNNEL RESPONSES DUE TO EARTHQUAKE LOADING IN VARIOUS SOILS. Zaneta G. Adme ABSTRACT

ANALYSIS OF NATM TUNNEL RESPONSES DUE TO EARTHQUAKE LOADING IN VARIOUS SOILS. Zaneta G. Adme ABSTRACT ANALYSIS OF NATM TUNNEL RESPONSES DUE TO EARTHQUAKE LOADING IN VARIOUS SOILS Zaneta G. Adme Home Institution: Dept. of Civil and Env. Engineering FAMU-FSU College of Engineering 2525 Pottsdamer St., Tallahassee,

More information

Reservoir Geomechanics and Faults

Reservoir Geomechanics and Faults Reservoir Geomechanics and Faults Dr David McNamara National University of Ireland, Galway david.d.mcnamara@nuigalway.ie @mcnamadd What is a Geological Structure? Geological structures include fractures

More information

Discrete Element Modelling of a Reinforced Concrete Structure

Discrete Element Modelling of a Reinforced Concrete Structure Discrete Element Modelling of a Reinforced Concrete Structure S. Hentz, L. Daudeville, F.-V. Donzé Laboratoire Sols, Solides, Structures, Domaine Universitaire, BP 38041 Grenoble Cedex 9 France sebastian.hentz@inpg.fr

More information

Interpretation of Pile Integrity Test (PIT) Results

Interpretation of Pile Integrity Test (PIT) Results Annual Transactions of IESL, pp. 78-84, 26 The Institution of Engineers, Sri Lanka Interpretation of Pile Integrity Test (PIT) Results H. S. Thilakasiri Abstract: A defect present in a pile will severely

More information

ENGINEERING GEOLOGY AND ROCK ENGINEERING

ENGINEERING GEOLOGY AND ROCK ENGINEERING 1 ENGINEERING GEOLOGY AND ROCK ENGINEERING HANDBOOK NO. 2 Norwegian Group for Rock Mechanics (NBG) www.bergmekanikk.com Prepared in co-operation with Norwegian Tunnelling Society (NFF) Issued in 2000 SECRETARIAT:

More information

3D ANALYSIS OF STRESSES AROUND AN UNLINED TUNNEL IN ROCK SUBJECTED TO HIGH HORIZONTAL STRESSES

3D ANALYSIS OF STRESSES AROUND AN UNLINED TUNNEL IN ROCK SUBJECTED TO HIGH HORIZONTAL STRESSES 3D ANALYSIS OF STRESSES AROUND AN UNLINED TUNNEL IN ROCK SUBJECTED TO HIGH HORIZONTAL STRESSES Abdel Meguid, M. Graduate Student, Department of Civil Engineering, University of Western Ontario, London,

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 19 Module 5: Lecture -1 on Stability of Slopes Contents Stability analysis of a slope and finding critical slip surface; Sudden Draw down condition, effective stress and total stress analysis; Seismic

More information

Table of Contents Development of rock engineering 2 When is a rock engineering design acceptable 3 Rock mass classification

Table of Contents Development of rock engineering 2 When is a rock engineering design acceptable 3 Rock mass classification Table of Contents 1 Development of rock engineering...1 1.1 Introduction...1 1.2 Rockbursts and elastic theory...4 1.3 Discontinuous rock masses...6 1.4 Engineering rock mechanics...7 1.5 Geological data

More information

Estimation of rock cavability in jointed roof in longwall mining

Estimation of rock cavability in jointed roof in longwall mining University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2013 Estimation of rock cavability in jointed roof in longwall mining Alireza Jabinpoor

More information

P16 Gravity Effects of Deformation Zones Induced by Tunnelling in Soft and Stiff Clays

P16 Gravity Effects of Deformation Zones Induced by Tunnelling in Soft and Stiff Clays P16 Gravity Effects of Deformation Zones Induced by Tunnelling in Soft and Stiff Clays V. Blecha* (Charles University) & D. Mašín (Charles University) SUMMARY We calculated gravity response of geotechnical

More information

Laboratory and Numerical Study of Sinkhole Collapse Mechanisms

Laboratory and Numerical Study of Sinkhole Collapse Mechanisms Laboratory and Numerical Study of Sinkhole Collapse Mechanisms Ming Ye (mye@fsu.edu) Department of Scientific Computing Florida State University FSU Karst Workshop 9/25/2015 Research Team (2014 Present)

More information

APPLICATION OF PPV METHOD FOR THE ASSESSMENT OF STABILITY HAZARD OF UNDERGROUND EXCAVATIONS SUBJECTED TO ROCK MASS TREMORS

APPLICATION OF PPV METHOD FOR THE ASSESSMENT OF STABILITY HAZARD OF UNDERGROUND EXCAVATIONS SUBJECTED TO ROCK MASS TREMORS AGH Journal of Mining and Geoengineering Vol. 36 No. 1 2012 Józef Dubi ski *, Grzegorz Mutke * APPLICATION OF PPV METHOD FOR THE ASSESSMENT OF STABILITY HAZARD OF UNDERGROUND EXCAVATIONS SUBJECTED TO ROCK

More information

Prediction of subsoil subsidence caused by opencast mining

Prediction of subsoil subsidence caused by opencast mining Land Subsidence (Proceedings of the Fifth International Symposium on Land Subsidence, The Hague, October 1995). IAHS Publ. no. 234, 1995. 167 Prediction of subsoil subsidence caused by opencast mining

More information

Influence of foliation on excavation stability at Rampura Agucha underground mine

Influence of foliation on excavation stability at Rampura Agucha underground mine Recent Advances in Rock Engineering (RARE 2016) Influence of foliation on excavation stability at Rampura Agucha underground mine P Yadav, A Panda, M Sonam, B Banerjee, S Parihar, and DC Paneri Geotechnical

More information

Calculation and analysis of internal force of piles excavation supporting. based on differential equation. Wei Wang

Calculation and analysis of internal force of piles excavation supporting. based on differential equation. Wei Wang International Conference on Energy and Environmental Protection (ICEEP 016) Calculation and analysis of internal force of piles excavation supporting based on differential equation Wei Wang School of Prospecting

More information

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating.

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating. CH Earthquakes Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating Earthquakes Section 19.4: Earthquakes and Society Section 19.1 Forces

More information

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd

More information

H.Öztürk & E.Ünal Department of Mining Engineering, Middle East Technical University, Ankara, Turkey

H.Öztürk & E.Ünal Department of Mining Engineering, Middle East Technical University, Ankara, Turkey 17th International Mining Congress and Exhibition of Turkey- IMCET2001, 2001, ISBN 975-395-417-4 Estimation of Lining Thickness Around Circular Shafts H.Öztürk & E.Ünal Department of Mining Engineering,

More information

Central Queensland Coal Project Appendix 4b Geotechnical Assessment. Environmental Impact Statement

Central Queensland Coal Project Appendix 4b Geotechnical Assessment. Environmental Impact Statement Central Queensland Coal Project Appendix 4b Geotechnical Assessment Environmental Impact Statement GEOTECHNICAL ASSESSMENT OF OPEN CUT MINING ADJACENT TO THE BRUCE HIGHWAY, CENTRAL QUEENSLAND COAL PROJECT

More information

INFLUENCE OF SHALLOW MINE-WORKINGS ON CRACK FAILURE OF OVERBURDEN STRATA. 1. Introduction. 2. General situation. Yu Xueyi*, Huang Senlin*

INFLUENCE OF SHALLOW MINE-WORKINGS ON CRACK FAILURE OF OVERBURDEN STRATA. 1. Introduction. 2. General situation. Yu Xueyi*, Huang Senlin* Górnictwo i Geoinżynieria Rok 9 Zeszyt 3/ 005 Yu Xueyi*, Huang Senlin* INFLUENCE OF SHALLOW INE-WORKINGS ON CRACK FAILURE OF OVERBURDEN STRATA. Introduction The exploitation of Shendong coalfield causes

More information

Lateral Earth Pressure

Lateral Earth Pressure 1 of 11 6/2/2012 4:28 AM Lateral Earth Pressure The magnitude of lateral earth pressure depends on: 1. Shear strength characteristics of soil 2. Lateral strain condition 3. Pore water pressure 4. State

More information

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials 1.3 Scope of This Book 1.4 Historical Development of Geotechnical

More information

Weak Rock - Controlling Ground Deformations

Weak Rock - Controlling Ground Deformations EOSC 547: Tunnelling & Underground Design Topic 7: Ground Characteristic & Support Reaction Curves 1 of 35 Tunnelling Grad Class (2014) Dr. Erik Eberhardt Weak Rock - Controlling Ground Deformations To

More information

Chapter 6 Bearing Capacity

Chapter 6 Bearing Capacity Chapter 6 Bearing Capacity 6-1. Scope This chapter provides guidance for the determination of the ultimate and allowable bearing stress values for foundations on rock. The chapter is subdivided into four

More information

Rock slope failure along non persistent joints insights from fracture mechanics approach

Rock slope failure along non persistent joints insights from fracture mechanics approach Rock slope failure along non persistent joints insights from fracture mechanics approach Louis N.Y. Wong PhD(MIT), BSc(HKU) Assistant Professor and Assistant Chair (Academic) Nanyang Technological University,

More information

1 Slope Stability for a Cohesive and Frictional Soil

1 Slope Stability for a Cohesive and Frictional Soil Slope Stability for a Cohesive and Frictional Soil 1-1 1 Slope Stability for a Cohesive and Frictional Soil 1.1 Problem Statement A common problem encountered in engineering soil mechanics is the stability

More information

2D Liquefaction Analysis for Bridge Abutment

2D Liquefaction Analysis for Bridge Abutment D Liquefaction Analysis for Bridge Abutment Tutorial by Angel Francisco Martinez Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering

More information

Determination of Incompressibility, Elasticity and the Rigidity of Surface Soils and Shallow Sediments from Seismic Wave Velocities

Determination of Incompressibility, Elasticity and the Rigidity of Surface Soils and Shallow Sediments from Seismic Wave Velocities Journal of Earth Sciences and Geotechnical Engineering, vol. 6, no.1, 2016, 99-111 ISSN: 1792-9040 (print), 1792-9660 (online) Scienpress Ltd, 2016 Determination of Incompressibility, Elasticity and the

More information

Effect of buttress on reduction of rock slope sliding along geological boundary

Effect of buttress on reduction of rock slope sliding along geological boundary Paper No. 20 ISMS 2016 Effect of buttress on reduction of rock slope sliding along geological boundary Ryota MORIYA *, Daisuke FUKUDA, Jun-ichi KODAMA, Yoshiaki FUJII Faculty of Engineering, Hokkaido University,

More information

IZMIT BAY BRIDGE SOUTH APPROACH VIADUCT: SEISMIC DESIGN NEXT TO THE NORTH ANATOLIAN FAULT

IZMIT BAY BRIDGE SOUTH APPROACH VIADUCT: SEISMIC DESIGN NEXT TO THE NORTH ANATOLIAN FAULT Istanbul Bridge Conference August 11-13, 2014 Istanbul, Turkey IZMIT BAY BRIDGE SOUTH APPROACH VIADUCT: SEISMIC DESIGN NEXT TO THE NORTH ANATOLIAN FAULT A. Giannakou 1, J. Chacko 2 and W. Chen 3 ABSTRACT

More information