Instituto de Investigaciones Eléctricas, Cuernavaca, Morelos, México 3 Comisión Federal de Electricidad, GPG. Morelia, Michoacan.

Size: px
Start display at page:

Download "Instituto de Investigaciones Eléctricas, Cuernavaca, Morelos, México 3 Comisión Federal de Electricidad, GPG. Morelia, Michoacan."

Transcription

1 GRC Transactions, Vol. 38, 2014 Significance of Deep Zones of Intense Bleaching and Silicification in the Los Humeros High-Temperature Geothermal Field, Mexico: Evidence of the Effects of Acid Alteration Wilfred A. Elders 1, Georgina Izquierdo-Montalvo 2, Alfonso Aragón Aguilar 2, Rigoberto Tovar Aguado 3, and Magaly Flores Armenta 3 1 Dept. of Earth Sciences, University of California, Riverside CA, USA 2 Instituto de Investigaciones Eléctricas, Cuernavaca, Morelos, México 3 Comisión Federal de Electricidad, GPG. Morelia, Michoacan gim@iie.org.mx Keywords Los Humeros geothermal field, acid alteration, bleaching, leaching, silicification, acid leaching, hydrothermal mineralogy ABSTRACT The Los Humeros geothermal field is a high-temperature, wells produce high steam fraction, with a large resource potential. However, despite the drilling of more than 40 deep wells, many of which encountered > 300 o C steam, it has an installed electrical generating capacity of 40 MWe. Low permeability reservoir rocks and acid fluids that cause accelerated corrosion have hampered development. It has been suggested that acid fluids occur throughout the reservoir. However, this is inconsistent with the marked absence of alteration minerals in the volcanic rocks typical of low ph fluids. Instead the mineralogical evidence indicates that the hydrothermal alteration of the reservoir rocks is typical of f neutral to alkaline ph waters. Thus it appears that since the reservoir has apparently transitioned from being waterdominated to being vapor-dominated in the geologically recent past. An example of local acid leaching that formed a bleached, intensely silicified, zone is found at a depths of about 2000 m in a non-productive but very hot (>370 o C) well. These rocks retain the textures of a lithic crystal tuff. The altered rock consists almost entirely of microcrystalline quartz, with sparse relic pseudomorphs of plagioclase phenocrysts and traces of chlorite and pyrite. This zone is approximately 160 m thick; and the deeper rocks lack this silicification. Smaller similarly bleached silicified zones in adjacent wells have been recognized in drill cuttings at different depths. These observations are interpreted to result from lateral flow of corrosive fluids. The origin of these acid fluids is still a subject of debate. They may represent emanations from a magma chamber or be due to post-exploitation processes (e.g. reaction of water and salts forming hydrogen chloride 497 by hydrolysis at high temperatures). The very high boron content of the fluids produced by the Los Humeros wells suggests that the ultimate source of the acid gases is most likely magmatic. These acid gases have not reacted widely with the rocks. We suggest that the silicified zones are forming locally where descending waters encounter superheating steam containing acid gas and form low ph liquids that react and leach the rocks. Introduction The Los Humeros geothermal field (LHGF) is situated within a large caldera in the western part of the state of Puebla, Mexico, about 280 km east of Mexico City (Figure 1). The Los Humeros Figure 1. Map of the Los Humeros geothermal field within the Los Potreros Collapse caldera in the southern part of the larger Los Humeros caldera, showing the smaller volcanic crater Xalapazco Mastaloya together with known and inferred faults. The numbered well locations are shown without the preceding letter H. (Lopez-Romero, 2006).

2 caldera lies in the north-eastern part of the calc-alkaline Trans- Mexican Volcanic Belt. It is associated with the subduction of the Cocos Plate along the Middle American Trench (Verma, 1983). The Los Humeros caldera has had a complex history (Ferriz and Mahood, 1984). Its dimensions are 21 by 15 km but its margins tend to be obscured by younger volcanic rocks, except in the northeast quadrant where the topographic rim is visible. The oldest rocks of the caldera are > 1.6 Ma porphyritic andesites and ferrobasalts of the Teziutlán Formation. These rocks have a volume of 60 km 3. At 0.46 Ma, main collapse of the Los Humeros caldera was initiated by the eruption of the mostly non-welded Xáltipan Ignimbrite, aphyric high-silica rhyolite; which has an estimated volume of 115 km 3. e. The ignimbrite is overlain by air-fall lapilli tuffs ranging from rhyodacite to andesite in composition. The amount of collapse, determined by the offset of the lower contact of this ignimbrite is about 450 m. The next pyroclastic eruption was the Faby Tuff with a volume of approximately 10 km 3, a thickness of 16 m, and age of 0.2 to 0.3 Ma This eruption was followed by a period of quiescence, erosion and the formation of lake deposits. The next pyroclastic eruption formed the 0.1 Ma Zaragoza Tuff, which has a volume of 12 km 3. It consists of non-welded ignimbrite and an overlying lithic-rich airfall tuff. The Zaragoza Tuff was associated with the collapse of the 10 km diameter Los Potreros caldera in the southern part of the Los Humeros caldera. This rhyodacite tuff contains pumice with phenocrysts of pyroxenes, plagioclase, and Fe-Ti oxides. Based on an apparent displacement of 375 m of the base of the Xáltipan Tuff between boreholes H2 outside the collapse structure and H3 and H4 within it, the estimated volume of the magma erupted during this collapse was 17 km 3. There was then a change to magmas of more variable composition. The next major eruptions produced 6 km 3 of andesite at Ma and 10 km 3 of rhyodacite at Ma. The most recent eruptions produced 0.25 km 3 of olivine basalt of an age of <0.02 Ma (Ferriz and Mahood, 1984). Los Humeros Geothermal Field The Los Humeros geothermal field (LHGF) lies entirely within the Los Potreros Collapse caldera (Figure 1). More than 40 exploration, production and injection wells have been drilled to depths between 1500 and 3100 m. These wells have encountered temperatures as high as 378 o C at less than 3,000 m depth. The subsurface geology of the field has been described by (Viggiano and Robles (1988) Cedillo (1997) and Gutiérrez-Negrín and Izquierdo-Montalvo (2010). These authors identified four basic units with variable thicknesses. However, not all of the units are observed in every well. Unit 1. Post-Caldera Volcanism; Quaternary, 0.1 Ma. This unit is composed of andesite basalt, dacite, rhyolite flows and tuffs, pumice, and ejecta from phreatic eruptions. Its thickness is between 90 and 1010 m, but averages 340 m. It contains shallow cold aquifers. Unit 2. Volcanic Caldera; Quaternary Ma. This unit consists of lithic and glassy ignimbrites, from two eruptive centers; Los Humeros and Los Potreros. It includes tuffs, andesitic lavas, and rhyolite domes. Its thickness is between 185 and 880 m, but averages 600 m. This unit forms a low permeability aquitard or caprock. 498 Unit 3. Pre-caldera Volcanism; Miocene Pliocene, Ma. This unit is composed of andesite flows, with interbedded tuffs, basalts, dacite, and rhyolite. In the upper andesite flows the characteristic mafic mineral is augite and in the deeper andesites, it is hornblende. The unit is between 90 and 2600 m thick, but averages 1200 m. Unit 3 is the host rock for the geothermal fluids, its permeability varies from low to medium. Unit 4. Basement; Jurassic-Oligocene, Ma. The basement complex is composed of limestone with subordinate shale and chert. It is intruded by stocks of, granite, granodiorite, tonalite younger (Miocene) dikes of diabasic composition. Contact metamorphism has altered the sedimentary rocks to marble, skarn, and hornfels.the total thickness of the unit is unknown. High temperatures and low permeabilities characterize this basement complex. Chemical Characteristics of the Los Humeros Geothermal Fluids Most of the wells in the LHGF produce high steam fraction with a small liquid fraction and enthalpies greater than 2600 J/g). The chemical composition of separated water indicates that they steam condensates. With the exception of boron and silica; the concentrations of the major cations are low. The total flow of geothermal fluids from the wells of this field is generally of sodium chloride type with lesser amounts of sodium sulfate. Representative fluids from the hottest producing wells are characterized by high boron concentrations (> 2,000 ppm), relatively high but variable concentrations of SiO2 ( ppm) and low concentrations of cations such as Na, K, Ca and Mg. Despite the acid nature of the condensed steam, in the majority of the total produced flows is reported to have ph s near neutral with low Cl concentrations (Tello, 1991). Table 1 presents the chemical analyses of separated water of six steam wells sampled in November The capital N, C and S, attached at the well number refers to the area of the field where the well is located, north, center, or south. The main anions are B and SiO 2. Table 1. Chemical analysis of separated water from 6 wells at Los Humeros. Concentration is given in mg/l. N is for north, C for center and S for south (unpublished analyses by Izquierdo). Well Cl HCO 3 SO 4 Na K Ca Mg SiO 2 B Fe Mn H-35/N H-37/N H-19/C H-45/C H-6/S H-39/S With time, the steam fractions of the wells typically increase, which favors the transport of volatile species. The origin of the high concentrations of boron is unknown but it is likely that it is a mobile magmatic species, as there are no boron-rich minerals found in the reservoir. We suggest the relatively high and variable concentrations of SiO 2 are due to interaction of the acid condensates with the rocks. Our studies of the hydrothermal alteration

3 indicate that locally acid condensates cause reactions with the reservoir rocks preferentially dissolving Na, K, Ca, and Mg from primary and secondary minerals leaving behind microcrystalline quartz and a fluid with higher ph. Hydrothermal Alteration in the Los Humeros Geothermal Field The results of fluid/rock interactions are ubiquitous in moderate to high-temperature geothermal systems. The nature and abundance of hydrothermal minerals are functions of temperature, fluid composition, ph, and water/rock ratio (Browne, 1978). Assemblages of hydrothermal minerals thus record the processes and conditions that have occurred in a geothermal reservoir (Elders, 1977). Two broadly different hydrothermal assemblages are commonly recognized (Browne, 1978; Henley and Ellis, 1983, Reyes, 1990; 1992). The most common is produced by interactions with neutral ph to basic sodium chloride fluids. Less commonly, acid argillic alteration is formed by reaction of the rocks with fluids of low ph, usually hydrochloric or sulfuric acids (argillic). Table 2 presents a summary of the hydrothermal minerals that are most typical of different ranges of temperature and ph. Table 2. Occurrence of common hydrothermal minerals as function of temperature and ph, (Compiled from Browne, 1978, Henley and Ellis, 1983 and Reyes, 1990; 1992). Acid environment ph < 100 C < 200 C > 250 C Cristobalite, Kaolinite, Halloysite, Alunite Kaolinite, Quartz, Alunite, Pyrite, Illite Near neutral Clay Minerals Interstratified clay minerals, Illite, Chlorite, Feldspars Neutral to alkaline environment Zeolites, Clay Minerals (Smectites) Zeolites, Prehnite, Chlorite, Quartz, Calcite Diaspore, Pyrophyllite, Quartz, Pyrite Illite, Actinolite, Epidote Wairakite, Epidote, Chlorite, Biotite, Prehnite, Amphiboles The reservoir rocks of LHGF contain abundant hydrothermal alteration minerals. Figure 2 is a compilation showing the temperature ranges of these alteration minerals as determined by Viggiano and Robles (1988) and Martínez and Alibert (1994). Our work indicates that the main alteration minerals are chlorite, epidote, quartz, calcite, and minor leucoxene and pyrite. Other alteration minerals we have identified include smectite, kaolinite, illite, anhydrite, amphiboles and garnet. As illustrated in Table 1, these hydrothermal mineral assemblages are typical of those produced by neutral or alkaline fluids. In spite of the chemistry of the fluids produced from the wells, mineral assemblages typical of acid alteration are not observed in the deep geothermal reservoir. The intensity of alteration of these rocks is variable, depending on rock permeability. Minerals that change as a function of temperature, rock and fluid composition, such as phyllosilicates and zeolites, which is common in other geothermal reservoirs, has not been observed in the LHGF reservoir. X-ray diffraction (XRD) analysis the clay fraction of samples from wells H14, H15, H17 and H29 (Libreros, 1991; Izquierdo, Figure 2. Temperature ranges of major hydrothermal alteration minerals observed in various wells in the LHGF (Modified from Martínez and Alibert, 1994). 1993) showed the presence of kaolinite but only as a replacement of volcanic glass in the ignimbrites at shallow depths. Superficial argillic alteration indicative of a low ph, oxidizing environment is only observed at shallow depths. This alteration is produced by H 2 SO 4 formed by oxidation of H 2 S at the surface. XRD analyses of surface samples from to the vicinity of wells H4, H7, H9 and close to the Xalapasco Mastaloya cratercontain alunite, kaolinite, gypsum, jarosite, alunogen and alum (Arellano et al., 1998). These zones of superficial argillic alteration are located along mapped faults. Results Deep Zones of Bleaching, Leaching, and Silicification As mentioned above, mineral assemblages characteristic of acid alteration have not been seen in the deeper reservoir rocks. However evidence of local interaction with acid fluids is present. The best example is seen in samples well H26, which was drilled in 1988 in the eastern part of the geothermal field near the central part of the Los Potreros caldera (Figure 1). It is located 1360 m from well H1, in an east-northeast direction; 950 m from well H23 in a west-southwest direction, and 100 m distant from well H26 in a north-northwest direction (Figure 1). H1 and H6 are in production, but because of very low permeabilities H23 and H26 are non-producers and currently shut-in observation wells. Well H26 is unique in that: (1) five drill cores were obtained from it; and (2) the initial well report by the field operator, the Comisión Federal de Electricidad, suggested that it had the highest static temperature observed in the field (378 C). However this temperature was not measured directly but was calculated using Horner plots from the rate of heating observed in repeated temperature surveys measured shortly after drilling and before the well reached thermal equilibrium (Figure 3). Mechanical problems 499

4 Figure 4. A cut surface of core 4 from well H26 ( m depth), is a bleached lithic crystal tuff showing relict eutaxitic (welded) textures. Examination of drill cuttings indicates that the thickness of this altered zone in well H26 is about 160 m. The results of different processes can be obfigure 3. Loss of circulation (m3/h) during drilling of well H26, with selected temperature served in this silicified zone. Firstly, the protolith of logs. T/30 temperature log 12 hours after circulation ceased, T/31 after 18 hours, T/32 after this rock is a welded tuff, which at this depth, is most 24 hours, T/36 after 490 hours. Stars = static temperatures estimated by the Horner method. likely part of Unit 3, the pre-caldera volcanism that The column on the right shows 1ithology:1 = pumiceous tuff, basalt and andesite; 2 = lithic has subsequently subsided and was buried by 2.1 km tuff; 3 = ignimbrite; 4 = augite andesite; 5 = vitric tuff, 6 = hornblende andesite (Arellano et thickness of younger rocks. The dominant feature of al., 1998). the altered rock is the absence of primary minerals except for relict plagioclase, and micro crystalline quartz, and the due to an obstruction at about 400 m depth evidently prevented usual hydrothermal alteration minerals that would be expected further temperature logging. at these temperatures, such as epidote, biotite, garnet, actinolite Figure 3 is summary of data for well H-26, taken from Areland diopside. It appears that silicification was not as an additive lano et al., 1998; it includes data from an internal unpublished process, but was caused by partial dissolution that leached out the report from the Comisión Federal de Electricidad. Near 2000 m more easily dissolved components and generated millimeter sized depth, it mentions an occurrence of a silicified andesite. The cavities, sometimes empty or partly mineralized with microcrystalreport also notes an unusually high concentration of boron in the line quartz and minute crystals of pyrite. returned drilling muds, with a maximum concentration of 862 ppm We can speculate about the timing and environment of this (by weight) at 2000 m depth, but diminishing at greater depths. bleaching and silicification. As indicated above, superficial althe best samples of this silicified andesite come from teration indicative of a low ph environment is locally observed a drill core taken at m depth in well H26. The at shallow depths in the LHGF, and similar processes could have altered rock is cream colored and consists almost entirely of microcrystalline quartz, relict pseudomorphs of primary plagioclase phenocrystals and traces of hydrothermal epidote, chlorite and pyrite. Our examination of drill cuttings indicates that the thickness of this altered zone is about 160 m. In spite of the high degree of alteration, primary pyroclastic textures are still discernible in this drill core, but are generally difficult to identify in the drill cuttings from this well. Figure 4 shows a fragment of this core from 2000 m in well Figure 5. Photomicrographs of the core in well H26 at m. It shows plagioclase crystals in a matrix of mih26 and photomicrographs are crocrystalline quartz. The foliation of the groundmass defines an augen-like texture that is a recrystallized, eutaxitic (welded tuff) texture. Left plane polarized light. Right crossed nicols. shown in Figure

5 operated on these rocks before they subsided. In contrast, rocks in Unit 2 and Unit 3 in well H26 have been propylitically altered and contain hydrothermal epidote, and chlorite. Propylitic alteration is common throughout the reservoir. Only minute remnants of these hydrothermal minerals are seen in the bleached silicified zone at 2000 m depth, and where present the hydrothermal chlorite and epidote are partially dissolved, indicating that the propyltic alteration occurred before the bleaching, leaching and silicification. The samples of core 4 of the well H26 are a witness to a bleaching and silicification process caused by lixiviation, a process of selective dissolution, leaving the less soluble residues enriched in silica relative to the parent rock. The restricted thickness of this bleached and silicified zone in well H26 shows that the trajectory of the ascent of these fluids was lateral. Core and drill cutting samples from above and below the bleached zone do not exhibit the effects of acid leaching, but do show hydrothermal alteration with quartz, epidote and chlorite due to interaction with neutral or basic fluids. Similar bleaching and relative increases in proportions of silica and leaving minute cavities, and open micro-fractures is in deep samples from wells H10, H19, H23 and H27 at different depths. Further studies are underway to better understand the processes of the acid lixiviation that occurred. These studies include more detailed petrography, investigation of fluid inclusions, and chemical and petrophysical analyses of the rocks to investigate the transfer of components between the fluids and rocks. A complementary experimental study of reaction of various mixtures and concentrations of acid solutions with the reservoir rocks of the LHGF has also been undertaken. The results of those on-going studies will be reported later. Discussion In spite of its large resource potential, development of the highenthalpy Los Humeros Geothermal Field is a challenge because of the low permeability of large sections of the field and the acid nature of the produced fluids. Another challenge is to understand the evolution of this complex system. It is now a vapor-dominated system and the production fluids are mostly mixtures of steam and acidic steam condensate with liquid fractions of about However, the hydrothermal alteration of the reservoir rocks at Los Humeros is typical of the interaction of volcanic rocks with waters of neutral to alkaline ph. Thus it appears that a transition from a neutral water-dominated reservoir to an acid vapor-dominated reservoir has been geologically recent and this transition was accompanied by, and due to, a reduction in permeability and a lowering of fluid pressures that induced widespread boiling in the reservoir. Perhaps in the future, the deep reservoir of the LHGF could be considered as a candidate for an Enhanced Geothermal System (EGS) in which hydrofracturing would create permeability and the acid chemistry may be mitigated by controlling the chemistry of the injected fluids. Locally the results of acid alteration can be seen in the reservoir rocks in the form of bleached silicified zones that indicate that lateral flow of corrosive fluids formed zones of bleaching, leaching and silicification. Because the locations and volumes of acid altered rocks in the reservoir are quite restricted, in spite of the acid nature of the fluids produced by the wells, these acid fluids could not have been widespread in the reservoir or could not have had a long residence time in the geothermal system. The origin of these acid fluids is also unclear. Acid conditions are fairly common in vapor-dominated systems such as Larderello and the Geysers due to the formation of acid condensates. Truesdell (1991) described a process whereby HCl can be generated in situ in deep reservoirs where superheated steam hydrolyzes NaCl by reaction with silicates. Acid liquids coming from great depth would have to move through the basement beneath the caldera and would tend to be neutralized as the basement contains a large proportion of marbles and limestones, unless the acid gases move in superheated steam or supercritical vapor, precluding the formation of acid condensates. Conclusions Drill hole samples from depths of about 2 km in a very hot (>370 o C) but low permeability part of the LHGF show evidence of local acid leaching that formed a bleached, intensely silicified, zones consisting almost entirely of microcrystalline quartz. Lateral flow of corrosive fluids formed these zones of bleaching and silicification, but the effects of these fluids are quite restricted in space so that they either formed only locally or they could not have had a long residence time in the geothermal system. The origin of these acid fluids is still a subject of debate. Acid gases may either be emanations from a cooling magma chamber or instead could form by some post-exploitation process (e.g. reaction of water and salts forming hydrogen chloride by hydrolysis at high temperatures). The very high boron content of the fluids produced by the Los Humeros wells is also puzzling as sources of boron, such as tourmaline, are not seen in the rocks drilled so far. This suggests that the source of the acid gases is most likely magmatic. As the deep reservoir has temperatures approaching 400 o C, at moderate pressures, the reservoir fluids at depth must be superheated or supercritical steam in which HCl gas is unreactive. We suggest that the localized acid leached zones observed could be formed where conduits permit colder liquid water can descend and encounters dry steam containing acid gases and forms low ph liquids. Acknowledgements The participation of W. Elders in this project is made possible by a grant from UCMexus and CONACYT. Funding from the Comision Federal de Electricidad (CFE) and the Instituto de Investigaciones Electricas (IIE) supports this ongoing study. We are grateful to the staff of CFE at Los Humeros by their cooperation in freely supplying samples, data and unpublished reports. Also the authors give thanks to Joseph Moore for its time to review this paper and his helpful comments. References Arellano V.M., A. García, R.M. Barragán, G. Izquierdo, A. Aragón, D. Nieva, E. Portugal, and I. Torres, Desarrollo de un modelo básico actualizado del yacimiento geotérmico de Los Humeros, Pue. Instituto de Investigaciones Eléctricas, Unpublished Report. IIE/11/11459/01/F. 501

6 Arellano, V.M., A. García, R.M. Barragán, G. Izquierdo, A. Aragón, A. and D. Nieva, An updated conceptual model of the Los Humeros geothermal reservoir (Mexico). Journal of Volcanology and Geothermal Research, v. 124, p Browne, P.R.L., Hydrothermal alteration in active geothermal fields. Annual Reviews of Earth and Planetary Science, v.6, p Cedillo F., Geología del subsuelo del campo geotérmico de Los Humeros, Pue». Internal Report HU/RE/03/97. Comisión Federal de Electricidad, GPG. 30p. Elders, W. A., Petrology as a practical tool in geothermal studies. Geothermal Resources Council, Transactions, v. 1, p Ferriz, H. and G.A. Mahood, Eruption rates and compositional trends at Los Humeros Volcanic Center, Puebla. Mexico. Journal of Geophysical Research, v.89, no. B10, p Gutiérrez-Negrín, L.C.A. and G. Izquierdo-Montalvo, Review and update of the main features of the Los Humeros geothermal field, Mexico. Proceedings of World Geothermal Congress, Bali Indonesia April pp.1-5 Henley, R.W., and Ellis, A.J., Geothermal systems ancient and modern: a geochemical review. Earth Science Reviews, v.19, p1-50. Izquierdo, G., Difracción de rayos-x en la caracterización de especies arcillosas: un caso de aplicación en el pozo H29 del campo de Los Humeros, Pue. Geofísica Internacional, v. 32, No. 2, p Libreros, P Caracterización de filosilicatos en el campo geotérmico de Los Humeros, Pue., por medio de difracción de rayos-x. Unpublished thesis. Escuela de Ciencias Químicas. Universidad Autónoma de Puebla. Lopez-Romero, O., Actualización del modelo geoquímico de los Humeros, Pue., México, Geotermia, v. 19, no.1, p Martínez Serrano, R.G. and C. Alibert, Características geoquímicas de las rocas volcánicas del sistema geotérmico Los Humeros Pue. Y su relación con los minerales de alteración. Geofísica Internacional. v. 33, p Reyes, A. G., Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. Journal of Volcanology and Geothermal Research, v. 43, p Reyes, A.G Petrology and fluid chemistry of magmatichydrothermal systems in the Philippines. Proceedings of the International Symposium on Water-Rock Interaction. Y.K. Kharaka and A. Maest (eds). A.A. Balkema, Rotterdam, Netherlands, v. 7, p Tello, H. E., Características geoquímicas e isotópicas de los fluidos producidos por los pozos de Los Humeros, Puebla». Geotermia, v.8, No. 2, p Truesdell, A.H., Origin of acid fluids in geothermal reservoirs. Geothermal Resources Council, Transactions, v.15, p Verma, S.P., Magma genesis and chamber processes at Los Humeros caldera, Mexico: Nd and Sr isotope data. Nature, v. 301, No. 5903, p Viggiano, J.C. and J. Robles, Mineralogía hidrotermal en el campo geotérmico de Los Humeros. Pue. I. Sus usos como indicadora de temperatura y del régimen hidrológico. Geotermia, v.4, No. 1, p

FLUID ACIDITY AND HYDROTHERMAL ALTERATION AT THE LOS HUMEROS GEOTHERMAL RESERVOIR PUEBLA, MEXICO.

FLUID ACIDITY AND HYDROTHERMAL ALTERATION AT THE LOS HUMEROS GEOTHERMAL RESERVOIR PUEBLA, MEXICO. FLUID ACIDITY AND HYDROTHERMAL ALTERATION AT THE LOS HUMEROS GEOTHERMAL RESERVOIR PUEBLA, MEXICO. Georgina Izquierdo 1, Víctor Manuel Arellano 1, Alfonso Aragón 1, Enrique Portugal 1 and Ignacio Martínez

More information

Solubility of Hydrothermally Altered Volcanic Rocks in Acid Solutions

Solubility of Hydrothermally Altered Volcanic Rocks in Acid Solutions Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015 Solubility of Hydrothermally Altered Volcanic Rocks in Acid Solutions 1 Georgina Izquierdo Montalvo, 1 Alfonso Aragón Aguilar

More information

Geochemical Modeling of Acid Fluids in Los Humeros Geothermal Field, Mexico

Geochemical Modeling of Acid Fluids in Los Humeros Geothermal Field, Mexico Proceedings World Geothermal Congress 00 Antalya, Turkey, -9 April 00 Geochemical Modeling of Acid Fluids in Los Humeros Geothermal Field, Mexico Robert Bienkowski, Ignacio S. Torres-Alvarado and Matthias

More information

WAMUNYU EDWARD MUREITHI I13/2358/2007

WAMUNYU EDWARD MUREITHI I13/2358/2007 WAMUNYU EDWARD MUREITHI I13/2358/2007 Olkaria geothermal area is situated south of Lake Naivasha on the floor of the southern segment of the Kenya rift. The geology of the Olkaria Geothermal area is subdivided

More information

SUB-SURFACE GEOLOGY AND HYDROTHERMAL ALTERATION OF WELLS LA-9D AND LA-10D OF ALUTO LANGANO GEOTHERMAL FIELD, ETHIOPIA

SUB-SURFACE GEOLOGY AND HYDROTHERMAL ALTERATION OF WELLS LA-9D AND LA-10D OF ALUTO LANGANO GEOTHERMAL FIELD, ETHIOPIA Proceedings, 6 th African Rift Geothermal Conference Addis Ababa, Ethiopia, 2 nd -4 th November 2016 SUB-SURFACE GEOLOGY AND HYDROTHERMAL ALTERATION OF WELLS LA-9D AND LA-10D OF ALUTO LANGANO GEOTHERMAL

More information

Hydrodynamic model of Los Humeros geothermal field, Mexico, based on geochemical, mineralogical and isotopic data

Hydrodynamic model of Los Humeros geothermal field, Mexico, based on geochemical, mineralogical and isotopic data Geofísica Internacional (2002), Vol. 41, Num. 4, pp. 415-420 Hydrodynamic model of Los Humeros geothermal field, Mexico, based on geochemical, mineralogical and isotopic data E. Portugal, G. Izquierdo,

More information

Imagine the first rock and the cycles that it has been through.

Imagine the first rock and the cycles that it has been through. A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one type of rocky material gets transformed into another The Rock Cycle Representation

More information

Performance Productivity Curves in Geothermal Systems: A Case of Los Humeros, México

Performance Productivity Curves in Geothermal Systems: A Case of Los Humeros, México Proceedings World Geothermal Congress 2005 Antalya, Turkey, 24-29 April 2005 Performance Productivity Curves in Geothermal Systems: A Case of Los Humeros, México Aragón A. A., Moya S. L. (2) and Izquierdo

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Igneous Rocks and Intrusive Activity Chapter 3 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College Characteristics

More information

The Nature of Igneous Rocks

The Nature of Igneous Rocks The Nature of Igneous Rocks Form from Magma Hot, partially molten mixture of solid liquid and gas Mineral crystals form in the magma making a crystal slush Gases - H 2 O, CO 2, etc. - are dissolved in

More information

Engineering Geology ECIV 2204

Engineering Geology ECIV 2204 Engineering Geology ECIV 2204 Instructor : Dr. Jehad Hamad 2017-2016 Chapter (3) Igneous Rocks Chapter 3: Rocks: Materials of the Solid Earth Igneous Rocks Chapter 3: Rocks: Materials of the Solid Earth

More information

Chapter 4 Rocks & Igneous Rocks

Chapter 4 Rocks & Igneous Rocks Chapter 4 Rocks & Igneous Rocks Rock Definition A naturally occurring consolidated mixture of one or more minerals e.g, marble, granite, sandstone, limestone Rock Definition Must naturally occur in nature,

More information

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Ray Rector - Instructor Major Concepts 1) Igneous rocks form directly from the crystallization of a magma or lava 2)

More information

Calc-alkaline Volcanic Rocks. Calc-alkali Volcanics. Fabric. Petrography. Compositional Classification. Petrography. Processes.

Calc-alkaline Volcanic Rocks. Calc-alkali Volcanics. Fabric. Petrography. Compositional Classification. Petrography. Processes. Calc-alkaline Volcanic Rocks Calc-alkali Volcanics Winter Chapters 16 & 17 Petrography Processes Field relations Volcanic arcs Petrogenesis Petrography Fabric Classification Alteration Fabric Aphanitic

More information

Chapter 4 8/27/2013. Igneous Rocks. and Intrusive Igneous Activity. Introduction. The Properties and Behavior of Magma and Lava

Chapter 4 8/27/2013. Igneous Rocks. and Intrusive Igneous Activity. Introduction. The Properties and Behavior of Magma and Lava Introduction Chapter 4 Igneous rocks form by the cooling of magma (or lava). Large parts of the continents and all the oceanic crust are composed of. and Intrusive Igneous Activity The Properties and Behavior

More information

Earth Materials. The Crust and its Composition. Igneous Rocks. Sediments and Sedimentary Rocks. Metamorphic Rocks. The Cycle of Rock Change

Earth Materials. The Crust and its Composition. Igneous Rocks. Sediments and Sedimentary Rocks. Metamorphic Rocks. The Cycle of Rock Change Earth Materials The Crust and its Composition Igneous Rocks Sediments and Sedimentary Rocks Metamorphic Rocks The Cycle of Rock Change The Crust and its Composition oxygen and silicon account for about

More information

Reservoir Processes Inferred by Geochemical, Stable Isotopes and Gas Equilibrium Data in Cerro Prieto, B.C., México

Reservoir Processes Inferred by Geochemical, Stable Isotopes and Gas Equilibrium Data in Cerro Prieto, B.C., México Proceedings World Geothermal Congress 2005 Antalya, Turkey, 24-29 April 2005 Reservoir Processes Inferred by Geochemical, Stable Isotopes and Gas Equilibrium Data in Cerro Prieto, B.C., México Enrique

More information

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements.

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. CHAPTER 5 Igneous Rocks SECTION 5.1 What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. basaltic

More information

Sedimentary Geology. Strat and Sed, Ch. 1 1

Sedimentary Geology. Strat and Sed, Ch. 1 1 Sedimentary Geology Strat and Sed, Ch. 1 1 Sedimentology vs. Stratigraphy Sedimentology is the study of the origin and classification of sediments and sedimentary rocks Mostly the physical and chemical

More information

SUBSURFACE HYDROTHERMAL ALTERATION AT THE ULUBELU GEOTHERMAL FIELD, LAMPUNG, SOUTHERN SUMATRA, INDONESIA. Suharno 1, 2 and PRL Browne 2

SUBSURFACE HYDROTHERMAL ALTERATION AT THE ULUBELU GEOTHERMAL FIELD, LAMPUNG, SOUTHERN SUMATRA, INDONESIA. Suharno 1, 2 and PRL Browne 2 PROCEEDINGS, Twenty-fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 24-26, 2000 SGP-TR-165 SUBSURFACE HYDROTHERMAL ALTERATION AT THE ULUBELU GEOTHERMAL

More information

EVOLUTION OF HELIUM AND ARGON AT A VOLCANIC GEOTHERMAL RESERVOIR

EVOLUTION OF HELIUM AND ARGON AT A VOLCANIC GEOTHERMAL RESERVOIR PROCEEDINGS, Twenty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 27-29, 2003 SGP-TR-173 EVOLUTION OF HELIUM AND ARGON AT A VOLCANIC GEOTHERMAL

More information

HYDROTHERMAL ALTERATION IN THE SUNAGOHARA FORMATION, OKUAIZU GEOTHERMAL SYSTEM, JAPAN

HYDROTHERMAL ALTERATION IN THE SUNAGOHARA FORMATION, OKUAIZU GEOTHERMAL SYSTEM, JAPAN HYDROTHERMAL ALTERATION IN THE SUNAGOHARA FORMATION, OKUAIZU GEOTHERMAL SYSTEM, JAPAN Yoji Seki Geological Survey of Japan, Higashi 1-1-3, Tsukuba, Ibaraki, 305-8567 Japan Key Words: Okuaizu geothermal

More information

Fluid Inclusion, Hydro-Geochemistry and Isotopic Fluid Composition of the Los Azufres Geothermal Field, Central Mexico

Fluid Inclusion, Hydro-Geochemistry and Isotopic Fluid Composition of the Los Azufres Geothermal Field, Central Mexico Proceedings World Geothermal Congress 2005 Antalya, Turkey, 24-29 April 2005 Fluid Inclusion, Hydro-Geochemistry and Isotopic Fluid Composition of the Los Azufres Geothermal Field, Central Mexico Eduardo

More information

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013 Igneous and Metamorphic Rock Forming Minerals Department of Geology Mr. Victor Tibane 1 SGM 210_2013 Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011

More information

Petrology and Alteration of Lari Mountain in Arinem Area, West Java, Indonesia

Petrology and Alteration of Lari Mountain in Arinem Area, West Java, Indonesia Petrology and Alteration of Lari Mountain in Arinem Area, West Java, Indonesia Fatoni Adyahya 1 *, Euis T. Yuningsih 1, Ildrem Syafrie 1, H. Matsueda 2, A. Hardiyono 1 1 Faculty of Geology, University

More information

Metamorphism (means changed form

Metamorphism (means changed form Metamorphism (means changed form) is recrystallization without melting of a previously existing rock at depth in response to a change in the environment of temperature, pressure, and fluids. Common minerals

More information

Lab 3 - Identification of Igneous Rocks

Lab 3 - Identification of Igneous Rocks Lab 3 - Identification of Igneous Rocks Page - 1 Introduction A rock is a substance made up of one or more different minerals. Thus an essential part of rock identification is the ability to correctly

More information

Chapter 10. Chapter Rocks and the Rock Cycle. Rocks. Section 1 Rocks and the Rock Cycle

Chapter 10. Chapter Rocks and the Rock Cycle. Rocks. Section 1 Rocks and the Rock Cycle Chapter 10 Rocks 1 Chapter 10 Section 1 Rocks and the Rock Cycle 2 10.1 Rocks and the Rock Cycle Magma is the parent material for all rocks. Once the magma cools and hardens, many changes can occur. Geology:

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011 by W. H. Freeman and Company Chapter 4: Igneous Rocks: Solids from Melts 1 About Igneous Rocks Igneous

More information

Response to Exploitation of the Los Azufres (Mexico) Geothermal Reservoir

Response to Exploitation of the Los Azufres (Mexico) Geothermal Reservoir Proceedings World Geothermal Congress 2 Antalya, Turkey, 2-2 April 2 Response to Exploitation of the Los Azufres (Mexico) Geothermal Reservoir Víctor Manuel Arellano, Marco Antonio Torres and Rosa María

More information

Lab 4 - Identification of Igneous Rocks

Lab 4 - Identification of Igneous Rocks Lab 4 - Identification of Igneous Rocks Page - Introduction A rock is a substance made up of one or more different minerals. Thus an essential part of rock identification is the ability to correctly recognize

More information

HIGH TEMPERATURE HYDROTHERMAL ALTERATION IN ACTIVE GEOTHERMAL SYSTEMS A CASE STUDY OF OLKARIA DOMES

HIGH TEMPERATURE HYDROTHERMAL ALTERATION IN ACTIVE GEOTHERMAL SYSTEMS A CASE STUDY OF OLKARIA DOMES Proceedings, 6 th African Rift Geothermal Conference Addis Ababa, Ethiopia, 2 nd 4 th November 2016 HIGH TEMPERATURE HYDROTHERMAL ALTERATION IN ACTIVE GEOTHERMAL SYSTEMS A CASE STUDY OF OLKARIA DOMES James

More information

Igneous Rocks. Sedimentary Rocks. Metamorphic Rocks

Igneous Rocks. Sedimentary Rocks. Metamorphic Rocks Name: Date: Igneous Rocks Igneous rocks form from the solidification of magma either below (intrusive igneous rocks) or above (extrusive igneous rocks) the Earth s surface. For example, the igneous rock

More information

Block: Igneous Rocks. From this list, select the terms which answer the following questions.

Block: Igneous Rocks. From this list, select the terms which answer the following questions. Geology 12 Name: Mix and Match: Igneous Rocks Refer to the following list. Block: porphyritic volatiles mafic glassy magma mixing concordant discontinuous reaction series igneous vesicular partial melting

More information

Quiz 1. 3) Which of the following planetary bodies has the least number of impact craters on its surface? A) Mercury B) Mars C) the Moon D) Earth

Quiz 1. 3) Which of the following planetary bodies has the least number of impact craters on its surface? A) Mercury B) Mars C) the Moon D) Earth Quiz 1 1) Earth's atmosphere is unique among the moons and planets in that A) it has a nitrogen (N2) rich atmosphere. B) it is rich in oxygen (O2) and nitrogen (N2). C) it is rich in carbon dioxide because

More information

The 3 types of rocks:

The 3 types of rocks: Igneous Rocks and Intrusive Igneous Activity The 3 types of rocks:! Sedimentary! Igneous! Metamorphic Marble 1 10/7/15 SEDIMENTARY ROCKS Come from rocks sediments (rock fragments, sand, silt, etc.) Fossils

More information

Student Name: College: Grade:

Student Name: College: Grade: Student Name: College: Grade: Physical Geology Laboratory IGNEOUS MINERALS AND ROCKS IDENTIFICATION - INTRODUCTION & PURPOSE: In this lab you will learn to identify igneous rocks in hand samples from their

More information

Rocks. Types of Rocks

Rocks. Types of Rocks Rocks Rocks are the most common material on Earth. They are naturally occurring aggregates of one or more minerals. 1 Igneous rocks, Types of Rocks Sedimentary rocks and Metamorphic rocks. 2 1 3 4 2 IGNEOUS

More information

Practice Test Rocks and Minerals. Name. Page 1

Practice Test Rocks and Minerals. Name. Page 1 Name Practice Test Rocks and Minerals 1. Which rock would be the best source of the mineral garnet? A) basalt B) limestone C) schist D) slate 2. Which mineral is mined for its iron content? A) hematite

More information

Rocks Rock- A group of minerals, glass, mineroid bound together in some way.

Rocks Rock- A group of minerals, glass, mineroid bound together in some way. Rocks Rock- A group of minerals, glass, mineroid bound together in some way. All rocks fit into one of three categories: Igneous- formed by the cooling and hardening of hot molten rock Sedimentary- formed

More information

Aliabad-Morvarid iron-apatite deposit, a Kiruna type example in Iran

Aliabad-Morvarid iron-apatite deposit, a Kiruna type example in Iran Aliabad-Morvarid iron-apatite deposit, a Kiruna type example in Iran Maryam-Sadat Mazhari 1 *, Majid Ghaderi 1, Mohammad-Hassan Karimpour 2 1 Department of Geology, Tarbiat Modares University, Tehran,

More information

Name Class Date. Chapter 3 Rocks Chapter Test. Write the letter that best answers the question or completes the statement on the line provided.

Name Class Date. Chapter 3 Rocks Chapter Test. Write the letter that best answers the question or completes the statement on the line provided. Chapter 3 Rocks Chapter Test Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following is true about rocks? a. Rocks are

More information

EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT

EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT Sources: University of Washington, Texas A&M University, University of Southern Alabama What is an igneous rock (a

More information

New Superficial Trace of the Los Humeros and Los Potreros Volcanic Calderas, Mexico

New Superficial Trace of the Los Humeros and Los Potreros Volcanic Calderas, Mexico Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015 New Superficial Trace of the Los Humeros and Los Potreros Volcanic Calderas, Mexico Fidel Cedillo-Rodríguez Comisión Federal

More information

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar Rocks A naturally occurring aggregate of one or more minerals (e.g., granite), or a body of non-crystalline material (e.g., obsidian glass), or of solid organic material (e.g., coal). Rock Cycle A sequence

More information

Classification of Igneous Rocks

Classification of Igneous Rocks Classification of Igneous Rocks Textures: Glassy- no crystals formed Aphanitic- crystals too small to see by eye Phaneritic- can see the constituent minerals Fine grained- < 1 mm diameter Medium grained-

More information

Plate tectonics, rock cycle

Plate tectonics, rock cycle Dikes, Antarctica Rock Cycle Plate tectonics, rock cycle The Rock Cycle A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one

More information

IGNEOUS ROCKS. SECTION 5.1 What are igneous rocks?

IGNEOUS ROCKS. SECTION 5.1 What are igneous rocks? Date Period Name IGNEOUS ROCKS SECTION.1 What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. basaltic

More information

Update of the Geologic Model at the Las Pailas Geothermal Field to the East of Unit 1

Update of the Geologic Model at the Las Pailas Geothermal Field to the East of Unit 1 Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015 Update of the Geologic Model at the Las Pailas Geothermal Field to the East of Unit 1 Edward Charles HAKANSON GREGORY,

More information

Evolution of the Earth

Evolution of the Earth Evolution of the Earth http://static.newworldencyclopedia.org/f/fe/geologic_clock.jpg Evolution of the Earth Solar system, 4.6 byr Collapse of a nebula Star forms as gravity concentrates material at center

More information

Alteration and Mineralization at Daralu Porphyry Copper Deposit, South of Kerman, Southeast Iran

Alteration and Mineralization at Daralu Porphyry Copper Deposit, South of Kerman, Southeast Iran Alteration and Mineralization at Daralu Porphyry Copper Deposit, South of Kerman, Southeast Iran Mosayeb Salehian* and Majid Ghaderi Department of Geology, Tarbiat Modares University, Tehran, Iran *Email

More information

Igneous Rock. Magma Chamber Large pool of magma in the lithosphere

Igneous Rock. Magma Chamber Large pool of magma in the lithosphere Igneous Rock Magma Molten rock under the surface Temperature = 600 o 1400 o C Magma Chamber Large pool of magma in the lithosphere Magma chamber - most all magma consists of silicon and oxygen (silicate)

More information

A Closer Look At Hydrothermal Alteration and Fluid-Rock Interaction Using Scanning Electron Microscopy

A Closer Look At Hydrothermal Alteration and Fluid-Rock Interaction Using Scanning Electron Microscopy Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015 A Closer Look At Hydrothermal Alteration and Fluid-Rock Interaction Using Scanning Electron Microscopy Bridget Y. Lynne

More information

Lecture 6 - Igneous Rocks and Volcanoes

Lecture 6 - Igneous Rocks and Volcanoes Lecture 6 - Igneous Rocks and Volcanoes Learning objectives Understand and be able to predict where and why magma will be forming at different tectonic settings Understand the factors controlling magma

More information

Characterization of Subsurface Permeability of the Olkaria East Geothermal Field

Characterization of Subsurface Permeability of the Olkaria East Geothermal Field PROCEEDINGS, 44th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2019 SGP-TR-214 Characterization of Subsurface Permeability of the Olkaria East

More information

Rocks. 3.1 The Rock Cycle. 3.1 The Rock Cycle. 3.1 The Rock Cycle. The Rock Cycle. I. Rocks

Rocks. 3.1 The Rock Cycle. 3.1 The Rock Cycle. 3.1 The Rock Cycle. The Rock Cycle. I. Rocks Rocks Tarbuck Lutgens 3.1 The Rock Cycle 3.1 The Rock Cycle I. Rocks Rocks are any solid mass of mineral or mineral-like matter occurring naturally as part of our planet. Types of Rocks 1. Igneous rock

More information

STRATIGRAPHY AND HYDROTHERMAL ALTERATION ENCOUNTERED BY MONITOR WELLS COMPLETED AT NGATAMARIKI AND ORAKEI KORAKO IN 2011

STRATIGRAPHY AND HYDROTHERMAL ALTERATION ENCOUNTERED BY MONITOR WELLS COMPLETED AT NGATAMARIKI AND ORAKEI KORAKO IN 2011 STRATIGRAPHY AND HYDROTHERMAL ALTERATION ENCOUNTERED BY MONITOR WELLS COMPLETED AT NGATAMARIKI AND ORAKEI KORAKO IN 2011 Catherine Boseley 1, Greg Bignall 2, Andrew Rae 2, Isabelle Chambefort 2, Brandon

More information

Page 1. Name: 1) Which diagram best shows the grain size of some common sedimentary rocks?

Page 1. Name: 1) Which diagram best shows the grain size of some common sedimentary rocks? Name: 1) Which diagram best shows the grain size of some common sedimentary rocks? 1663-1 - Page 1 5) The flowchart below illustrates the change from melted rock to basalt. 2) Which processes most likely

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 3 Rocks 3.1 The Rock Cycle Rocks Rocks are any solid mass of mineral or mineral-like matter occurring naturally as part of our planet. Types of Rocks

More information

EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4

EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4 Name: EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4 Introduction In the previous lab, we learned about mineral characteristics, properties and identities as well as the three basic rock

More information

Rocks Reading this week: Ch. 2 and App. C Reading for next week: Ch. 3

Rocks Reading this week: Ch. 2 and App. C Reading for next week: Ch. 3 Reading this week: Ch. 2 and App. C Reading for next week: Ch. 3 I. Environmental significance II. Definition III. 3 major classes IV. The Rock Cycle V. Secondary classification VI. Additional sub-classes

More information

Rocks Environmental Significance. Rocks Reading this week: Ch. 2 and App. C Reading for next week: Ch. 3. Rocks Definition of a rock

Rocks Environmental Significance. Rocks Reading this week: Ch. 2 and App. C Reading for next week: Ch. 3. Rocks Definition of a rock Reading this week: Ch. 2 and App. C Reading for next week: Ch. 3 Environmental Significance I. Environmental significance II. Definition III. 3 major classes IV. The Rock Cycle V. Secondary classification

More information

J. Mangas and F.J. Perez-Torrado. Departamento de Física. Universidad de Las Palmas de Gran Canaria Las Palmas de Gran Canaria.

J. Mangas and F.J. Perez-Torrado. Departamento de Física. Universidad de Las Palmas de Gran Canaria Las Palmas de Gran Canaria. Magmatic processes in the oceanic lithosphere: characterization of the ultramafic and mafic materials from the Holocene volcanic centers of Bandama and La Caldera de Pinos de Gáldar (Gran Canaria, Canary

More information

Big Island Field Trip

Big Island Field Trip Big Island Field Trip Space Still Available Group Airline Tickets May be available if enough people sign on If interested send email to Greg Ravizza Planning Meeting Next Week Will

More information

MAIN ASPECTS OF GEOTHERMICS IN MEXICO

MAIN ASPECTS OF GEOTHERMICS IN MEXICO MAIN ASPECTS OF GEOTHERMICS IN MEXICO Gerardo Hiriart and Luis C.A. Gutiérrez-Negrín Comisión Federal de Electricidad. A. Volta 655, Morelia 58290, Mich., Mexico gerardo.hiriart@cfe.gob.mx, luis.gutierrez03@cfe.gob.mx

More information

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification:

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks

More information

Fluid Geochemistry at the Nir Geothermal Field, Nw-Iran

Fluid Geochemistry at the Nir Geothermal Field, Nw-Iran Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015 Fluid Geochemistry at the Nir Geothermal Field, Nw-Iran Mohammad Reza Rahmani Renewable Energy Organization of Iran (SUNA),

More information

Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks

Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Metamorphism What happens to rocks that are

More information

Rock Cycle and Rock Types Homework

Rock Cycle and Rock Types Homework Rock Cycle and Rock Types Homework Completion Complete each statement. 1. A(n) is a solid mass of mineral or mineral-like matter that occurs naturally. 2. Rocks are generally classified as igneous,, or

More information

Igneous Rocks. Definition of Igneous Rocks. Igneous rocks form from cooling and crystallization of molten rock- magma

Igneous Rocks. Definition of Igneous Rocks. Igneous rocks form from cooling and crystallization of molten rock- magma Igneous Rocks Definition of Igneous Rocks Igneous rocks form from cooling and crystallization of molten rock- magma Magma molten rock within the Earth Lava molten rock on the Earth s s surface Igneous

More information

Introduction. Volcano a vent where molten rock comes out of Earth

Introduction. Volcano a vent where molten rock comes out of Earth Introduction Volcano a vent where molten rock comes out of Earth Example: Kilauea Volcano, Hawaii Hot (~1,200 o C) lava pools around the volcanic vent. Hot, syrupy lava runs downhill as a lava flow. The

More information

A Rock is a solid aggregate of minerals.

A Rock is a solid aggregate of minerals. Quartz A Rock is a solid aggregate of minerals. Orthoclase Feldspar Plagioclase Feldspar Biotite Four different minerals are obvious in this piece of Granite. The average automobile contains: Minerals

More information

Kizito Maloba Opondo. Kenya Electricity Generating Company

Kizito Maloba Opondo. Kenya Electricity Generating Company MIXING TRENDS AND SOLUTE GEOTHERMOMETRY OF BOREHOLE WATERS FROM THE PAKA GEOTHERMAL PROSPECT, KENYA. Kizito Maloba Opondo Kenya Electricity Generating Company Geothermal Prospects and fields in Kenya -

More information

Science Olympiad Captains Tryouts 2018 dupont Manual High School

Science Olympiad Captains Tryouts 2018 dupont Manual High School Science Olympiad Captains Tryouts 2018 dupont Manual High School Score: / 78 Rocks & Minerals Date: Part I: (25) points Based on the image and information provided, fill in the table. Each answer is worth

More information

Engineering Geology. Igneous rocks. Hussien Al - deeky

Engineering Geology. Igneous rocks. Hussien Al - deeky Igneous rocks Hussien Al - deeky 1 The Geology Definition of Rocks In Geology Rock is defined as the solid material forming the outer rocky shell or crust of the earth. There are three major groups of

More information

Lab 6 - Identification of Metamorphic Rocks

Lab 6 - Identification of Metamorphic Rocks Lab 6 - Identification of Metamorphic Rocks Page - Introduction Metamorphic rocks are the third great rock group. The term meta means to change and morph means form. Metamorphic rocks are rocks who have

More information

GY 111: Physical Geology

GY 111: Physical Geology UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 9: Extrusive Igneous Rocks Instructor: Dr. Douglas W. Haywick Last Time 1) The chemical composition of the crust 2) Crystallization of molten

More information

Lab: Metamorphism: minerals, rocks and plate tectonics!

Lab: Metamorphism: minerals, rocks and plate tectonics! Introduction The Earth s crust is in a constant state of change. For example, plutonic igneous rocks are exposed at the surface through uplift and erosion. Many minerals within igneous rocks are unstable

More information

Petrology and Geochronology of Iran Tepe volcano, Eastern Rhodopes, Bulgaria: Age relationship with the Ada Tepe gold deposit. (preliminary data)

Petrology and Geochronology of Iran Tepe volcano, Eastern Rhodopes, Bulgaria: Age relationship with the Ada Tepe gold deposit. (preliminary data) Petrology and Geochronology of Iran Tepe volcano, Eastern Rhodopes, Bulgaria: Age relationship with the Ada Tepe gold deposit. (preliminary data) Peter Kibarov, Peter Marchev, Maria Ovtcharova, Raya Raycheva,

More information

predictive mineral discovery*cooperative Research Centre A legacy for mineral exploration science Mineral Systems Q3 Fluid reservoirs

predictive mineral discovery*cooperative Research Centre A legacy for mineral exploration science Mineral Systems Q3 Fluid reservoirs Mineral Systems Q3 Fluid reservoirs 1 Key Parameter Mineral System Exploration is reflected in scale-dependent translation A. Gradient in hydraulic potential B. Permeability C. Solubility sensitivity to

More information

Instructor: Ms. Terry J. Boroughs Geology 8 INTRODUCTION TO ROCKS AND THE ROCK CYCLE

Instructor: Ms. Terry J. Boroughs Geology 8 INTRODUCTION TO ROCKS AND THE ROCK CYCLE DATE DUE: Name: Instructor: Ms. Terry J. Boroughs Geology 8 INTRODUCTION TO ROCKS AND THE ROCK CYCLE Instructions: Read each question carefully before selecting the BEST answer Provide specific and detailed

More information

THE FLUID CHARACTERISTICS OF THREE EXPLORATION WELLS DRILLED AT OLKARIA-DOMES FIELD, KENYA

THE FLUID CHARACTERISTICS OF THREE EXPLORATION WELLS DRILLED AT OLKARIA-DOMES FIELD, KENYA PROCEEDINGS, Thirty-Third Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 28-3, 28 SGP-TR-185 THE FLUID CHARACTERISTICS OF THREE EXPLORATION WELLS DRILLED

More information

METAMORPHIC ROCKS CHAPTER 8

METAMORPHIC ROCKS CHAPTER 8 Lecture 6 October 18, 20, 23 October 19, 24 METAMORPHIC ROCKS CHAPTER 8 This is only an outline of the lecture. You will need to go to class to fill in the outline, although much of the relevant information

More information

Review - Unit 2 - Rocks and Minerals

Review - Unit 2 - Rocks and Minerals Review - Unit 2 - Rocks and Minerals Base your answers to questions 1 and 2 on the diagram below, which shows the results of three different physical tests, A, B, and C, that were performed on a mineral.

More information

Engineering Geology ECIV 2204

Engineering Geology ECIV 2204 Engineering Geology ECIV 2204 2017-2016 Chapter (4) Volcanoes Chapter 4: Volcanoes and Other Igneous Activity cataclysmic relating to or denoting a violent natural even Eventually the entire

More information

Element Mobility Due to Hydrothermal Alteration in Los Azufres Geothermal Field, Mexico

Element Mobility Due to Hydrothermal Alteration in Los Azufres Geothermal Field, Mexico Element Mobility Due to Hydrothermal Alteration in Los Azufres Geothermal Field, Mexico Ignacio S. Torres-Alvarado 1, K. Pandarinath 1, Surendra P. Verma 1, Peter Dulski 2 1 Departamento de Sistemas Energéticos,

More information

Geothermal Model of the Lahendong Geothermal Field, Indonesia

Geothermal Model of the Lahendong Geothermal Field, Indonesia Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 Geothermal Model of the ahendong Geothermal Field, Indonesia ary Koestono 1, Eben Ezer Siahaan 1, Marihot Silaban 1, jalti Franzson

More information

RR#7 - Multiple Choice

RR#7 - Multiple Choice 1. Which mineral is mined for its iron content? 1) hematite 2) fluorite 3) galena 4) talc 2. Which rock is composed of the mineral halite that formed when seawater evaporated? 1) limestone 2) dolostone

More information

How 2 nd half labs will work

How 2 nd half labs will work How 2 nd half labs will work Continue to use your mineral identification skills Learn to describe, classify, interpret rock hand samples: Igneous sedimentary metamorphic volcanic plutonic (1 week) (1 wk)

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Igneous Rocks What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. extrusive igneous rock intrusive

More information

The Martian Sedimentary Mass: Constraints on its Composition, Age and Size. Scott McLennan Department of Geosciences, SUNY Stony Brook

The Martian Sedimentary Mass: Constraints on its Composition, Age and Size. Scott McLennan Department of Geosciences, SUNY Stony Brook The Martian Sedimentary Mass: Constraints on its Composition, Age and Size Scott McLennan Department of Geosciences, SUNY Stony Brook Exploring Mars Habitability Lisbon 14 June, 2011 Martian Crustal Chemistry

More information

Determination of Calcite Scaling Potential in OW-903 and OW-914 of the Olkaria Domes field, Kenya

Determination of Calcite Scaling Potential in OW-903 and OW-914 of the Olkaria Domes field, Kenya PROCEEDINGS, Fortieth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 26-28, 2015 SGP-TR-204 Determination of Calcite Scaling Potential in OW-903 and OW-914

More information

WET EXPLOSIVE ERUPTIONS. Hawaii Photograph: Dorian Weisel

WET EXPLOSIVE ERUPTIONS. Hawaii Photograph: Dorian Weisel WET EXPLOSIVE ERUPTIONS Hawaii Photograph: Dorian Weisel WET EXPLOSIVE ERUPTIONS mechanisms hot magma/ hot rock + water pyroclasts + steam rapid expansion of gas fragmentation of magma + wall rock external

More information

Archean Terranes. Archean Rocks. Southeastern Africa. West Greenland. Kaapvaal Craton. Ancient Gneiss Complex

Archean Terranes. Archean Rocks. Southeastern Africa. West Greenland. Kaapvaal Craton. Ancient Gneiss Complex Archean Terranes Archean Rocks Chapter 15A >2.5 Gy old Younger supracrustal sequences Greenstone belts Calc-alkaline metavolcanic rocks Older gneiss complexes Quartzo-feldspathic rocks Tonalites and migmatites

More information

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks Chapter 3.0: Weathering & soils Chapter 4.0: Geological

More information

Volcanic gas controls the alteration mineral assemblages in the Tatun Volcano Group, Taiwan

Volcanic gas controls the alteration mineral assemblages in the Tatun Volcano Group, Taiwan PROCEEDINGS, 43rd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 12-14, 2018 SGP-TR-213 Volcanic gas controls the alteration mineral assemblages in the

More information

CASE HISTORY OF LOS AZUFRES CONCEPTUAL MODELLING IN A MEXICAN GEOTHERMAL FIELD

CASE HISTORY OF LOS AZUFRES CONCEPTUAL MODELLING IN A MEXICAN GEOTHERMAL FIELD Presented at Short Course V on Conceptual Modelling of Geothermal Systems, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, February 24 - March 2, 2013. GEOTHERMAL TRAINING PROGRAMME LaGeo

More information

1. Which mineral is mined for its iron content? A) hematite B) fluorite C) galena D) talc

1. Which mineral is mined for its iron content? A) hematite B) fluorite C) galena D) talc 1. Which mineral is mined for its iron content? A) hematite B) fluorite C) galena D) talc 2. Which material is made mostly of the mineral quartz? A) sulfuric acid B) pencil lead C) plaster of paris D)

More information

Earth Science 232 Petrography

Earth Science 232 Petrography Earth Science 232 Petrography Course notes by Shaun Frape and Alec Blyth Winter 2002 1 Petrology - Introduction Some Definitions Petra Greek for rock Logos Greek for disclosure or explanation Petrology

More information

Unit 2 Exam: Rocks & Minerals

Unit 2 Exam: Rocks & Minerals Name: Date: 1. Base your answer(s) to the following question(s) on the 2001 edition of the Earth Science Reference Tables, the map and cross section below, and your knowledge of Earth science. The shaded

More information