ANALYSIS OF THE BEST GEOMETRY TO BE USED IN RHEOMETRIC TESTS FOR A DRILLING FLUID

Size: px
Start display at page:

Download "ANALYSIS OF THE BEST GEOMETRY TO BE USED IN RHEOMETRIC TESTS FOR A DRILLING FLUID"

Transcription

1 ANALYSIS OF THE BEST GEOMETRY TO BE USED IN RHEOMETRIC TESTS FOR A DRILLING FLUID 1 Filipe C. Ferreira, 2 Diogo E. V. Andrade, 3 Admilson T. Franco e 3 Cezar O. R. Negrão 1 Scientific Initiation fellow of FUNTEF-PR, student of Mechanical Engineering 2 PhD student at Federal University of Technology - Paraná - UTFPR 3 Professor at Federal University of Technology - Paraná - UTFPR 1,2,3 Research Center for Rheology and Non-Newtonian Fluids CERNN, Federal University of Technology Paraná UTFPR. Av. Sete de Setembro, 3165 Curitiba PR, , Brazil filipeferreira@alunos.utfpr.edu.br, diogoandrade@utfr.edu.br ABSTRACT In this work are shown the results obtained with rheological tests performed with two rheometer, TA Discovery and HAAKE MARS and with a BROOKSFIELD-DV-II Pro viscometer, at constant shear rates, from 0.001s-1 to 1000s-1, using a non-aqueous drilling fluid. These tests were done with different kinds of standard test geometries. The obtained results showed that both rheometers and viscometer are comparable, mainly for practical purposes, while the most reliable measuring geometry, for this specific fluid, are the serrated parallel-plates Key-Words: Rheometry, Test Geometry, Drilling Fluid. INTRODUCTION The down hole drilling operation, for oil prospection, is a task job. In most cases, the drill needs to pass through layers of different kinds of rocks, while undergoing deep depths, being exposed to high temperatures, pressures, and friction. In face of these conditions, drilling fluids were formulated to help in the drilling process, decreasing friction and temperature of the drill. In some cases, it would be impossible to drill a hole without a required drilling fluid. According to LYONS et al. (2011) [1], the drilling fluid is composed by several substances, as carbonates, bentonite, hematite and zinc chloride. Due to the gel like structure of most drilling fluid, as the one here studied, it behaves as non- Newtonian fluid. While it is flowing, when sheared, the gel like structure is broken, permitting it to flow. The drilling fluid is good to accomplish best work conditions, and, in addition, it brings up all the gravel up to surface through the annular space. When the drilling operation stops f or procedures as maintenance or even in case of a problem, and the fluid is not sheared, the fluid builds up a gel-like structure. The gelation of the drilling fluid is desirable to avoid cuttings and weighting agents precipitation at wellbore. Once the drilling fluid plays such an important part in the drilling process, this study was conducted in a way to find the best standard test geometry, for a common drilling fluids used for different work conditions. The fluid was given by Petrobras. Rheometric tests were performed in two rotational rheometers, using several standard test geometries, and with a rotational viscometer, with shear rates between s -1 to 1000 s -1. The results obtained with different equipment s and test geometries were compared, permitting a really precise and trustable conclusion for the best test geometry. The possibility of using a viscometer to characterize the drilling fluid was also evaluated. Never the less, better knowledge of the drilling fluid behavior was enhanced, mainly due to the rheometer and viscometer comparison. EXPERIMENTAL SECTION Materials and methods In the current work, rheometric tests were performed in two rotational rheometers, TA-DHR3 and HAAKE-MARS III, and in a viscometer, BROOKSFIELD- DV-II Pro, using a formulated non-aqueous drilling fluid. The temperature of the experiments was controlled by a peltier Thermostatic Bath System, for the rheometers, and only a Thermostatic bath for the viscometer. The used test geometries are, serrated and sand blasted parallel plates, concentric cylinders, cones with 2 degrees angle, and a double gap concentric

2 cylinder. All used equipment are matched with their respective tests geometries at Table 1. Table 1 - The used geometries for the performed tests Geometries Parallel plates Double Gap Cone Concentric Cylinders TA DHR3 Serrated and sand blasted (40mm HAAKE MARS III Serrated and sand blasted (35mm Viscometer 27mm 2º angle (40mm 2º angle (35mm Mooney Ewart (32mm SC4-31 (11.75mm In Table 2 the all geometries are matched with their respective image, according to Schramm (1998) [2]. Table 2 - Figures of the used geometries. 1 * Geometries Parallel plates Figures It is important to say that in the TA rheometer, a sand sheet was glued on the top middle of peltier, since the original surface is too slippery for the analyzed drilling fluid. The shear rates of the tests were 0.001s -1, 0.5 s -1, 1s -1, 5s -1, 10s -1, 50s -1, 100s -1, and 1000s -1. The drilling fluid sample came in a 50 liters gallon, after that, a little part was divided in smaller containers, for convenience, with volumes around 1 liter. To begin the test, the fluid is firstly agitated for 2 minutes in a Hamilton Beach professional agitator, in a way to guarantee homogeneity to the fluid. After that, a small specimen is taken and placed for test in the rheometers and viscometer, the excess should be removed. The volume of the sample varies with the used geometry and with the instrument. For parallel plates it is one milliliter, while for the concentric cylinders of viscometer it is used nine milliliters, for example. The tests are than programed in their specific testing software. Firstly, the samples rest for 5 minutes, in a way to equalize the temperature at 25 Celsius degrees. After the procedure is started, the fluid is maintained in a constant shear rate deformation for 30 minutes. In the end, when all data is collected. The tests passed through an analysis on their steady state regime, which is the region that the shear stress is close to a horizontal line, by collecting the shear stress of the last 10 points of each test, and then calculating the average stress of these 10 points. These averages are plotted (shear rate versus steady stated shear stress) to build up the flow curve of the drilling fluid. Double Gap Cone Mooney Ewart and SC4-31 Cylinders * All images were taken from Schramm (1998) RESULTS AND DISCUSSIONS Initially there was an assumption that the best results would be from cones and the concentric cylinders, as mentioned by FERNANDES (2014) [3] these is the best geometry for non-newtonian fluid, once the speed along the shear surface is equal in all points. This way, the fluid would be equally deformed in all points. Regarding concentric cylinders, it is interesting to say that they have a conic bottom which prevents from boundary effects [4]. With respect to the parallel plates, the shear rate is unequal along its surface, since the speed in the outer radius is bigger than the speed in the middle. This way, problems such as particle migration can occur [5]. However, contradicting the literature, cones showed no good results, alike the concentric cylinders. On Figure 1 are shown several tests performed with all geometries in the HAAKE rheometer, for a shear rate of 5 s -1,

3 Analyzing the results showed on this table, the shear rate is noticeably not linear, without a clear and steady line, as the results obtained by Fernandes (2014) for example, except for the parallel plates test (letter a). Instead, some of them, like the double gap cylinders, had very had high and low values points of shear stress, even when the analyzed points are just beside the other. The best supposition for these irregularities is the clamping phenomenon. The best result was obtained with a Parallel Sand Blasted Plate, which shows a clear tendency line, and a clear steady state region. Satisfactory results were also obtained with a Mooney Ewart Concentric Cylinder, presenting a similar shear stress when compared to the Parallel Plates. Although, it was not so clear, presenting some fluctuations in its shear stress values. These oscillations might be caused due to its difficulties when measuring in low shear rates [6]. Figure 1 - Comparison between geometries, for tests performed at shear rate of 5s -1. In, (a) parallel sand blasted plates, (b) 2º cones, (c) double gap cylinders, (d) Mooney Ewart concentric cylinders. The results of the tests showed on Figure 1, present clamping for all tests, besides the one performed with a parallel plate in its usual gap condition (one millimeter). The highest occurrence of this phenomenon was with double gap cylinders and with a parallel plate with a 0.23mm gap, the lowest occurrence with a Mooney Ewart concentric Cylinder. Although most experiments showed clamping, some still have a tendency line, which is close to values obtained by the parallel plates tendency line. In this case the clamping occurrence was thought to be correlated to the gaps between the surfaces, in which the fluid must flow. If the particle is too big for these rooms, it get stuck between the surfaces, and holds the rotor, the spinning part of the geometry, with it, showing a higher stress. When the rotor is released, the stress drops, due to rheometers reaction, this creates a clamping pattern, in which the graph presents very dispersed points of high and low stress, as the ones here obtained. To confirm this hypothesis, all geometries had their gaps checked. For geometries like parallel plates, the gap can be controlled, but for the other ones, the gap is fixed, once it would be impossible to change it as the lateral space in a double gap cylinder. Alternatively, it would cause a wrongly shear the fluid, which is the case of cones, since they were calibrated to work with a specific gap. It should be noted that double gap cylinders have one gap in its inner part, other on its outside lateral, and another in the bottom, between the geometry and its vessel cup. Cones have a bigger gap on their outer radius than in the center, once this geometry is not horizontal. Parallel plates have one gap for all its extension. Concentric cylinders have one gap at the bottom and another gap on its outside lateral. On Table 3 all gaps of the used geometry are listed. Analyzing the results presented on Figure 1 and the gaps geometries showed on Table 3, it is suspected that clamping occurs in situations in which geometries had close gaps between some of its interfaces. For example, at bottom for con-

4 centric cylinders or in the inner portion for Double Gap Cylinders. Table 3 - Geometries gaps. Geometries Parallel plates TA (model) HAAKE (model) Viscometer 1mm 1mm Double Gap Cone Center: 0.063mm Outer ray: 0.761mm Concentric Cylinders Inner side: 0.23mm Outside: 0.62mm Bottom: 0,60mm Center: 0.105mm Outer ray: 0.716mm Outside: 1.56mm Bottom: 0.056mm Outside: 23.59mm It is interesting to notice that geometries with small gaps, within a small interface for one specific gap, like the space between the bottom of a concentric cone and its vessel cup (0.056mm), compared to a bigger gap, but within a larger surface, like the inner space of a double gap cylinder (0.23mm), had a lower level of clamping. Even though the gap at bottom of the cone is almost five times bigger than the one in the inner side of the double gap cylinder. As it seems that area is also an important factor for clamping occurrence, and not just relying on a small gap. To further confirm the relation between gaps and clamping, tests with sand blasted parallel plates with a shear rate of 5s -1, with small gaps, were performed. This was thought once this geometry does have a similar surface to the cones, double gap and concentric cylinders. A gap of 0.23mm was chosen, in a way to compare its result to the one obtained with the Double Gap Cylinders. When analyzing both tests, it is noticeable that the outcomes were similar. Figure 2 shows the test for a Parallel Serrated Plates with a gap of 0.23mm. Figure 2 Sand Blasted Parallel Plates, gap of 0.23mm One more test with Sand Blasted Parallel Plates was done. This one used a 0.5mm gap, in a way to compare the results obtained with a regular gap, and with the 0.23mm gap. In this case, clamping was smaller than the one observed with 0.23mm test. In addition, there was a tendency line, similar to the test performed with a parallel plate using a regular gap, which can be seen on Figure 1 (a). It is noticed that the 0.5mm gap Sand Blasted Parallel Plates test behavior, stayed right in the middle of the other two, as it was with the its gap. This test is showed on Figure 3. Figure 3 - Sand Blasted Parallel Plates, gap of 0.5mm. Since the benefit of using parallel plates was proved, it was obtained the flow curve with the tests results performed with serrated Parallel Plates, Sand Blasted Parallel Plates, and the viscometer. In addition, these geometries results were compared between themselves. In the flow curve was noticed the viscometer had qualitative similar results and precision, when compared to the parallel plates. Even though it depends of the applied shear rate. On Figure 4 the flow curve obtained with the five configurations can be observed.

5 depending rheometers and viscometer reached qualitative close behavior. Also, both parallel plates had quite close measured values. CONCLUSION Figure 4 - Flow curve for parallel plates and viscometer. Also in the analysis of the flow curve, the average shear stress for Sand Blasted Parallel Plates, in a shear rate of 10-3 s -1, are low, close to zero. This was caused by the a common phenomenon in rotational rheometers, called slipping, which is an apparent speed discontinuity in the speed profile in the regions close to the geometry walls [3]. To complete the flow curve analysis, and have a better comparison between these last geometries, Table 4 presents the average shear stress for each shear rate of Serrated and Sand Blasted Parallel Plates, for Haake rheometer and the viscometer, while in steady state regime. Table 4 - Average shear stress for parallel plates of Haake Mars III, and viscometer shear stress Shear Rate [s -1 ] Serrated [Pa] Sand Blasted [Pa] Viscometer [Pa] Percentage Difference (Serrated/ Viscometer) , % % % % % As it can be seen on Table 4, the viscometer presented higher results than the rheometers. This might be due its precision, which is not as good as the rheometers. As mentioned before, For this specific tested drilling fluid, the following geometries, Double Gap Cylinders, Concentric Cylinders and Cones, working in ideal conditions presented clamping. This phenomenon can be noticed by a sharp discrepancy between the shear stress values. The results showed the clamping phenomenon for some geometries, but for parallel plates. The initial hypothesis that the fluid particle is too big for some gaps, relating it to the gaps between the test geometry and the surrounded surfaces, was confirmed by the three tests performed with Sand Blasted Parallel Plates. Once the only difference between these tests was only the gaps, this could be the only reason for clamping appearance. Never the less, the bigger was the gap, the smaller was the clamping phenomenon, the clearest becomes the shear stress tendency line. The area of these interfaces should also be taken in consideration, not just the gap With respect to parallel sand blasted plates, at a low shear rate of 10-3 s -1, the shear stress was too low, indicating slipping. Once the Parallel Serrated Plates have grooves on its surface, it was capable grab the fluid, and then precisely shear it from the lowest to the highest shear used ratios, unlike the Sand Blasted Plates. Never the less, due to its gap, it did not presented clamping, alike the other remaining geometries. Since the Serrated Parallel Plates performed all tests in all shear rates, without occurrence of any sort of problem, undoubtedly it is the best geometry when using this drilling fluid. The viscometer also presented good qualitative results, even more considering the rheometers precision in perspective. The best results were achieved with the highest used shear rates in the viscometer. This might be especially interesting for field applications, where a rheometer is not practical, or even impossible to be used. In addition, viscometers are stronger and cheaper instruments. Depending of the applied shear rates, viscometers can be good enough rheological properties with certain reliability. Since Serrated and Sand Blasted Parallel Plates achieved similar results, they can be swapped without big problems, what can be interesting for several kinds of purposes. In low shear rates applications that more care taken, due to the slipping phenomenon for Sand Blasted Plates.

6 REFERENCES [1] LYONS, W; CARTER, T; LAPEYROUSE, N. J; Formulas and Calculations, for Drilling, Production, and Workover: All the Formulas You Need to Solve Drilling and Production Problems. Gulf Professional Publishing, [2] SCRAMM, G. A. A practichal approach to Rheology and Rheometry. Hakke, [3] FERNANDES, R. R.; Metodologia para preparação de amostras em testes reológicos e avaliação da tensão limite de escoamento de fluidos de perfuração, Trabalho de Conclusão de Curso Curso de Engenharia Mecânica, Universidade Tecnológica Federal do Paraná. [4] MACOSKO, C. W. Rheology Principles Masurements and Aplications. 1ed.Nova York: John Wiley & Son, 1993 [5] MAHAUT, F. et al. Yield stress and elastic modulus of suspensions of noncolloidal particles in yeld stress fluids. Journal of Rheology (1978) [6] NGUYEN, Q.D.; BORGER, D. V. Measuring the Flow Properties of Yield Stress Fluids. Annual Review of Fluid Mechanics, ACKNOLEDGMENTS The authors acknowledge the financial support of PETROBRAS S/A, ANP, CNPq and FINEP.

EXPERIMENTAL INVESTIGATION OF CRITICAL STRAIN FOR VISCOPLASTIC MATERIALS WITH DIFFERENT GEOMETRIES AND RHEOMETERS

EXPERIMENTAL INVESTIGATION OF CRITICAL STRAIN FOR VISCOPLASTIC MATERIALS WITH DIFFERENT GEOMETRIES AND RHEOMETERS EXPERIMENTAL INVESTIGATION OF CRITICAL STRAIN FOR VISCOPLASTIC MATERIALS WITH DIFFERENT GEOMETRIES AND RHEOMETERS Guilherme A. S. Balvedi, 2 Diogo E. V. Andrade, 3 Admilson T. Frano e 3 Cezar O. R. Negrão

More information

Rheometry. II.1 Introduction

Rheometry. II.1 Introduction II Rheometry II.1 Introduction Structured materials are generally composed of microstructures dispersed in a homogeneous phase [30]. These materials usually have a yield stress, i.e. a threshold stress

More information

On the Rheological Parameters Governing Oilwell Cement Slurry Stability

On the Rheological Parameters Governing Oilwell Cement Slurry Stability ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 12, 2004 On the Rheological Parameters Governing Oilwell Cement Slurry Stability Roni Gandelman, Cristiane Miranda, Kleber Teixeira, André L. Martins

More information

Introduction to Marine Hydrodynamics

Introduction to Marine Hydrodynamics 1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first

More information

Rotational viscometers

Rotational viscometers 42 Non-Newtonian Flow in the Process Industries Rotational viscometers Due to their relative importance as tools for the rheological characterisation of non-newtonian fluid behaviour, we concentrate on

More information

CHAPTER 3. CONVENTIONAL RHEOMETRY: STATE-OF-THE-ART. briefly introduces conventional rheometers. In sections 3.2 and 3.

CHAPTER 3. CONVENTIONAL RHEOMETRY: STATE-OF-THE-ART. briefly introduces conventional rheometers. In sections 3.2 and 3. 30 CHAPTER 3. CONVENTIONAL RHEOMETRY: STATE-OF-THE-ART This chapter reviews literature on conventional rheometries. Section 3.1 briefly introduces conventional rheometers. In sections 3.2 and 3.3, viscometers

More information

Rheology of strongly sedimenting magnetite suspensions

Rheology of strongly sedimenting magnetite suspensions ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 13, 05 Rheology of strongly sedimenting magnetite suspensions Jan Gustafsson1, Martti Toivakka1, and Kari K. Koskinen2 1 Laboratory of Paper Coating

More information

Measuring rheological properties using a slotted plate device

Measuring rheological properties using a slotted plate device Korea-Australia Rheology Journal Vol. 19, No. 2, August 2007 pp. 75-80 Measuring rheological properties using a slotted plate device Daniel De Kee 1, Young Dae Kim* and Q. Dzuy Nguyen 2 Faculty of Applied

More information

Effect of Temperature and Pressure on Rheological Measurements of Cement Slurries

Effect of Temperature and Pressure on Rheological Measurements of Cement Slurries ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 22, 2014 Effect of Temperature and Pressure on Rheological Measurements of Cement Slurries Kristján Friðrik Alexandersson 1 and Sunna Ólafsdóttir

More information

Well prepared - good results

Well prepared - good results APPLICATION NOTE Well prepared - good results No. V-248 Authors Cornelia Küchenmeister-Lehrheuer and Klaus Olddörp Thermo Fisher Scientific, Karlsruhe, Germany Introduction In recent years the demands

More information

Polymerization Technology Laboratory Course

Polymerization Technology Laboratory Course Polymerization Technology Laboratory Course Viscometry/Rheometry Tasks 1. Comparison of the flow behavior of polystyrene- solution and dispersion systems 2. Determination of the flow behaviour of polyvinylalcohol

More information

AN014e. Non-standard geomtries for rheological characterization of complex fluids. A. Franck, TA Instruments Germany

AN014e. Non-standard geomtries for rheological characterization of complex fluids. A. Franck, TA Instruments Germany Non-standard geomtries for rheological characterization of complex fluids A. Franck, TA Instruments Germany AN14e Keywords: systemic rheology, rheo-reactor, s, product formulation, s, bitumen, Couette

More information

1912 MEASUREMENT OF HARDNESS OF SEMISOLIDS

1912 MEASUREMENT OF HARDNESS OF SEMISOLIDS BRIEFING 1912 Measurement of Hardness of Semisolids. This proposed new chapter summarizes the mathematical models used to quantify the viscoelastic properties of semisolids, as well as the most common

More information

Drilling Fluid Thixotropy & Relevance

Drilling Fluid Thixotropy & Relevance ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 13, 2005 Drilling Fluid Thixotropy & Relevance Richard Jachnik1, 1Baker Hughes INTEQ, Stoneywood Park North, Dyce, Aberdeen, Scotland, UK ABSTRACT

More information

Evaluating Pigment Dispersion Quality through Dynamic Oscillation Analysis John Meadows, Surface Specialties - UCB

Evaluating Pigment Dispersion Quality through Dynamic Oscillation Analysis John Meadows, Surface Specialties - UCB Evaluating Pigment Dispersion Quality through Dynamic Oscillation Analysis John Meadows, Surface Specialties - UCB Introduction The value of an ink s performance ultimately hinges on the quality of the

More information

Overcoming and quantifying Wall Slip in measurements made on a rotational rheometer

Overcoming and quantifying Wall Slip in measurements made on a rotational rheometer Overcoming and quantifying Wall Slip in measurements made on a rotational rheometer RHEOLOGY AND VISCOSITY Introduction When making shear rheological measurements on structured liquids, in particular suspensions,

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current Rheology What is rheology? From the root work rheo- Current: flow Greek: rhein, to flow (river) Like rheostat flow of current Rheology What physical properties control deformation? - Rock type - Temperature

More information

Performance evaluation of different model mixers by numerical simulation

Performance evaluation of different model mixers by numerical simulation Journal of Food Engineering 71 (2005) 295 303 www.elsevier.com/locate/jfoodeng Performance evaluation of different model mixers by numerical simulation Chenxu Yu, Sundaram Gunasekaran * Food and Bioprocess

More information

Supplementary Information. Text S1:

Supplementary Information. Text S1: Supplementary Information Text S1: In order to characterize the change in visco-elastic response in the course of a shear thickening transition in a controlled shear stress flow, on a fresh sample of for

More information

CHAPTER TWO: EXPERIMENTAL AND INSTRUMENTATION TECHNIQUES

CHAPTER TWO: EXPERIMENTAL AND INSTRUMENTATION TECHNIQUES CHAPTER TWO: EXPERIMENTAL AND INSTRUMENTATION TECHNIQUES 25 2.1 INSTRUMENTATION The prepared samples were characterized using various techniques. Among which are Dynamic Light Scattering, Zeta Potential

More information

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko RHEOLOGY Principles, Measurements, and Applications I -56081-5'79~5 1994 VCH Publishers. Inc. New York Part I. CONSTITUTIVE RELATIONS 1 1 l Elastic Solid 5 1.1 Introduction 5 1.2 The Stress Tensor 8 1.2.1

More information

GENERALIZED NEWTONIAN FLUIDS AS LUBRICANTS IN THE HYDRODYNAMIC CONICAL BEARINGS A CFD ANALYSIS

GENERALIZED NEWTONIAN FLUIDS AS LUBRICANTS IN THE HYDRODYNAMIC CONICAL BEARINGS A CFD ANALYSIS Journal of KONES Powertrain and Transport, Vol. 23, No. 2 2016 GENERALIZED NEWTONIAN FLUIDS AS LUBRICANTS IN THE HYDRODYNAMIC CONICAL BEARINGS A CFD ANALYSIS Adam Czaban Gdynia Maritime University, Faculty

More information

Dynamic Mechanical Analysis of Solid Polymers and Polymer Melts

Dynamic Mechanical Analysis of Solid Polymers and Polymer Melts Polymer Physics 2015 Matilda Larsson Dynamic Mechanical Analysis of Solid Polymers and Polymer Melts Polymer & Materials Chemistry Introduction Two common instruments for dynamic mechanical thermal analysis

More information

On the effects of Non-Newtonian fluids above the ribbing instability

On the effects of Non-Newtonian fluids above the ribbing instability On the effects of Non-Newtonian fluids above the ribbing instability L. Pauchard, F. Varela LÓpez*, M. Rosen*, C. Allain, P. Perrot** and M. Rabaud Laboratoire FAST, Bât. 502, Campus Universitaire, 91405

More information

Lecture 7: Rheology and milli microfluidic

Lecture 7: Rheology and milli microfluidic 1 and milli microfluidic Introduction In this chapter, we come back to the notion of viscosity, introduced in its simplest form in the chapter 2. We saw that the deformation of a Newtonian fluid under

More information

Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 4: Non-Newtonian fluids and rheometry (PART 1)

Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 4: Non-Newtonian fluids and rheometry (PART 1) Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 4: Non-Newtonian fluids and rheometry (PART 1) Globex Julmester 2017 Lecture #3 05 July 2017 Agenda Lecture #3 Section

More information

EXPERIMENTALLY DETERMINING THE VISCOELASTIC BEHAVIOR OF A CURING THERMOSET EPOXY R. Thorpe 1, A. Poursartip 1*

EXPERIMENTALLY DETERMINING THE VISCOELASTIC BEHAVIOR OF A CURING THERMOSET EPOXY R. Thorpe 1, A. Poursartip 1* 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS EXPERIMENTALLY DETERMINING THE VISCOELASTIC BEHAVIOR OF A CURING THERMOSET EPOXY R. Thorpe 1, A. Poursartip 1* 1 Composites Group, Dept. of Materials

More information

Viscosity * Desmond Schipper Andrew R. Barron. 1 Introduction

Viscosity * Desmond Schipper Andrew R. Barron. 1 Introduction OpenStax-CNX module: m50215 1 Viscosity * Desmond Schipper Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract This module discusses

More information

Laboratory 9: The Viscosity of Liquids

Laboratory 9: The Viscosity of Liquids Laboratory 9: The Viscosity of Liquids Introduction The essential difference between solids and fluids lies in the nature of their response to the socalled shearing stress. In solids, an elastic force

More information

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002 student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

More information

Modelling of dispersed, multicomponent, multiphase flows in resource industries. Section 3: Examples of analyses conducted for Newtonian fluids

Modelling of dispersed, multicomponent, multiphase flows in resource industries. Section 3: Examples of analyses conducted for Newtonian fluids Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 3: Examples of analyses conducted for Newtonian fluids Globex Julmester 017 Lecture # 04 July 017 Agenda Lecture

More information

Measurement and Prediction of Fluid Viscosities at High Shear Rates

Measurement and Prediction of Fluid Viscosities at High Shear Rates Chapter 5 Measurement and Prediction of Fluid Viscosities at High Shear Rates Jeshwanth K. Rameshwaram and Tien T. Dao Additional information is available at the end of the chapter http://dx.doi.org/10.5772/54282

More information

Rheometer: Procedure: Part A: Viscosity v Time

Rheometer: Procedure: Part A: Viscosity v Time Rheometer A fluid is defined as a substance that deforms continuously under the action of a shear stress, no matter how small the shear stress may be. Without shear stress, there will be no deformation.

More information

Rheology of cellulose solutions. Puu Cellulose Chemistry Michael Hummel

Rheology of cellulose solutions. Puu Cellulose Chemistry Michael Hummel Rheology of cellulose solutions Puu-23.6080 - Cellulose Chemistry Michael Hummel Contents Steady shear tests Viscous flow behavior and viscosity Newton s law Shear thinning (and critical concentration)

More information

Exercise: concepts from chapter 10

Exercise: concepts from chapter 10 Reading:, Ch 10 1) The flow of magma with a viscosity as great as 10 10 Pa s, let alone that of rock with a viscosity of 10 20 Pa s, is difficult to comprehend because our common eperience is with s like

More information

ESTIMATION OF BINGHAM RHEOLOGICAL PARAMETERS OF SCC FROM SLUMP FLOW MEASUREMENT

ESTIMATION OF BINGHAM RHEOLOGICAL PARAMETERS OF SCC FROM SLUMP FLOW MEASUREMENT ESTIMATION OF BINGHAM RHEOLOGICAL PARAMETERS OF SCC FROM SLUMP FLOW MEASUREMENT L. N. Thrane, C. Pade and T. Svensson Danish Technological Institute, Concrete Centre, Taastrup, Denmark Abstract Different

More information

ANALYSIS OF VERTICAL GROWTH OF FRACTURES IN FRAC PACK OPERATIONS IN RESERVOIR ROCKS

ANALYSIS OF VERTICAL GROWTH OF FRACTURES IN FRAC PACK OPERATIONS IN RESERVOIR ROCKS ANALYSIS OF VERTICAL GROWTH OF FRACTURES IN FRAC PACK OPERATIONS IN RESERVOIR ROCKS Paulo Dore Fernandes PETROBRAS S. A., Centro de Pesquisas - CENPES Rio de Janeiro, RJ Paulo Roberto Ribeiro Universidade

More information

Rheological Measurements of Cementitious Suspensions Using a Grooved Measuring Device

Rheological Measurements of Cementitious Suspensions Using a Grooved Measuring Device ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 17, 2009 Rheological Measurements of Cementitious Suspensions Using a Grooved Measuring Device Helge Hodne 1, Arild Saasen 1,2, and Jone Haugland

More information

1/7. 4-1) Introduction

1/7. 4-1) Introduction 1/7 Measurement Technology Monthly Periodical Article for the February 2013 issue Classification Products and technology 1) Title Vibration Rheometer RV-10000 2) Subtitle Viscosity of various liquids measured

More information

Interfacial Shear Rheology of Films Formed by Coffee

Interfacial Shear Rheology of Films Formed by Coffee ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 16, 2008 Interfacial Shear Rheology of Films Formed by Coffee Patrick Heyer, Jörg Läuger Anton Paar Germany GmbH, Helmuth-Hirth-Strasse 6, 73760

More information

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like:

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like: 11/01/2017 Lecture 3 Properties of Fluids There are thermodynamic properties of fluids like: Pressure, p (N/m 2 ) or [ML -1 T -2 ], Density, ρ (kg/m 3 ) or [ML -3 ], Specific weight, γ = ρg (N/m 3 ) or

More information

The 2S2P1D: An Excellent Linear Viscoelastic Model

The 2S2P1D: An Excellent Linear Viscoelastic Model The 2S2P1D: An Excellent Linear Viscoelastic Model Md. Yusoff 1, N. I., Monieur, D. 2, Airey, G. D. 1 Abstract An experimental campaign has been carried out on five different unaged and five aged penetration

More information

Nonlinear Viscoelastic Behaviors of Different Types of O/W Emulsion-Based Mayonnaises in Several Shear Flow Fields

Nonlinear Viscoelastic Behaviors of Different Types of O/W Emulsion-Based Mayonnaises in Several Shear Flow Fields ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL 19, 211 Nonlinear Viscoelastic Behaviors of Different Types of O/W Emulsion-Based Mayonnaises in Several Shear Flow Fields Hye-Jin Ahn and Ki-Won

More information

::: Application Report

::: Application Report Interfacial Shear Rheology of Coffee Samples Explore the secrets of a perfect crema! This application report presents typical measurements on the film formation and on the interfacial rheological properties

More information

Temperature-dependent viscosity analysis of SAE 10W-60 engine oil with RheolabQC rotational rheometer

Temperature-dependent viscosity analysis of SAE 10W-60 engine oil with RheolabQC rotational rheometer Temperature-dependent viscosity analysis of SAE W-6 engine oil with RheolabQC rotational rheometer Dănuț Zahariea,*, and Dorin Emil Husaru 2 Gheorghe Asachi Technical University of Iași, Department of

More information

RELIABILITY OF RHEOMETRIC MEASUREMENTS IN BITUMENS BY MEANS OF DYNAMIC SHEAR RHEOMETERS

RELIABILITY OF RHEOMETRIC MEASUREMENTS IN BITUMENS BY MEANS OF DYNAMIC SHEAR RHEOMETERS RELIABILITY OF RHEOMETRIC MEASUREMENTS IN BITUMENS BY MEANS OF DYNAMIC SHEAR RHEOMETERS Antonio MONTEPARA, University of Parma, Parma, Italy Felice GIULIANI, University of Parma, Parma, Italy 1. INTRODUCTION

More information

Fluid temperature control in rotational rheometers with plate-plate measuring systems

Fluid temperature control in rotational rheometers with plate-plate measuring systems ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 15, 2007 temperature control in rotational rheometers with plate-plate measuring systems R. B. Schüller 1 and C. Salas-Bringas 2 1 Dep. of Chemistry,

More information

Type of Activity (e.g., problem set, case study, experiment, long-term project, etc.):

Type of Activity (e.g., problem set, case study, experiment, long-term project, etc.): About You Your Name: Arlo Brandon Weil Your Institution: Bryn Mawr College Your E-mail Address: aweil@brynmawr.edu. Your Activity or Assignment Activity/Assignment Title: Using candy bar deformation experiments

More information

Citation for published version (APA): Paredes Rojas, J. F. (2013). Understanding the rheology of yield stress materials

Citation for published version (APA): Paredes Rojas, J. F. (2013). Understanding the rheology of yield stress materials UvA-DARE (Digital Academic Repository) Understanding the rheology of yield stress materials Paredes Rojas, J.F. Link to publication Citation for published version (APA): Paredes Rojas, J. F. (2013). Understanding

More information

PRESSURE DROP IN TOOL JOINTS FOR THE FLOW OF WATER-BASED MUDS IN OIL WELL DRILLING

PRESSURE DROP IN TOOL JOINTS FOR THE FLOW OF WATER-BASED MUDS IN OIL WELL DRILLING PRESSURE DROP IN TOOL JOINTS FOR THE FLOW OF WATER-BASED MUDS IN OIL WELL DRILLING a Calçada, L. A. 1 ; a Eler, F. M.; a Paraiso, E. C. H.; a Scheid, C. M.; b Rocha, D. C. a Federal Rural University of

More information

University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1

University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1 University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING ME 311 - Fluid Mechanics Lecture notes Chapter 1 Introduction and fluid properties Prepared by : Dr. N. Ait Messaoudene Based

More information

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Reading Assignments Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Sert) Study Set 1 You can find the answers of some of the following

More information

A calibration method for a new type of rheometer

A calibration method for a new type of rheometer ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL 14, 2006 A calibration method for a new type of rheometer C Salas-Bringas 1, WK Jeksrud 1, O-I Lekang 1 and RB Schüller 2 1 Dep of Mathematical Sciences

More information

(2.1) Is often expressed using a dimensionless drag coefficient:

(2.1) Is often expressed using a dimensionless drag coefficient: 1. Introduction Multiphase materials occur in many fields of natural and engineering science, industry, and daily life. Biological materials such as blood or cell suspensions, pharmaceutical or food products,

More information

We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from

We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from Chapter 1. Introduction 1.1 Some Characteristics of Fluids We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from scientific or engineering point of view. In

More information

Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method

Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method V.M.F. Nascimento Departameto de ngenharia Mecânica TM, UFF, Rio de Janeiro

More information

Lab Exercise #3: Torsion

Lab Exercise #3: Torsion Lab Exercise #3: Pre-lab assignment: Yes No Goals: 1. To evaluate the equations of angular displacement, shear stress, and shear strain for a shaft undergoing torsional stress. Principles: testing of round

More information

A phenomenological model for shear-thickening in wormlike micelle solutions

A phenomenological model for shear-thickening in wormlike micelle solutions EUROPHYSICS LETTERS 5 December 999 Europhys. Lett., 8 (6), pp. 76-7 (999) A phenomenological model for shear-thickening in wormlike micelle solutions J. L. Goveas ( ) and D. J. Pine Department of Chemical

More information

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS Transactions, SMiRT-24 ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS 1 Principal Engineer, MTR & Associates, USA INTRODUCTION Mansour Tabatabaie 1 Dynamic response

More information

DYNAMIC AND TRANSIENT TESTING OF ASPHALT BINDER AND PAVING MIX

DYNAMIC AND TRANSIENT TESTING OF ASPHALT BINDER AND PAVING MIX 66 6th RILEM Symposium PTEBM'03, Zurich, 2003 DYNAMIC AND TRANSIENT TESTING OF ASPHALT BINDER AND PAVING MIX L. Zanzotto, O.J. Vacin and J. Stastna University of Calgary, Canada Abstract: A commercially

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

Les Houches School of Foam: Rheology of Complex Fluids

Les Houches School of Foam: Rheology of Complex Fluids Les Houches School of Foam: Rheology of Complex Fluids Andrew Belmonte The W. G. Pritchard Laboratories Department of Mathematics, Penn State University 1 Fluid Dynamics (tossing a coin) Les Houches Winter

More information

Modeling of Suspension Flow in Pipes and Rheometers

Modeling of Suspension Flow in Pipes and Rheometers Modeling of Suspension Flow in Pipes and Rheometers Nicos S. Martys, Chiara F. Ferraris, William L. George National Institute of Standards and Technology Abstract: Measurement and prediction of the flow

More information

How to measure the shear viscosity properly?

How to measure the shear viscosity properly? testxpo Fachmesse für Prüftechnik 10.-13.10.2016 How to measure the shear viscosity properly? M p v Rotation Capillary Torsten Remmler, Malvern Instruments Outline How is the Shear Viscosity defined? Principle

More information

Characteristic Temperatures of Waxy Crude Oils

Characteristic Temperatures of Waxy Crude Oils 2007 Petroleum Science Vol.4 No.3 Characteristic Temperatures of Waxy Crude Oils Zhu Yingru, Zhang Jinjun, Li Hongying and Chen Jun (Beijing Key Laboratory of Urban Oil and Gas Distribution Technology,

More information

Supplementary Informations Spatial cooperativity in soft glassy flows

Supplementary Informations Spatial cooperativity in soft glassy flows doi:.38/nature76 Supplementary Informations Spatial cooperativity in soft glassy flows J. Goyon, A. Colin, G. Ovarlez, A. Ajdari, L. Bocquet I. SUPPLEMENTARY METHOD. Static properties of the emulsions

More information

Investigating Shear-Induced Particle Migration in Fresh Cement Mortars

Investigating Shear-Induced Particle Migration in Fresh Cement Mortars Investigating Shear-Induced Particle Migration in Fresh Cement Mortars Ye Qian, Shiho Kawashima Civil Engineering and Engineering Mechanics, Columbia University, New York, New York, USA Abstract: Shear-induced

More information

CH5716 Processing of Materials

CH5716 Processing of Materials CH5716 Processing of Materials Ceramic Thick Film Processing Lecture MC5 Slurry Characterisation Specific Surface Area Powder size & specific surface area (area per unit wt) closely related As particle

More information

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior Viscoelasticity Basic Notions & Examples Formalism for Linear Viscoelasticity Simple Models & Mechanical Analogies Non-linear behavior Viscoelastic Behavior Generic Viscoelasticity: exhibition of both

More information

The principals of rheology In pharmaceutical technology

The principals of rheology In pharmaceutical technology The principals of rheology In pharmaceutical technology Dr. Aleksandar Széchenyi University of Pécs Gyógyszertechnológiai és Biofarmáciai Intézet Institute of Pharmaceutical Technology and Biopharmacy

More information

SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION

SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION The Society gratefully acknowledges those companies that support the program by allowing their professionals

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

INTRODUCTION TO SCIENCE CHAPTER 1

INTRODUCTION TO SCIENCE CHAPTER 1 INTRODUCTION TO SCIENCE CHAPTER 1 1 Science is the study of Everything!! A way of learning about the natural world. Scientist: a person who studies, or has expert WHAT IS SCIENCE? knowledge of a natural

More information

AE3610 Experiments in Fluid and Solid Mechanics TRANSIENT MEASUREMENTS OF HOOP STRESSES FOR A THIN-WALL PRESSURE VESSEL

AE3610 Experiments in Fluid and Solid Mechanics TRANSIENT MEASUREMENTS OF HOOP STRESSES FOR A THIN-WALL PRESSURE VESSEL Objective AE3610 Experiments in Fluid and Solid Mechanics TRANSIENT MEASUREMENTS OF OOP STRESSES FOR A TIN-WA PRESSURE VESSE This experiment will allow you to investigate hoop and axial stress/strain relations

More information

Experimental Study on the Rate Effect on the Shear Strength

Experimental Study on the Rate Effect on the Shear Strength Disaster Mitigation of Debris Flows, Slope Failures and Landslides 421 Experimental Study on the Rate Effect on the Shear Strength Ryuta Saito, 1) Hiroshi Fukuoka 2) and Kyoji Sassa 3) 1) Graduate School

More information

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer Principles of Food and Bioprocess Engineering (FS 1) Problems on Heat Transfer 1. What is the thermal conductivity of a material 8 cm thick if the temperature at one end of the product is 0 C and the temperature

More information

5. MODELING OF NON-STRATIFIED MIXTURE FLOWS (Pseudo-homogeneous flows)

5. MODELING OF NON-STRATIFIED MIXTURE FLOWS (Pseudo-homogeneous flows) 5. MODELING OF NON-STRATIFIED MIXTURE FLOWS (Pseudo-homogeneous flows) Uniform (or almost uniform) distribution of transported solids across a pipeline cross section is characteristic of pseudo-homogeneous

More information

Handle Food Samples with Care for Reliable Rheological Results

Handle Food Samples with Care for Reliable Rheological Results Handle Food Samples with Care for Reliable Rheological Results Dr. Klaus Oldörp The world leader in serving science Overview Food and rheology Sample handling before the measurement The right measuring

More information

Available online Journal of Scientific and Engineering Research, 2016, 3(6): Research Article

Available online   Journal of Scientific and Engineering Research, 2016, 3(6): Research Article Available online www.jsaer.com, 2016, 3(6):318-323 Research Article ISSN: 2394-2630 ODEN(USA): JSERBR omparative Study of the Rheological Properties of Niger Delta rude Oil Bright Bariakpoa Kinate*, Kingdom

More information

DOLOMITE AS AN ALTERNATIVE WEIGHTING AGENT IN DRILLING FLUIDS

DOLOMITE AS AN ALTERNATIVE WEIGHTING AGENT IN DRILLING FLUIDS Journal of Engineering Science and Technology Vol. 2, No. 2 (2007) 164-176 School of Engineering, Taylor s University College DOLOMITE AS AN ALTERNATIVE WEIGHTING AGENT IN DRILLING FLUIDS M. J. BADRUL*,

More information

Time-Dependent Rheology of Concentrated Xanthan Gum Solutions

Time-Dependent Rheology of Concentrated Xanthan Gum Solutions ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL 19, 211 Time-Dependent Rheology of Concentrated Xanthan Gum Solutions Ji-Seok Lee and Ki-Won Song* Department of Organic Material Science and Engineering,

More information

VIRTUAL INSTRUMENTATION SOFTWARE FOR THE RHEOLOGICAL PROPERTIES OF THE NON-NEWTONIAN FLUIDS

VIRTUAL INSTRUMENTATION SOFTWARE FOR THE RHEOLOGICAL PROPERTIES OF THE NON-NEWTONIAN FLUIDS VIRTUAL INSTRUMENTATION SOFTWARE FOR THE RHEOLOGICAL PROPERTIES OF THE NON-NEWTONIAN FLUIDS Eng. Irina Radulescu, S.C. I.C.T.C.M. S.A. Bucharest, ROMANIA Dr. eng. Alexandru V. Radulescu, University POLITEHNICA

More information

PHYS 1111L - Introductory Physics Laboratory I

PHYS 1111L - Introductory Physics Laboratory I PHYS 1111L - Introductory Physics Laboratory I Laboratory Advanced Sheet Acceleration Due to Gravity 1. Objectives. The objectives of this laboratory are a. To measure the local value of the acceleration

More information

CONSISTENCY OF RHEOLOGICAL EXPERIMENTS FOR PSA CHARACTERIZATION

CONSISTENCY OF RHEOLOGICAL EXPERIMENTS FOR PSA CHARACTERIZATION CONSISTENCY OF RHEOLOGICAL EXPERIMENTS FOR PSA CHARACTERIZATION Dr. Laura Yao, Senior Research Chemist, Scapa North America, Windsor, CT Robert Braiewa, Research Chemist, Scapa North America, Windsor,

More information

Slip at Fluid-Solid Interface

Slip at Fluid-Solid Interface Slip at Fluid-Solid Interface Taha Sochi January 25, 2011 University College London, Department of Physics & Astronomy, Gower Street, London, WC1E 6BT. Email: t.sochi@ucl.ac.uk. 1 Contents Contents 2 Abstract

More information

VISCOSITY MEASUREMENT MEAN MOLECULAR MASS DETERMINATION

VISCOSITY MEASUREMENT MEAN MOLECULAR MASS DETERMINATION VISCOSITY MEASUREMENT MEAN MOLECULAR MASS DETERMINATION Author: dr Marek Studziński Editor: dr hab. Agnieszka Ewa Wiącek Task 11 VISCOSITY MEASUREMENT MEAN MOLECULAR MASS DETERMINATION I. Aim of the task

More information

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum By F. Rouyer, S. Cohen-Addad, R. Höhler, P. Sollich, and S.M. Fielding The European

More information

Lecture 7. Rheology. Hamid Alghurabi. Assistant Lecturer in Pharmaceutics

Lecture 7. Rheology. Hamid Alghurabi. Assistant Lecturer in Pharmaceutics Physical Pharmacy Lecture 7 Rheology Assistant Lecturer in Pharmaceutics Overview Types of flow Newtonian systems Non-Newtonian systems Thixotropy Definition Applications in formulations Determination

More information

NUMERICAL SIMULATIONS OF CONSTANT VELOCITY SQUEEZE FLOW

NUMERICAL SIMULATIONS OF CONSTANT VELOCITY SQUEEZE FLOW U.P.B. Sci. Bull., Series D, Vol. 75, Iss. 2, 2013 ISSN 1454-2358 NUMERICAL SIMULATIONS OF CONSTANT VELOCITY SQUEEZE FLOW Daniela COBLAŞ 1, Diana BROBOANĂ 2, Corneliu BĂLAN 3, Mohamed HAJJAM 4 The paper

More information

MECHANICAL PROPERTIES

MECHANICAL PROPERTIES MECHANICAL PROPERTIES Rheology S.C. BAYNE, 1 J.Y. Thompson 2 1 University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078 sbayne@umich.edu 2 Nova Southeastern College of Dental Medicine, Ft.

More information

PHYS 2211L - Principles of Physics Laboratory I

PHYS 2211L - Principles of Physics Laboratory I PHYS 2211L - Principles of Physics Laboratory I Laboratory Advanced Sheet Acceleration Due to Gravity 1. Objectives. The objectives of this laboratory are a. To measure the local value of the acceleration

More information

The Rheology Handbook

The Rheology Handbook Thomas G. Mezger The Rheology Handbook For users of rotational and oscillatory rheometers 2nd revised edition 10 Contents Contents 1 Introduction 16 1.1 Rheology, rheometry and viscoelasticity 16 1.2 Deformation

More information

Falling in Air. "Facts do not cease to exist because they are ignored." A. Huxley

Falling in Air. Facts do not cease to exist because they are ignored. A. Huxley Falling in Air "Facts do not cease to exist because they are ignored." A. Huxley OBJECIVES o learn another technique for measuring motion and to study an example of motion along a line under the influence

More information

INVESTIGATION ON GEOTHERMAL DRILLING MUDS WITH HIGH TEMPERATURE STABILITY

INVESTIGATION ON GEOTHERMAL DRILLING MUDS WITH HIGH TEMPERATURE STABILITY INVESTIGATION ON GEOTHERMAL DRILLING MUDS WITH HIGH TEMPERATURE STABILITY Umran Serpen ITÜ, Petroleum and Natural Gas Eng. Dept., Maslak, 80626, Istanbul, Turkey Key Words: Drilling-mud, geothermal, sepiolite,

More information

SEISMIC BASE ISOLATION

SEISMIC BASE ISOLATION SEISMIC BASE ISOLATION DESIGN OF BASE ISOLATION SYSTEMS IN BUILDINGS FILIPE RIBEIRO DE FIGUEIREDO SUMMARY The current paper aims to present the results of a study for the comparison of different base isolation

More information

Comments on Use of Reference Fluid to Verify DSR

Comments on Use of Reference Fluid to Verify DSR Comments on Use of Reference Fluid to Verify DSR David Anderson Professor Emeritus Penn State FHWA Asphalt Binder Expert Task Group Baton Rouge, LA September 16-17, 2014 Reference fluid how and why? Used

More information

Supplementary material to On the rheology of pendular gels and morphological developments in paste- like ternary systems based on capillary attraction

Supplementary material to On the rheology of pendular gels and morphological developments in paste- like ternary systems based on capillary attraction Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 214 Supplementary material to On the rheology of pendular gels and morphological developments in

More information

Homework of chapter (1) (Solution)

Homework of chapter (1) (Solution) بسم اهلل الرمحن الرحيم The Islamic University of Gaza, Civil Engineering Department, Fluid mechanics-discussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Mohammed H El Nazli Eng. Sarah R Rostom First

More information

STICK-SLIP WHIRL INTERACTION IN DRILLSTRING DYNAMICS

STICK-SLIP WHIRL INTERACTION IN DRILLSTRING DYNAMICS STICK-SLIP WHIRL INTERACTION IN DRILLSTRING DYNAMICS R. I. Leine, D. H. van Campen Department of Mechanical Engineering, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands

More information