Nathalie de Noblet-Ducoudré. Who am I today? Some snapshots into my main results And from now on?

Size: px
Start display at page:

Download "Nathalie de Noblet-Ducoudré. Who am I today? Some snapshots into my main results And from now on?"

Transcription

1 Nathalie de Noblet-Ducoudré Who am I today? Some snapshots into my main results And from now on?

2 Who am I today? Scien>st at the Laboratoire des Sciences du Climat et de l Environnement (close to Paris, France) MERMAID team leader : Modelling the Earth Response to Mul;ple Anthropogenic Interac;ons and Dynamics [~10 scien+sts with permanent posi+on, + ~20 PhDs and Post- Docs] è Earth System Modelling [foci: Feedbacks between Land, Ocean and Atmospheric Chemistry] BASC co-coordinator Biodiversity, Agrosystems, Society and Climate ; Laboratory of excellency [8 years, 5 M, ~450 scien+sts, various disciplines: agronomy, ecology, climate, economy, human sciences]

3 Who am I today? Scien>st at the Laboratoire des Sciences du Climat et de l Environnement MERMAID team leader : Modelling the Earth Response to Mul;ple Anthropogenic Interac;ons and Dynamics [~10 scien+sts with permanent posi+on, + ~20 PhDs and Post- Docs] è Earth System Modelling [foci: Land, Ocean and Atmospheric Chemistry] BASC co-coordinator Biodiversity, Agrosystems, Society and Climate ; Laboratory of excellency [8 years, 5 M, ~450 scien+sts, various disciplines: agronomy, ecology, climate, economy, human sciences]

4 Some snapshots into my main results

5 Glacial Incep>on ~ years ago TIME SCALES Mid-Holocene ~6000 years ago pre-industrial & present-day Next Century Global SPATIAL SCALES Regional Local

6 Glacial Incep>on ~ years ago TIME SCALES Mid-Holocene ~6000 years ago pre-industrial & present-day Next Century Global Interac>ve Landcover maxers in climate dynamics Climate < > Dynamic Vegeta2on SPATIAL SCALES Regional Local

7 Present-Day Vegeta>on Distribu>on Glacial Incep>on ~ years ago Climate forced by orbital configura+on è Glacia+on sensi+ve regions [blue ones] Resul+ng landcover Change de Noblet et al., GRL 1996

8 Present-Day Vegeta>on Distribu>on Glacial Incep>on ~ years ago Climate forced by orbital configura+on è Glacia+on sensi+ve regions [blue ones] Resul+ng landcover Change Climate Land-Cover de Noblet et al., GRL 1996

9 Present-Day Vegeta>on Distribu>on Glacial Incep>on ~ years ago Climate forced by orbital configura+on è Glacia+on sensi+ve regions [blue ones] Resul+ng landcover Change Climate Land-Cover Equilibrium reached between climate & Vegeta>on de Noblet et al., GRL 1996

10 Posi>ve feedback between summer Cooling and limited vegeta>on growth 115 kyr BP : in summary Increase in surface albedo in summer as in winter Summer cooling resul>ng from changes in the Earth s orbit Southward Shi_ of boreal trees at the expense of toundra + de Noblet et al., GRL 1996 Spring/summer cooling + Winters also start to cool down 10

11 Glacial Incep>on ~ years ago TIME SCALES Mid-Holocene ~6000 years ago pre-industrial & present-day Next Century Global Interac>ve Landcover maxers in climate dynamics Climate < > Dynamic Vegeta2on African Monsoon Green Sahara SPATIAL SCALES Regional Local

12 Glacial Incep>on ~ years ago TIME SCALES Mid-Holocene ~6000 years ago pre-industrial & present-day Next Century Global Interac>ve Landcover maxers in climate dynamics Climate < > Dynamic Vegeta2on African Monsoon Green Sahara Interac>ve Land-cover maxers for persistence SPATIAL SCALES Regional Local

13 Power Spectrum of monthly precipita>on (a_er removal of seasonal fluctua>ons) Dynamic Land Cover + LAI Prognos>c seasonal cycle of LAI Imposed seasonal cycle of LAI Climate Phenology & Land-Cover Delire et al. (J. Clim. 2011)

14 Power Spectrum of monthly precipita>on (a_er removal of seasonal fluctua>ons) Dynamic Land Cover + LAI Prognos>c seasonal cycle of LAI Imposed seasonal cycle of LAI Variability increases with >me scales when degrees of freedom are added Climate Phenology & Land-Cover Delire et al. (J. Clim. 2011)

15 Glacial Incep>on ~ years ago TIME SCALES Mid-Holocene ~6000 years ago pre-industrial & present-day Next Century Global Interac>ve Landcover maxers in climate dynamics Climate < > Dynamic Vegeta2on African Monsoon Green Sahara Interac>ve Land-cover maxers for persistence SPATIAL SCALES Regional Interac>ve phenology maxers for the magnitude of heat wave Local

16 Role of Interac>ve Phenology on 2003 Heat Wave Regional Climate Model: WRF coupled to Dynamic Vegeta>on Model: ORCHIDEE Dominant Vegeta>on = Crops 2 simula>ons: 1) with interac>ve LAI, 2) imposing 2002 LAI Stéfanon et al. JGR 2012

17 Observed June anomaly of Surface Temperature ( T) Observed August anomaly of Surface Temperature ( T) LAI-induced changes in T [Interac>ve LAI LAI imposed to 2002 condi>ons] Dampening Amplifica;on Stéfanon et al. JGR 2012

18 Earlier Onset of crops è larger LAI in 2003 than in 2002 è more evapotranspira>on è cooler surface è reduced warming Earlier senescence due to drought è lower LAI in 2003 than in 2002 è less evapotranspira>on è warmer surface è enhanced warming LAI-induced Evapotranspira>on (mm/day) LAI-induced T ( C) Stéfanon et al. JGR 2012

19 Glacial Incep>on ~ years ago TIME SCALES Mid-Holocene ~6000 years ago pre-industrial & present-day Next Century SPATIAL SCALES Global Regional Interac>ve Landcover maxers in climate dynamics Climate < > Dynamic Vegeta2on African Monsoon Green Sahara LUCID Phase 1 LUCID CMIP5 Land Use & Climate Interac>ve phenology maxers for the magnitude of heat wave Local

20 hyp:// No Significant Signal for mean annual global temperature Increased Crop areas since preindustrial >mes & The response of Surface Air Temperature However, signal of equivalent magnitude but of opposite sign at the regional level (here North America) LULCC CO2SST Response to increasing crop areas Response to global warming Pitman et al. (2009) de Noblet-Ducoudré et al. (2012) Response to Increasing crop areas Response to global warming

21 hyp:// No Significant Signal for mean annual global temperature Increased Crop areas since preindustrial >mes & The response of Surface Air Temperature However, signal of equivalent magnitude but of opposite sign at the regional level (here North America) LULCC CO2SST Response to increasing crop areas Response to global warming Pitman et al. (2009) de Noblet-Ducoudré et al. (2012) Response to Increasing crop areas Response to global warming

22 LUCID Phase 1 Sensi>vity of each DGVM s simulated Latent Heat Flux to the magnitude of LULCC INCREASE Most sensi>ve Less sensi>ve DECREASE Boisier et al. (2012) differences in land-surface parameteriza>ons explain ~2/3 rd of differences between clima>c responses

23 Boisier et al. (2013) Historical impacts of LULCC es>mated from present-day satellite observa>ons

24 Glacial Incep>on ~ years ago TIME SCALES Mid-Holocene ~6000 years ago pre-industrial & present-day Next Century SPATIAL SCALES Global Regional Interac>ve Landcover maxers in climate dynamics Climate < > Dynamic Vegeta2on African Monsoon LUCID Phase 1 Green Sahara Impacts of climate changes Interac>ve phenology maxers for the magnitude of heat wave and variability on the distribu>on of semi-arid areas Local

25 Warm Semi-Arid Regions (derived from Köppen classifica>on) will expand with climate warming km 2 WSA surface increase + 1, km 2 0 R 2 ~0.52 Warm semi arid tropical areas, today~ 10 7 km km C 0 C Warming intensity Rajaud et al. in prep. +6 C

26 Glacial Incep>on ~ years ago TIME SCALES Mid-Holocene ~6000 years ago pre-industrial & present-day Next Century SPATIAL SCALES Global Regional Interac>ve Landcover maxers in climate dynamics Climate < > Dynamic Vegeta2on African Monsoon Green Sahara LUCID Phase 1 Interac>ve phenology maxers for the magnitude of heat wave Impacts of climate changes and variability on the distribu>on of semi-arid areas Local Impacts of climate changes and variability on managed ecosystems in France

27 And from now on? + My ques>ons to GEWEX

28 pre-industrial & present-day TIME SCALES Next Century Global LUMIP SPATIAL SCALES Regional Land Use & Climate EURO-CORDEX + LUCID (in prep.) Impacts of climate changes and variability on managed ecosystems Local Interac>ons with local stakeholders / Co-construc>on of useful indicators of change

29 Main scien>fic ques>ons/interest for the near future What are the rela>ve contribu>ons, on regional climate change of i) global climate change, ii) local land use & land cover changes (LULCC)? What errors do we make in impact studies if the simulated regional climate does not include LULCC? Are LULCC triggering remote impacts? Where? How? [Quesada et al. subm.] How do ci>es combine with climate change to impact periurban and urban ecosystem produc>vity?.

30 My ques>ons to GEWEX What is GEWEX doing with respect to climate services? [interac>ons with Future Earth?] How does GEWEX approach decadal >me scales?

31

Welcome to ATMS 111 Global Warming.

Welcome to ATMS 111 Global Warming. Welcome to ATMS 111 Global Warming http://www.atmos.washington.edu/2010q1/111 Isotopic Evidence 16 O isotopes "light 18 O isotopes "heavy" Evaporation favors light Rain favors heavy Cloud above ice is

More information

Land cover effect on climate

Land cover effect on climate Land cover effect on climate Martin Claussen Max Planck Institut for Meteorology KlimaCampus Hamburg CITES 2009 Land cover and climate dynamics Martin Claussen Max Planck Institut for Meteorology KlimaCampus

More information

Paleoclimatology ATMS/ESS/OCEAN 589. Abrupt Climate Change During the Last Glacial Period

Paleoclimatology ATMS/ESS/OCEAN 589. Abrupt Climate Change During the Last Glacial Period Paleoclimatology ATMS/ESS/OCEAN 589 Ice Age Cycles Are they fundamentaly about ice, about CO2, or both? Abrupt Climate Change During the Last Glacial Period Lessons for the future? The Holocene Early Holocene

More information

POLAR EXPLORER EXPLORING SEA LEVEL RISE

POLAR EXPLORER EXPLORING SEA LEVEL RISE POLAR EXPLORER EXPLORING SEA i LEVEL RISE Developed by: Margie Turrin, mkt@ldeo.columbia.edu As a polar explorer you and your team will be collec@ng evidence of changes occurring throughout the world that

More information

Introduction to Climate Models

Introduction to Climate Models Introduction to Climate Models Guest Lecture, GEOG 401, March 20 th, 2018 Christina Karamperidou Assistant Professor, Department of Atmospheric Sciences ckaramp@hawaii.edu CLIMATE MODELS Fall 2018 Class

More information

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate between weather and climate Global Climate Focus Question

More information

Introduc)on to Drought Indices

Introduc)on to Drought Indices Introduc)on to Drought Indices Xiaomao Lin Department of Agronomy Kansas State University xlin@ksu.edu - - WMO Workshop, Pune, India 3 rd - 7 th October 2016 Photo: Tribune, Kansas, March 2013 by X. Lin

More information

TOPIC #12. Wrap Up on GLOBAL CLIMATE PATTERNS

TOPIC #12. Wrap Up on GLOBAL CLIMATE PATTERNS TOPIC #12 Wrap Up on GLOBAL CLIMATE PATTERNS POLE EQUATOR POLE Now lets look at a Pole to Pole Transect review ENERGY BALANCE & CLIMATE REGIONS (wrap up) Tropics Subtropics Subtropics Polar Extratropics

More information

An Arctic Perspective on Climate Change

An Arctic Perspective on Climate Change An Arctic Perspective on Climate Change 23 Oct 2012 Gifford Miller (and many others) University of Colorado Boulder The Earth is warming How do we know? Temperature Anomaly ( C) It s a fact Global Land

More information

Evalua&on, applica&on and development of ESM in China

Evalua&on, applica&on and development of ESM in China Evalua&on, applica&on and development of ESM in China Contributors: Bin Wang 1,2 1. LASG, Ins&tute of Atmospheric Physics, CAS 2. CESS, Tsinghua University 3. Beijing Normal University 4. Beijing Climate

More information

TEMPERATURE GRADIENTS AND GLACIATION. Chris Brierley & Alexey Fedorov

TEMPERATURE GRADIENTS AND GLACIATION. Chris Brierley & Alexey Fedorov TEMPERATURE GRADIENTS AND GLACIATION Chris Brierley & Alexey Fedorov Outline Recap on the warm early Pliocene (as we have reconstructed it) Methodology to compare meridional SST gradient impacts and zonal

More information

Interpre'ng Model Results

Interpre'ng Model Results Interpre'ng Model Results Clara Deser Na'onal Center for Atmospheric Research Boulder, CO CESM Tutorial, 12 August 2016 Interpre'ng Model Results 1) What kind of model? 2) What kind of simula'on? 3) What

More information

What factors affect climate? Dr. Michael J Passow

What factors affect climate? Dr. Michael J Passow What factors affect climate? Dr. Michael J Passow Energy from the Sun (mostly light and heat) radiates to Earth SUN 150 x 10 6 km (92 x 10 6 mi) EARTH Challenge: If the speed of light is 300,000 km/sec,

More information

Tropical Pacific modula;ons of global climate

Tropical Pacific modula;ons of global climate Tropical Pacific modula;ons of global climate Shang- Ping Xie 1 & Yu Kosaka 2 1 Scripps Inst of Oceanogr, UCSD; 2 Univ of Tokyo Develop seasonal and spa

More information

Historical and Projected Future Climate Changes in the Great Lakes Region

Historical and Projected Future Climate Changes in the Great Lakes Region Historical and Projected Future Climate Changes in the Great Lakes Region B.J. Baule Great Lakes Integrates Sciences + Assessments University of Michigan Jeffrey A. Andresen Dept. of Geography Michigan

More information

Ice Sheet Climate Interac0on Learned from Modeling the Past for the Future

Ice Sheet Climate Interac0on Learned from Modeling the Past for the Future Ice Sheet Climate Interac0on Learned from Modeling the Past for the Future WCRP OSC (27 October 2011, Denver) A. Abe Ouchi, M. Yoshimori (Univ. of Tokyo/AORI), F. Saito, K. Takahashi (JAMSTEC/RIGC), and

More information

ttp://news.discovery.com/earth/iceland-volcano-aurora.html

ttp://news.discovery.com/earth/iceland-volcano-aurora.html ttp://news.discovery.com/earth/iceland-volcano-aurora.html Outline Role of volcanism on the climate system Distribution of Arctic volcanoes Types of eruptions Frequency of Arctic eruptions Influence on

More information

TOPIC #12 NATURAL CLIMATIC FORCING

TOPIC #12 NATURAL CLIMATIC FORCING TOPIC #12 NATURAL CLIMATIC FORCING (Start on p 67 in Class Notes) p 67 ENERGY BALANCE (review) Global climate variability and change are caused by changes in the ENERGY BALANCE that are FORCED review FORCING

More information

GEWEX CMIP6 activities

GEWEX CMIP6 activities GEWEX CMIP6 activities GEWEX involved in several CMIP6 projects: LS3MIP (land surface, snow and soil moisture MIP) LUMIP (land use MIP) HighResMIP LandMIPs CFMIP CORDEX Feedback on MIPs provided to WGCM,

More information

History. Late 18 th /early 19 th century Europeans observed that erratic boulders dispersed due to the retention of glaciers caused by climate chance

History. Late 18 th /early 19 th century Europeans observed that erratic boulders dispersed due to the retention of glaciers caused by climate chance Ice ages What is an ice age? Geological period of long-term reduction in the temperature of the Earth's surface and atmosphere which results in the formation and expansion of continental ice sheets, polar

More information

Ensemble of Climate Models

Ensemble of Climate Models Ensemble of Climate Models Claudia Tebaldi Climate Central and Department of Sta7s7cs, UBC Reto Knu>, Reinhard Furrer, Richard Smith, Bruno Sanso Outline Mul7 model ensembles (MMEs) a descrip7on at face

More information

ANALYSIS OF CLIMATIC CHANGES IN THE SAN JUAN MOUNTAIN (SJM) REGION DURING THE 20 TH CENTURY. Imtiaz Rangwala

ANALYSIS OF CLIMATIC CHANGES IN THE SAN JUAN MOUNTAIN (SJM) REGION DURING THE 20 TH CENTURY. Imtiaz Rangwala ANALYSIS OF CLIMATIC CHANGES IN THE SAN JUAN MOUNTAIN (SJM) REGION DURING THE 20 TH CENTURY Imtiaz Rangwala imtiazr@envsci.rutgers.edu MTNCLIM 2008 1 Objectives (as proposed) Nature of climate change in

More information

Climate Classification

Climate Classification Chapter 15: World Climates The Atmosphere: An Introduction to Meteorology, 12 th Lutgens Tarbuck Lectures by: Heather Gallacher, Cleveland State University Climate Classification Köppen classification:

More information

Regional climate modelling in the future. Ralf Döscher, SMHI, Sweden

Regional climate modelling in the future. Ralf Döscher, SMHI, Sweden Regional climate modelling in the future Ralf Döscher, SMHI, Sweden The chain Global H E H E C ( m 3/s ) Regional downscaling 120 adam 3 C HAM 4 adam 3 C HAM 4 trl A2 A2 B2 B2 80 40 0 J F M A M J J A S

More information

Quenching the Valley s thirst: The connection between Sierra Nevada snowpack & regional water supply

Quenching the Valley s thirst: The connection between Sierra Nevada snowpack & regional water supply Quenching the Valley s thirst: The connection between Sierra Nevada snowpack & regional water supply Roger Bales, UC Merced Snow conditions Snow & climate change Research directions Sierra Nevada snow

More information

Schema8c Global Climate Model

Schema8c Global Climate Model Schema8c Global Climate Model Horizontal Grid (Latitude-Longitude) Vertical Grid (Height or Pressure) NOAA/ GFDL s CLIMATE and EARTH SYSTEM MODELING Geophysical Fluid Dynamics Laboratory Understanding

More information

Assimilation of satellite fapar data within the ORCHIDEE biosphere model and its impacts on land surface carbon and energy fluxes

Assimilation of satellite fapar data within the ORCHIDEE biosphere model and its impacts on land surface carbon and energy fluxes Laboratoire des Sciences du Climat et de l'environnement Assimilation of satellite fapar data within the ORCHIDEE biosphere model and its impacts on land surface carbon and energy fluxes CAMELIA project

More information

Recent Climate History - The Instrumental Era.

Recent Climate History - The Instrumental Era. 2002 Recent Climate History - The Instrumental Era. Figure 1. Reconstructed surface temperature record. Strong warming in the first and late part of the century. El Ninos and major volcanic eruptions are

More information

Name Date Class. growth rings of trees, fossilized pollen, and ocean. in the northern hemisphere.

Name Date Class. growth rings of trees, fossilized pollen, and ocean. in the northern hemisphere. Lesson Outline LESSON 2 A. Long-Term Cycles 1. A(n) climate cycle takes much longer than a lifetime to complete. a. To learn about long-term climate cycles, scientists study natural records, such as growth

More information

Investigating the upwelling intensification hypothesis using climate-change simulations

Investigating the upwelling intensification hypothesis using climate-change simulations Investigating the upwelling intensification hypothesis using climate-change simulations Ryan R. Rykaczewski USC Marine Science Program John Dunne, Charles Stock, William Sydeman, Marisol García-Reyes,

More information

( 1 d 2 ) (Inverse Square law);

( 1 d 2 ) (Inverse Square law); ATMO 336 -- Exam 3 120 total points including take-home essay Name The following equations and relationships may prove useful. F d1 =F d2 d 2 2 ( 1 d 2 ) (Inverse Square law);! MAX = 0.29 " 104 µmk (Wien's

More information

Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world

Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world R. Krishnan Centre for Climate Change Research (CCCR) Indian Institute of Tropical Meteorology, Pune Collaborators:

More information

How do we deal with uncertainty connected with atmospheric circulation?

How do we deal with uncertainty connected with atmospheric circulation? How do we deal with uncertainty connected with atmospheric circulation? Ted Shepherd Grantham Professor of Climate Science Department of Meteorology University of Reading Some addi-onal background Circula-on

More information

Lecture 28: Observed Climate Variability and Change

Lecture 28: Observed Climate Variability and Change Lecture 28: Observed Climate Variability and Change 1. Introduction This chapter focuses on 6 questions - Has the climate warmed? Has the climate become wetter? Are the atmosphere/ocean circulations changing?

More information

Severe thunderstorms and climate change HAROLD BROOKS NOAA/NSSL

Severe thunderstorms and climate change HAROLD BROOKS NOAA/NSSL Severe thunderstorms and climate change HAROLD BROOKS NOAA/NSSL HAROLD.BROOKS@NOAA.GOV Big ques5ons! Have severe thunderstorms/tornadoes changed?! How and why do we expect severe thunderstorms to change

More information

Global Precipita.on Change and Long- Term Climate Variability during the Period

Global Precipita.on Change and Long- Term Climate Variability during the Period Global Precipita.on Change and Long- Term Climate Variability during the 1901-2010 Period Guojun Gu and Robert F. Adler Earth System Science Interdisciplinary Center University of Maryland, College Park,

More information

ATOC OUR CHANGING ENVIRONMENT

ATOC OUR CHANGING ENVIRONMENT ATOC 1060-002 OUR CHANGING ENVIRONMENT Class 22 (Chp 15, Chp 14 Pages 288-290) Objectives of Today s Class Chp 15 Global Warming, Part 1: Recent and Future Climate: Recent climate: The Holocene Climate

More information

The Global Scope of Climate. The Global Scope of Climate. Keys to Climate. Chapter 8

The Global Scope of Climate. The Global Scope of Climate. Keys to Climate. Chapter 8 The Global Scope of Climate Chapter 8 The Global Scope of Climate In its most general sense, climate is the average weather of a region, but except where conditions change very little during the course

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, D12116, doi: /2011jd017106, 2012

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, D12116, doi: /2011jd017106, 2012 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011jd017106, 2012 Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes:

More information

Chapter Introduction. Earth. Change. Chapter Wrap-Up

Chapter Introduction. Earth. Change. Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Climates of Earth Chapter Wrap-Up Climate Cycles Recent Climate Change What is climate and how does it impact life on Earth? What do you think? Before you

More information

ROBUST ASSESSMENT OF THE EXPANSION AND RETREAT OF MEDITERRANEAN CLIMATE IN THE 21 st CENTURY.

ROBUST ASSESSMENT OF THE EXPANSION AND RETREAT OF MEDITERRANEAN CLIMATE IN THE 21 st CENTURY. ROBUST ASSESSMENT OF THE EXPANSION AND RETREAT OF MEDITERRANEAN CLIMATE IN THE 21 st CENTURY. Andrea Alessandri, Matteo De Felice, Ning Zeng, Annarita Mariotti, Yutong Pan, Annalisa Cherchi, June-Yi Lee,

More information

16 Global Climate. Learning Goals. Summary. After studying this chapter, students should be able to:

16 Global Climate. Learning Goals. Summary. After studying this chapter, students should be able to: 16 Global Climate Learning Goals After studying this chapter, students should be able to: 1. associate the world s six major vegetation biomes to climate (pp. 406 408); 2. describe methods for classifying

More information

An Interconnected Planet

An Interconnected Planet An Interconnected Planet How Clouds, Aerosols, and the Ocean Cause Distant Rainfall Anomalies Dargan M. W. Frierson University of Washington CESM Workshop, 6-15-15 New Connections Recent research has uncovered

More information

Assessing Land Surface Albedo Bias in Models of Tropical Climate

Assessing Land Surface Albedo Bias in Models of Tropical Climate DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Assessing Land Surface Albedo Bias in Models of Tropical Climate William R. Boos (PI) Yale University PO Box 208109 New

More information

WCRP/CLIVAR efforts to understand El Niño in a changing climate

WCRP/CLIVAR efforts to understand El Niño in a changing climate WCRP/CLIVAR efforts to understand El Niño in a changing climate Eric Guilyardi IPSL/LOCEAN, Paris & NCAS-Climate, U. Reading Thanks to Andrew Wittenberg, Mike McPhaden, Matthieu Lengaigne 2015 El Niño

More information

Operational event attribution

Operational event attribution Operational event attribution Peter Stott, NCAR, 26 January, 2009 August 2003 Events July 2007 January 2009 January 2009 Is global warming slowing down? Arctic Sea Ice Climatesafety.org climatesafety.org

More information

Early warning of climate tipping points Tim Lenton

Early warning of climate tipping points Tim Lenton Early warning of climate tipping points Tim Lenton With thanks to John Schellnhuber, Valerie Livina, Vasilis Dakos, Marten Scheffer Outline Tipping elements Early warning methods Tests and application

More information

ENSO and April SAT in MSA. This link is critical for our regression analysis where ENSO and

ENSO and April SAT in MSA. This link is critical for our regression analysis where ENSO and Supplementary Discussion The Link between El Niño and MSA April SATs: Our study finds a robust relationship between ENSO and April SAT in MSA. This link is critical for our regression analysis where ENSO

More information

Late Holocene Climate Change: Astronomical vs. Anthropogenic Forcing

Late Holocene Climate Change: Astronomical vs. Anthropogenic Forcing Late Holocene Climate Change: Astronomical vs. Anthropogenic Forcing Feng He, Steve Vavrus, John Kutzbach Oregon State University, University of Wisconsin-Madison Bill Ruddiman University of Virginia Astronomical

More information

The Ice Age sequence in the Quaternary

The Ice Age sequence in the Quaternary The Ice Age sequence in the Quaternary Subdivisions of the Quaternary Period System Series Stage Age (Ma) Holocene 0 0.0117 Tarantian (Upper) 0.0117 0.126 Quaternary Ionian (Middle) 0.126 0.781 Pleistocene

More information

TROPICAL-EXTRATROPICAL INTERACTIONS

TROPICAL-EXTRATROPICAL INTERACTIONS Notes of the tutorial lectures for the Natural Sciences part by Alice Grimm Fourth lecture TROPICAL-EXTRATROPICAL INTERACTIONS Anomalous tropical SST Anomalous convection Anomalous latent heat source Anomalous

More information

Key Feedbacks in the Climate System

Key Feedbacks in the Climate System Key Feedbacks in the Climate System With a Focus on Climate Sensitivity SOLAS Summer School 12 th of August 2009 Thomas Schneider von Deimling, Potsdam Institute for Climate Impact Research Why do Climate

More information

Earth s Heat Budget. What causes the seasons?

Earth s Heat Budget. What causes the seasons? Earth s Heat Budget Solar Energy and the global Heat Budget Transfer of heat drives weather and climate Ocean circulation Should we talk about this? What causes the seasons? Before you answer, think. What

More information

Chapter outline. Reference 12/13/2016

Chapter outline. Reference 12/13/2016 Chapter 2. observation CC EST 5103 Climate Change Science Rezaul Karim Environmental Science & Technology Jessore University of science & Technology Chapter outline Temperature in the instrumental record

More information

At it s most extreme very low pressure off Indonesia, every high off SA, ~8 o C difference over the Pacific and ½ m water level differential) ENSO is

At it s most extreme very low pressure off Indonesia, every high off SA, ~8 o C difference over the Pacific and ½ m water level differential) ENSO is This summer : El Niño (ENSO) and the NAO (Ocean/Atmosphere coupling teleconnections) A teleconnection (as used in the atmospheric sciences) refers to climate anomalies that are related across very large

More information

What is Climate? Understanding and predicting climatic changes are the basic goals of climatology.

What is Climate? Understanding and predicting climatic changes are the basic goals of climatology. What is Climate? Understanding and predicting climatic changes are the basic goals of climatology. Climatology is the study of Earth s climate and the factors that affect past, present, and future climatic

More information

COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION

COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION DATE 4 JUNE 2014 LEADER CHRIS BRIERLEY Course Outline 1. Current climate 2. Changing climate 3. Future climate change 4. Consequences 5. Human

More information

Course Outline CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION. 1. Current climate. 2. Changing climate. 3. Future climate change

Course Outline CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION. 1. Current climate. 2. Changing climate. 3. Future climate change COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION DATE 4 JUNE 2014 LEADER CHRIS BRIERLEY Course Outline 1. Current climate 2. Changing climate 3. Future climate change 4. Consequences 5. Human

More information

El Niño, South American Monsoon, and Atlantic Niño links as detected by a. TOPEX/Jason Observations

El Niño, South American Monsoon, and Atlantic Niño links as detected by a. TOPEX/Jason Observations El Niño, South American Monsoon, and Atlantic Niño links as detected by a decade of QuikSCAT, TRMM and TOPEX/Jason Observations Rong Fu 1, Lei Huang 1, Hui Wang 2, Paola Arias 1 1 Jackson School of Geosciences,

More information

Externally forced and internal variability in multi-decadal climate evolution

Externally forced and internal variability in multi-decadal climate evolution Externally forced and internal variability in multi-decadal climate evolution During the last 150 years, the increasing atmospheric concentration of anthropogenic greenhouse gases has been the main driver

More information

Future risk of tipping points

Future risk of tipping points Future risk of tipping points Tim Lenton (t.m.lenton@exeter.ac.uk) Thanks to Chris Boulton, Valerie Livina, Vasilis Dakos, Marten Scheffer, John Schellnhuber Outline Tipping points Early warning Taster

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 21 Climate 21.1 Factors That Affect Climate Factors That Affect Climate Latitude As latitude increases, the intensity of solar energy decreases. The

More information

Climate Changes due to Natural Processes

Climate Changes due to Natural Processes Climate Changes due to Natural Processes 2.6.2a Summarize natural processes that can and have affected global climate (particularly El Niño/La Niña, volcanic eruptions, sunspots, shifts in Earth's orbit,

More information

Global es)mates of evapotranspira)on for climate studies using mul)- sensor remote sensing data: Evalua)on of three process- based

Global es)mates of evapotranspira)on for climate studies using mul)- sensor remote sensing data: Evalua)on of three process- based Global es)mates of evapotranspira)on for climate studies using mul)- sensor remote sensing data: Evalua)on of three process- based approaches Vinukollu, R.K., Wood, E.F., Ferguson, C.R., Fisher, J.B.:

More information

Contribution of vegetation changes to dust decadal variability and its impact on tropical rainfall asymmetry

Contribution of vegetation changes to dust decadal variability and its impact on tropical rainfall asymmetry Contribution of vegetation changes to dust decadal variability and its impact on tropical rainfall asymmetry Presented by Paul Ginoux Geophysical Fluid Dynamics Laboratory NOAA Barcelona Supercomputing

More information

Coupled assimilation of in situ flux measurements and satellite fapar time series within the ORCHIDEE biosphere model: constraints and potentials

Coupled assimilation of in situ flux measurements and satellite fapar time series within the ORCHIDEE biosphere model: constraints and potentials Coupled assimilation of in situ flux measurements and satellite fapar time series within the ORCHIDEE biosphere model: constraints and potentials C. Bacour 1,2, P. Peylin 3, P. Rayner 2, F. Delage 2, M.

More information

Paleoclimatic constraints on climate sensivity learning from paleoclimate modelling: last glacial maximum mid-holocene

Paleoclimatic constraints on climate sensivity learning from paleoclimate modelling: last glacial maximum mid-holocene Reducing the uncertainty in the prediction of global warming Jerusalem, 12-16 January 2009 Paleoclimatic constraints on climate sensivity learning from paleoclimate modelling: last glacial maximum mid-holocene

More information

The Global Monsoon Response to Volcanic Eruptions in the CMIP5 Past1000 Simulations and Model Simulations of FGOALS

The Global Monsoon Response to Volcanic Eruptions in the CMIP5 Past1000 Simulations and Model Simulations of FGOALS The Global Monsoon Response to Volcanic Eruptions in the CMIP5 Past1000 Simulations and Model Simulations of FGOALS Wenmin Man, Tianjun Zhou Email: manwenmin@mail.iap.ac.cn PAGES2k-PMIP3 Hydroclimate Workshop,

More information

Natural Climate Variability: Longer Term

Natural Climate Variability: Longer Term Natural Climate Variability: Longer Term Natural Climate Change Today: Natural Climate Change-2: Ice Ages, and Deep Time Geologic Time Scale background: Need a system for talking about unimaginable lengths

More information

Climate Change Scenarios Dr. Elaine Barrow Canadian Climate Impacts Scenarios (CCIS) Project

Climate Change Scenarios Dr. Elaine Barrow Canadian Climate Impacts Scenarios (CCIS) Project Climate Change Scenarios Dr. Elaine Barrow Canadian Climate Impacts Scenarios (CCIS) Project What is a scenario? a coherent, internally consistent and plausible description of a possible future state of

More information

GEOG 401 Climate Change

GEOG 401 Climate Change GEOG 401 Climate Change Climate Downscaling GCMs have coarse resolu/on Spa

More information

Funding Realities at NOAA Climate Program. NOAA Climate Goal

Funding Realities at NOAA Climate Program. NOAA Climate Goal Funding Realities at NOAA Climate Program Jin Huang NOAA Climate Program Office June 2, 2009 NOAA Climate Goal Understand Climate Variability and Change to Enhance Society s Ability to Plan and Respond

More information

Lecture 3. Background materials. Planetary radiative equilibrium TOA outgoing radiation = TOA incoming radiation Figure 3.1

Lecture 3. Background materials. Planetary radiative equilibrium TOA outgoing radiation = TOA incoming radiation Figure 3.1 Lecture 3. Changes in planetary albedo. Is there a clear signal caused by aerosols and clouds? Outline: 1. Background materials. 2. Papers for class discussion: Palle et al., Changes in Earth s reflectance

More information

Chapter Causes of Climate Change Part I: Milankovitch Cycles

Chapter Causes of Climate Change Part I: Milankovitch Cycles Chapter 19.1-19.3 Causes of Climate Change Part I: Milankovitch Cycles Climate Cycles =400 Milankovitch Cycles Milankovitch Cycles are created by changes in the geometry of Earth s orbit around the sun

More information

REQUEST FOR A SPECIAL PROJECT

REQUEST FOR A SPECIAL PROJECT REQUEST FOR A SPECIAL PROJECT 2017 2019 MEMBER STATE: Sweden.... 1 Principal InvestigatorP0F P: Wilhelm May... Affiliation: Address: Centre for Environmental and Climate Research, Lund University Sölvegatan

More information

13 Oct Past Climates Test Review

13 Oct Past Climates Test Review 13 Oct 2009 Past Climates Test Review Loose End: Wind Stress Climatology U E = V E = 0 & $% 0 & $% u E dz = " y # 0 f v E dz = $ " x # 0 f Risien and!chelton 2008, Journal of Physical Oceanography 2 Gondwana

More information

Lesson Overview. Climate. Lesson Overview. 4.1 Climate

Lesson Overview. Climate. Lesson Overview. 4.1 Climate Lesson Overview 4.1 THINK ABOUT IT When you think about climate, you might think of dramatic headlines: Hurricane Katrina floods New Orleans! or Drought parches the Southeast! But big storms and seasonal

More information

Historical Changes in Climate

Historical Changes in Climate Historical Changes in Climate Medieval Warm Period (MWP) Little Ice Age (LIA) Lamb, 1969 Hunters in the snow by Pieter Bruegel, 1565 Retreat of the Rhone Glacier shown by comparing the drawing from 1750

More information

Global climate change

Global climate change Global climate change What is climate change? This winter was really cold! Temp difference ( C): Jan 2004 vs. Jan 2002-2003 Make your own maps at: http://www.giss.nasa.gov/data/update/gistemp/maps/ 1 What

More information

CL Climate: Past, Present, Future Orals and PICOs Monday, 08 April. Tuesday, 09 April. EGU General Assembly 2013

CL Climate: Past, Present, Future Orals and PICOs Monday, 08 April. Tuesday, 09 April. EGU General Assembly 2013 CL Climate: Past, Present, Future Orals and PICOs Monday, 08 April MO1, 08:30 10:00 MO2, 10:30 12:00 MO3, 13:30 15:00 MO4, 15:30 17:00 MO5, 17:30 19:00 TU1, 08:30 10:00 CL0, Open Session on Climate: Past,

More information

El Niño / Southern Oscillation

El Niño / Southern Oscillation El Niño / Southern Oscillation Student Packet 2 Use contents of this packet as you feel appropriate. You are free to copy and use any of the material in this lesson plan. Packet Contents Introduction on

More information

Terrestrial Snow Cover: Properties, Trends, and Feedbacks. Chris Derksen Climate Research Division, ECCC

Terrestrial Snow Cover: Properties, Trends, and Feedbacks. Chris Derksen Climate Research Division, ECCC Terrestrial Snow Cover: Properties, Trends, and Feedbacks Chris Derksen Climate Research Division, ECCC Outline Three Snow Lectures: 1. Why you should care about snow: Snow and the cryosphere Classes of

More information

The central role of clouds in ENSO variability

The central role of clouds in ENSO variability The central role of clouds in ENSO variability Gaby Rädel Max- Planck- Ins-tute for Meteorology, Hamburg with: Thorsten Mauritsen, Bjorn Stevens, Daniela Matei ENSO Workshop Australia, Sydney, 4 6 February

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 21 Climate 21.1 Factors That Affect Climate Factors That Affect Climate Latitude As latitude increases, the intensity of solar energy decreases. The

More information

6. What has been the most effective erosive agent in the climate system? a. Water b. Ice c. Wind

6. What has been the most effective erosive agent in the climate system? a. Water b. Ice c. Wind Multiple Choice. 1. Heinrich Events a. Show increased abundance of warm-water species of planktic foraminifera b. Show greater intensity since the last deglaciation c. Show increased accumulation of ice-rafted

More information

Remote vegetation feedbacks and the mid-holocene Green Sahara

Remote vegetation feedbacks and the mid-holocene Green Sahara Remote vegetation feedbacks and the mid-holocene Green Sahara Abigail L.S. Swann University of Washington work with: Inez Fung, John Chiang, & Yuwei Liu ~6 years ago, the Sahara more like the Sahel Mike

More information

Historical and Projected Future Climatic Trends in the Great Lakes Region

Historical and Projected Future Climatic Trends in the Great Lakes Region Historical and Projected Future Climatic Trends in the Great Lakes Region Jeffrey A. Andresen Dept. of Geography, Environment, and Spatial Sciences Michigan State University Flooding along I-696 Warren,

More information

Guiling Wang 1 Miao Yu 1,2 Yongkang Xue 3

Guiling Wang 1 Miao Yu 1,2 Yongkang Xue 3 Clim Dyn DOI 10.1007/s00382-015-2812-x Modeling the potential contribution of land cover changes to the late twentieth century Sahel drought using a regional climate model: impact of lateral boundary conditions

More information

Modeling vegetation dynamics and climate the global perspective. Christine Delire CNRM/GAME (Meteo-France / CNRS)

Modeling vegetation dynamics and climate the global perspective. Christine Delire CNRM/GAME (Meteo-France / CNRS) Modeling vegetation dynamics and climate the global perspective Christine Delire CNRM/GAME (Meteo-France / CNRS) Levis, Wileys&Sons Advanced Review, 2010 Scales global regional local Factors Climate Soil

More information

3. Climate Change. 3.1 Observations 3.2 Theory of Climate Change 3.3 Climate Change Prediction 3.4 The IPCC Process

3. Climate Change. 3.1 Observations 3.2 Theory of Climate Change 3.3 Climate Change Prediction 3.4 The IPCC Process 3. Climate Change 3.1 Observations 3.2 Theory of Climate Change 3.3 Climate Change Prediction 3.4 The IPCC Process 3.1 Observations Need to consider: Instrumental climate record of the last century or

More information

The Formation of Precipitation Anomaly Patterns during the Developing and Decaying Phases of ENSO

The Formation of Precipitation Anomaly Patterns during the Developing and Decaying Phases of ENSO ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2010, VOL. 3, NO. 1, 25 30 The Formation of Precipitation Anomaly Patterns during the Developing and Decaying Phases of ENSO HU Kai-Ming and HUANG Gang State Key

More information

Simulation of medicanes over the Mediterranean Sea in regional climate model ensembles: impact of oceanatmosphere coupling and increased resolution

Simulation of medicanes over the Mediterranean Sea in regional climate model ensembles: impact of oceanatmosphere coupling and increased resolution Simulation of medicanes over the Mediterranean Sea in regional climate model ensembles: impact of oceanatmosphere coupling and increased resolution Miguel Angel Gaertner, Juan Jesús González-Alemán, Raquel

More information

Outline: 1) Extremes were triggered by anomalous synoptic patterns 2) Cloud-Radiation-PWV positive feedback on 2007 low SIE

Outline: 1) Extremes were triggered by anomalous synoptic patterns 2) Cloud-Radiation-PWV positive feedback on 2007 low SIE Identifying Dynamical Forcing and Cloud-Radiative Feedbacks Critical to the Formation of Extreme Arctic Sea-Ice Extent in the Summers of 2007 and 1996 Xiquan Dong University of North Dakota Outline: 1)

More information

Course Outline. About Me. Today s Outline CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION. 1. Current climate. 2.

Course Outline. About Me. Today s Outline CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION. 1. Current climate. 2. Course Outline 1. Current climate 2. Changing climate 3. Future climate change 4. Consequences COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION DATE 4 JUNE 2014 LEADER 5. Human impacts 6.

More information

Variability in Global Top-of-Atmosphere Shortwave Radiation Between 2000 And 2005

Variability in Global Top-of-Atmosphere Shortwave Radiation Between 2000 And 2005 Variability in Global Top-of-Atmosphere Shortwave Radiation Between 2000 And 2005 Norman G. Loeb NASA Langley Research Center Hampton, VA Collaborators: B.A. Wielicki, F.G. Rose, D.R. Doelling February

More information

Observed Climate Variability and Change: Evidence and Issues Related to Uncertainty

Observed Climate Variability and Change: Evidence and Issues Related to Uncertainty Observed Climate Variability and Change: Evidence and Issues Related to Uncertainty David R. Easterling National Climatic Data Center Asheville, North Carolina Overview Some examples of observed climate

More information

The climate of the mid-holocene

The climate of the mid-holocene Chapter 6 The climate of the mid-holocene 6.1 Introduction The climate of the mid-holocene (6,000 years BP) has frequently been used to evaluate the ability of climate models to simulate climatic change.

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/320/5882/1444/dc1 This PDF file includes: SOM Text Fig. S1 Table S1 References Supporting Online Material for Forests and Climate Change: Forcings, Feedbacks, and the

More information

Climate Variability and Change: Basic Concepts. Jeffrey A. Andresen Dept. of Geography Michigan State University

Climate Variability and Change: Basic Concepts. Jeffrey A. Andresen Dept. of Geography Michigan State University Climate Variability and Change: Basic Concepts Jeffrey A. Andresen Dept. of Geography Michigan State University Weather versus Climate The American Meteorological Society s Glossary of Meteorology defines

More information

Ocean carbon cycle feedbacks in the tropics from CMIP5 models

Ocean carbon cycle feedbacks in the tropics from CMIP5 models WWW.BJERKNES.UIB.NO Ocean carbon cycle feedbacks in the tropics from CMIP5 models Jerry Tjiputra 1, K. Lindsay 2, J. Orr 3, J. Segschneider 4, I. Totterdell 5, and C. Heinze 1 1 Bjerknes Centre for Climate

More information