Falling in Air. "Facts do not cease to exist because they are ignored." A. Huxley

Size: px
Start display at page:

Download "Falling in Air. "Facts do not cease to exist because they are ignored." A. Huxley"

Transcription

1 Falling in Air "Facts do not cease to exist because they are ignored." A. Huxley OBJECIVES o learn another technique for measuring motion and to study an example of motion along a line under the influence of various forces. HEORY It is well known that light-weight objects like leaves fall less rapidly in air than dense objects such as rocks. his is attributed to "air resistance" or "air drag", and usually ignored in the idealized world of physics textbooks. Since it is a complex but important phenomenon, we will examine some of the effects of drag experimentally. Like friction forces between solid objects, drag forces on objects moving in a fluid tend to slow and eventually stop the motion. In simple situations, the force might be proportional to some power of the speed, and directed opposite to the velocity of the object. One possible expression for a drag force is F d = C d Av p (1) where C d is called the coefficient of drag, A is the cross-sectional area of the object normal to the velocity, and v is the speed of travel. For low-speed motion through viscous fluids, like a spoon sinking in honey, the exponent p will be near 1. For macroscopic objects moving through air at speeds typical of thrown balls, runners, cyclists or automobiles, p will be about. If the speed varies significantly, there may be a transition between the different regimes. he velocity dependence of the drag force makes it difficult to solve the equations of motion in any but the simplest cases. Here, we will consider only an object of mass m falling vertically from rest, not the more interesting trajectory problems that arise in sports. he equation of motion is then ma = mg! F d () Before solving this in detail, we note a qualitative feature: As the speed increases the drag force increases, until it is the same magnitude as the gravitational force and there is no further

2 acceleration. his contrasts sharply with the text book case of free fall, where the acceleration continues indefinitely. he steady final velocity, called the terminal velocity, can be calculated by finding the speed at which the gravitational force mg is equal to the drag force given by Eq. 1. he result is v p = mg C d A (3) Evidently the terminal velocity increases as the ratio of mass to area increases, so small heavy objects have a higher terminal velocity than large light ones, as you might expect. his also accounts for the observation that typical objects dropped from reasonable heights do not seem to reach a steady velocity. (Amusing fact: he terminal velocity for small animals, like squirrels, is low enough that they will almost always survive the encounter with the ground, no matter how far they fall. Large animals, like people, do not fare so well.) he complete equation of motion for an object falling vertically with p = is ma = mg! C d Av (4) his can be simplified slightly by writing it in terms of v dv dt = g " 1! v % # $ v &' (5) Eq. 5 can be solved by the usual methods for second order differential equations, to yield the speed and position as functions of time " v = v tanh gt + tanh!1 v 0 % # $ v & ' v (6) x = v g '! gt $ ln cosh# & + v 0 sinh gt * ), + x 0 (7) ( " v % v v + where v 0 and x 0 are the initial conditions, and v is given by Eq. 3 with p =. he properly skeptical reader can verify this result by differentiating twice to recover Eq. 5. Actually, we will only be concerned with the position of an object dropped from rest, so Eq. 7 becomes PHYS 111 Falling in Air

3 x = v g '! gt $ * ln) cosh# &, + x 0 (8) ( " v % + he predicted speed and position are plotted in Fig. 1. Note that the speed becomes constant, corresponding to the straight portion of the x-t graph. A similar derivation for the p=1 case leads to dv dt = g(1! v /v ) (9) v = v 1! (1! v 0 /v )e!gt / v [ ] (10) x = v t! v g (1! v /v )1! 0 e!gt / v [ ]+ x 0 (11) For an object dropped from rest, this becomes x = v t! v g 1! e!gt / v [ ]+ x 0 (1) 3 3 v (m/s) x (m) t (s) t (s) Fig. 1 Calculated speed and position vs time for an object with v = 3.3 m/s and p =. PHYS 111 Falling in Air 3

4 he resulting motion is qualitatively similar to Fig. 1, although it may be possible to distinguish the cases by careful comparison with data. EXPERIMENAL PROCEDURE o find out if the motion is adequately described by Eq. 8 or 1, you need to measure x(t) for some falling objects. his can be done with LoggerPro and a video camera, following the directions in Section V. If the data and calculation can be made to agree by proper choice of p and v, we can have some confidence in our description. As a further test, we can vary the mass of the falling object to see if v is proportional to the mass or the square root of the mass, as expected from Eq Physical arrangement he falling object is a styrofoam cup, suspended from three threads. It can be dropped from a clamp situated about 4 m above the floor. When you are ready, use the clamp to grab the suspension threads at the knot where they are tied together. Be sure the cup hangs freely, and that the heavy release cord for the clamp is out of the way. o release the cup, pull gently on the cord from the ground after starting the video recording. Some cardboard disks are available to increase the weight of the falling cup. he camera should already be set up on a support across the room from the drop area. Be sure the power is on (plugged in) and the round switch on the back is set to MOVIE. You can check the orientation and field of view when you open the preview screen of the capture program. Consult with the instructor if it appears to be necessary to move or adjust the camera, and please leave it undisturbed for the next group of students. In order to calibrate the pictures we need to include a known length in the video. A white stick with black lines at 0.5 m intervals is available. Place it near the path of the falling cup, at the same distance from the camera. he camera has been set for a fast shutter speed (1/500 th s) in order to produce a sharp image of rapid motion. hree lamps, mounted on a tall stand, provide the additional light needed for a good exposure. Be sure the lights are turned on when you are taking data, and turn them off when you stop taking pictures.. Picture data Start LoggerPro from Falling.cmbl, since it has Eqs. 8 and 1 loaded into the fitting menu. Capture a movie of the falling cup and then go to the analysis window. Mark as many points as possible during the fall, and calibrate the distance scale. For fitting, it is convenient to put the origin at the starting point of the motion, so that x 0 = 0. PHYS 111 Falling in Air 4

5 Select the portion of the x vs t graph corresponding to the period between release and impact on the floor. Use Curve Fit to find the best parameters in both Eq. 8 and 1 to describe your x(t) data. Note that an additional parameter t 0 has been included, to account for the fact that the camera clock started before the motion began. hese are difficult expressions to fit, so you will have to manually modify the parameters to get very close to the correct values before starting the automatic fit. Even so, you need to check that the final values of x 0 and t 0 are reasonable. If the cup actually reaches terminal velocity you can also compare a linear fit to that part of the motion to the v parameter found from 8 or 1. Once you are satisfied with the validity of the parameters, record them for later analysis. You will probably notice that neither Eq. 8 nor 1 fits the data perfectly. o quantify the precision of the fit, the program calculates the RMS (root mean square) error, defined as # & RMSE = %"(y i! y i, fit ) ( $ ' i 1/ (13) If both fits cover the same range of data, the one with the smaller RMSE is a more precise description. 3. Measurement Program Obtain x(t) and fit to find v for both models for several different masses covering the available range. Note that for large enough mass the motion will become indistinguishable from the quadratic x(t) of free fall. Prepare a plot and fit to determine if v is more nearly proportional to either m or m as appropriate for each model. Check the individual fits to see if the p = 1 or model is a better description of the x(t) data. If you do find differences, do they occur under particular circumstances, for example when v is large or small? PHYS 111 Falling in Air 5

Not So Free Fall Measuring the Terminal Velocity of Coffee Filters

Not So Free Fall Measuring the Terminal Velocity of Coffee Filters Not So Free Fall Measuring the Terminal Velocity of Coffee Filters When solving physics problems or performing physics experiments, you are often told to ignore air resistance or assume the acceleration

More information

LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS

LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS This laboratory allows you to continue the study of accelerated motion in more realistic situations. The cars you used in Laboratory I moved in only

More information

Experiment 4 Oscillations

Experiment 4 Oscillations Experiment 4 Oscillations "Physics is experience, arranged in economical order." E. Mach OBJECTIVES To study some simple oscillatory systems. THEORY Typical dictionary definitions of the verb "oscillate"

More information

Figure 2.1 The Inclined Plane

Figure 2.1 The Inclined Plane PHYS-101 LAB-02 One and Two Dimensional Motion 1. Objectives The objectives of this experiment are: to measure the acceleration due to gravity using one-dimensional motion, i.e. the motion of an object

More information

PHY 221 Lab 3 Vectors and Motion in 1 and 2 Dimensions

PHY 221 Lab 3 Vectors and Motion in 1 and 2 Dimensions PHY 221 Lab 3 Vectors and Motion in 1 and 2 Dimensions Print Your Name Print Your Partners' Names Instructions Before lab, read the Introduction, and answer the Pre-Lab Questions on the last page of this

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Chapter 4. Forces and the Laws of Motion. CH 4 Forces and the Laws of Motion.notebook. April 09, Changes in Motion. A. Force

Chapter 4. Forces and the Laws of Motion. CH 4 Forces and the Laws of Motion.notebook. April 09, Changes in Motion. A. Force CH 4 Forces and the Laws of Motion.notebook Chapter 4 A. Force April 09, 2015 Changes in Motion Forces and the Laws of Motion 1. Defined as the cause of an acceleration, or the change in an object s motion,

More information

LAB 10: HARMONIC MOTION AND THE PENDULUM

LAB 10: HARMONIC MOTION AND THE PENDULUM 163 Name Date Partners LAB 10: HARMONIC MOION AND HE PENDULUM Galileo reportedly began his study of the pendulum in 1581 while watching this chandelier swing in Pisa, Italy OVERVIEW A body is said to be

More information

PHY221 Lab 2 - Experiencing Acceleration: Motion with constant acceleration; Logger Pro fits to displacement-time graphs

PHY221 Lab 2 - Experiencing Acceleration: Motion with constant acceleration; Logger Pro fits to displacement-time graphs Page 1 PHY221 Lab 2 - Experiencing Acceleration: Motion with constant acceleration; Logger Pro fits to displacement-time graphs Print Your Name Print Your Partners' Names You will return this handout to

More information

Midterm α, Physics 1P21/1P91

Midterm α, Physics 1P21/1P91 Midterm α, Physics 1P21/1P91 Prof. D. Crandles March 1, 2013 Last Name First Name Student ID Circle your course number above No examination aids other than those specified on this examination script are

More information

PHY 221 Lab 7 Work and Energy

PHY 221 Lab 7 Work and Energy PHY 221 Lab 7 Work and Energy Name: Partners: Goals: Before coming to lab, please read this packet and do the prelab on page 13 of this handout. Note: originally, Lab 7 was momentum and collisions. The

More information

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli Lecture PowerPoints Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

The Spring-Mass Oscillator

The Spring-Mass Oscillator The Spring-Mass Oscillator Goals and Introduction In this experiment, we will examine and quantify the behavior of the spring-mass oscillator. The spring-mass oscillator consists of an object that is free

More information

PHY 221 Lab 9 Work and Energy

PHY 221 Lab 9 Work and Energy PHY 221 Lab 9 Work and Energy Name: Partners: Before coming to lab, please read this packet and do the prelab on page 13 of this handout. Goals: While F = ma may be one of the most important equations

More information

Not So Free Fall Not So Free Fall

Not So Free Fall Not So Free Fall Physics Not So Free Fall Not So Free Fall Measuring the Terminal Velocity of Coffee Filters About this Lesson In this activity students will observe the effects of air resistance on falling objects. In

More information

Rotational Dynamics. Goals and Introduction

Rotational Dynamics. Goals and Introduction Rotational Dynamics Goals and Introduction In translational dynamics, we use the quantities displacement, velocity, acceleration, mass and force to model the motion of objects. In that model, a net force

More information

Lab 10 - Harmonic Motion and the Pendulum

Lab 10 - Harmonic Motion and the Pendulum Lab 10 Harmonic Motion and the Pendulum L10-1 Name Date Partners Lab 10 - Harmonic Motion and the Pendulum L (measured from the suspension point to the center of mass) Groove marking the center of mass

More information

PHYSICS 1. Section I 40 Questions Time 90 minutes. g = 10 m s in all problems.

PHYSICS 1. Section I 40 Questions Time 90 minutes. g = 10 m s in all problems. Note: To simplify calculations, you may use PHYSICS 1 Section I 40 Questions Time 90 minutes 2 g = 10 m s in all problems. Directions: Each of the questions or incomplete statements below is followed by

More information

According to Newton s 2 nd Law

According to Newton s 2 nd Law According to Newton s 2 nd Law If the force is held constant the relationship between mass and acceleration is direct/inverse. If the mass is held constant the relationship between force and acceleration

More information

for any object. Note that we use letter, m g, meaning gravitational

for any object. Note that we use letter, m g, meaning gravitational Lecture 4. orces, Newton's Second Law Last time we have started our discussion of Newtonian Mechanics and formulated Newton s laws. Today we shall closely look at the statement of the second law and consider

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

Chapter 3, Section 3

Chapter 3, Section 3 Chapter 3, Section 3 3 What is force? Motion and Forces A force is a push or pull. Sometimes it is obvious that a force has been applied. But other forces aren t as noticeable. What Is a Force? A force......

More information

PHYS 1114, Lecture 10, February 8 Contents:

PHYS 1114, Lecture 10, February 8 Contents: PHYS 1114, Lecture 10, February 8 Contents: 1 Example of projectile motion: Man shooting a gun firing a bullet horizontally. 2 Example of projectile motion: Man shooting an arrow at a monkey in a tree.

More information

Visual Physics Rotational Dynamics Lab 5

Visual Physics Rotational Dynamics Lab 5 You have been asked to think of objects as point particles rather than extended bodies up to this point in the semester. This assumption is useful and sometimes sufficient, however, the approximation of

More information

Back and Forth Motion

Back and Forth Motion Back and Forth Motion LabQuest 2 Lots of objects go back and forth; that is, they move along a line first in one direction, then move back the other way. An oscillating pendulum or a ball tossed vertically

More information

Lab 10: Harmonic Motion and the Pendulum

Lab 10: Harmonic Motion and the Pendulum Lab 10 Harmonic Motion and the Pendulum 119 Name Date Partners Lab 10: Harmonic Motion and the Pendulum OVERVIEW A body is said to be in a position of stable equilibrium if, after displacement in any direction,

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Motion on a linear air track

Motion on a linear air track Motion on a linear air track Introduction During the early part of the 17 th century, Galileo experimentally examined the concept of acceleration. One of his goals was to learn more about freely falling

More information

PHY 221 Lab 2. Acceleration and Uniform Motion

PHY 221 Lab 2. Acceleration and Uniform Motion PHY 221 Lab 2 Name: Partner: Partner: Acceleration and Uniform Motion Introduction: Recall the previous lab During Lab 1, you were introduced to computer aided data acquisition. You used a device called

More information

Experiment 2. F r e e F a l l

Experiment 2. F r e e F a l l Suggested Reading for this Lab Experiment F r e e F a l l Taylor, Section.6, and standard deviation rule in Taylor handout. Review Chapters 3 & 4, Read Sections 8.1-8.6. You will also need some procedures

More information

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION Name: Partner s Name: EXPERIMENT 500-2 MOTION PLOTS & FREE FALL ACCELERATION APPARATUS Track and cart, pole and crossbar, large ball, motion detector, LabPro interface. Software: Logger Pro 3.4 INTRODUCTION

More information

Static and Kinetic Friction

Static and Kinetic Friction Experiment 12 If you try to slide a heavy box resting on the floor, you may find it difficult to get the box moving. Static friction is the force that is acting against the box. If you apply a light horizontal

More information

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (!

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (! 1. The angle between the vector! A = 3î! 2 ĵ! 5 ˆk and the positive y axis, in degrees, is closest to: A) 19 B) 71 C) 90 D) 109 E) 161 The dot product between the vector! A = 3î! 2 ĵ! 5 ˆk and the unit

More information

CHAPTER 2: Describing Motion: Kinematics in One Dimension

CHAPTER 2: Describing Motion: Kinematics in One Dimension CHAPTER : Describing Motion: Kinematics in One Dimension Answers to Questions 1. A car speedometer measures only speed. It does not give any information about the direction, and so does not measure velocity..

More information

Conservation of Mechanical Energy Procedure Alternate

Conservation of Mechanical Energy Procedure Alternate Conservation of Mechanical Energy Procedure Alternate Lab OBJECTIVE In this experiment, you will roll a ball down a ramp and off the table, measuring horizontal and vertical distances associated with the

More information

Projectile Motion. x = v ox t (1)

Projectile Motion. x = v ox t (1) Projectile Motion Theory Projectile motion is the combination of different motions in the x and y directions. In the x direction, which is taken as parallel to the surface of the earth, the projectile

More information

Motion Along a Straight Line (Motion in One-Dimension)

Motion Along a Straight Line (Motion in One-Dimension) Chapter 2 Motion Along a Straight Line (Motion in One-Dimension) Learn the concepts of displacement, velocity, and acceleration in one-dimension. Describe motions at constant acceleration. Be able to graph

More information

Driven Harmonic Oscillator

Driven Harmonic Oscillator Driven Harmonic Oscillator Physics 6B Lab Experiment 1 APPARATUS Computer and interface Mechanical vibrator and spring holder Stands, etc. to hold vibrator Motion sensor C-209 spring Weight holder and

More information

Work and Energy. This sum can be determined graphically as the area under the plot of force vs. distance. 1

Work and Energy. This sum can be determined graphically as the area under the plot of force vs. distance. 1 Work and Energy Experiment 18 Work is a measure of energy transfer. In the absence of friction, when positive work is done on an object, there will be an increase in its kinetic or potential energy. In

More information

13.7 Power Applied by a Constant Force

13.7 Power Applied by a Constant Force 13.7 Power Applied by a Constant Force Suppose that an applied force F a acts on a body during a time interval Δt, and the displacement of the point of application of the force is in the x -direction by

More information

Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring

Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring Print Your Name Print Your Partners' Names Instructions April 20, 2016 Before lab,

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Caution In this experiment a steel ball is projected horizontally across the room with sufficient speed to injure a person. Be sure the line of fire is clear before firing the

More information

PHYSICS LAB. Air Resistance. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY

PHYSICS LAB. Air Resistance. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY PHYSICS LAB Air Resistance Printed Names: Signatures: Date: Lab Section: Instructor: GRADE: PHYSICS DEPARMEN JAMES MADISON UNIVERSIY Revision August 2003 air res-68 Air Resistance Air Resistance When you

More information

Physics 221, January 24

Physics 221, January 24 Key Concepts: Newton s 1 st law Newton s 2 nd law Weight Newton s 3 rd law Physics 221, January 24 Please find a seat. Keep all walkways free for safety reasons and to comply with the fire code. Matter

More information

Ballistic Pendulum. Caution

Ballistic Pendulum. Caution Ballistic Pendulum Caution In this experiment a steel ball is projected horizontally across the room with sufficient speed to injure a person. Be sure the line of fire is clear before firing the ball,

More information

IB Questionbank Physics NAME. IB Physics 2 HL Summer Packet

IB Questionbank Physics NAME. IB Physics 2 HL Summer Packet IB Questionbank Physics NAME IB Physics 2 HL Summer Packet Summer 2017 About 2 hours 77 marks Please complete this and hand it in on the first day of school. - Mr. Quinn 1. This question is about collisions.

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

Guidance for Writing Lab Reports for PHYS 233:

Guidance for Writing Lab Reports for PHYS 233: Guidance for Writing Lab Reports for PHYS 233: The following pages have a sample lab report that is a model of what we expect for each of your lab reports in PHYS 233. It is written for a lab experiment

More information

PSI AP Physics B Dynamics

PSI AP Physics B Dynamics PSI AP Physics B Dynamics Multiple-Choice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second

More information

What is force? A force is a push or pull. Sometimes it is obvious that a force has been applied. But other forces aren t as noticeable.

What is force? A force is a push or pull. Sometimes it is obvious that a force has been applied. But other forces aren t as noticeable. Chapter 3, Sec-on 3 3 What is force? Motion and Forces A force is a push or pull. Sometimes it is obvious that a force has been applied. But other forces aren t as noticeable. What Is a Force? A force......

More information

Unit 2: Vector Dynamics

Unit 2: Vector Dynamics Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal

More information

Static and Kinetic Friction (Pasco)

Static and Kinetic Friction (Pasco) Static and Kinetic Friction (Pasco) Introduction: If you try to slide a heavy box resting on the floor, you may find it difficult to move. Static friction is keeping the box in place. There is a limit

More information

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction

More information

= 40 N. Q = 60 O m s,k

= 40 N. Q = 60 O m s,k Sample Exam #2 Technical Physics Multiple Choice ( 6 Points Each ): F app = 40 N 20 kg Q = 60 O = 0 1. A 20 kg box is pulled along a frictionless floor with an applied force of 40 N. The applied force

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor.

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor. 51 IDENTIFY: for each object Apply to each weight and to the pulley SET UP: Take upward The pulley has negligible mass Let be the tension in the rope and let be the tension in the chain EXECUTE: (a) The

More information

Rotational Motion. 1 Purpose. 2 Theory 2.1 Equation of Motion for a Rotating Rigid Body

Rotational Motion. 1 Purpose. 2 Theory 2.1 Equation of Motion for a Rotating Rigid Body Rotational Motion Equipment: Capstone, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125 cm bead

More information

Chapter 4: Newton s First Law

Chapter 4: Newton s First Law Text: Chapter 4 Think and Explain: 1-12 Think and Solve: 2 Chapter 4: Newton s First Law NAME: Vocabulary: force, Newton s 1st law, equilibrium, friction, inertia, kilogram, newton, law of inertia, mass,

More information

Physics 115 Mock Midterm Sunday, October 14, 2018 * 1 pm Room 241 Arts Building *

Physics 115 Mock Midterm Sunday, October 14, 2018 * 1 pm Room 241 Arts Building * Physics 115 Mock Midterm Sunday, October 14, 2018 * 1 pm Room 241 Arts Building * Note: This mock test consists of questions covered in Physics 115. This test is not comprehensive. The problems on this

More information

Version PREVIEW Semester 1 Review Slade (22222) 1

Version PREVIEW Semester 1 Review Slade (22222) 1 Version PREVIEW Semester 1 Review Slade () 1 This print-out should have 48 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Holt SF 0Rev 10A

More information

Constrained Rectilinear Motion Dynamics Laboratory, Spring 2008

Constrained Rectilinear Motion Dynamics Laboratory, Spring 2008 Constrained Rectilinear Motion Dynamics Laboratory, Spring 2008 Pulley systems are commonly used (in cranes, for example) to gain a mechanical advantage, allowing heavy loads to be lifted by smaller forces

More information

Physics 1021 Experiment 1. Introduction to Simple Harmonic Motion

Physics 1021 Experiment 1. Introduction to Simple Harmonic Motion 1 Physics 1021 Introduction to Simple Harmonic Motion 2 Introduction to SHM Objectives In this experiment you will determine the force constant of a spring. You will measure the period of simple harmonic

More information

CHM201 General Chemistry and Laboratory I Laboratory 7 Thermochemistry and Hess s Law May 2, 2018

CHM201 General Chemistry and Laboratory I Laboratory 7 Thermochemistry and Hess s Law May 2, 2018 Purpose: CHM201 General Chemistry and Laboratory I Laboratory 7 Thermochemistry and Hess s Law May 2, 2018 In this laboratory, you will measure heat changes arising from chemical reactions. You will use

More information

MOMENTUM, IMPULSE & MOMENTS

MOMENTUM, IMPULSE & MOMENTS the Further Mathematics network www.fmnetwork.org.uk V 07 1 3 REVISION SHEET MECHANICS 1 MOMENTUM, IMPULSE & MOMENTS The main ideas are AQA Momentum If an object of mass m has velocity v, then the momentum

More information

Lab Partner(s) TA Initials (on completion) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE

Lab Partner(s) TA Initials (on completion) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE 117 Textbook Reference: Walker, Chapter 10-1,2, Chapter 11-1,3 SYNOPSIS

More information

GRADE 10A: Physics 2. UNIT 10AP.2 8 hours. Mechanics and kinematics. Resources. About this unit. Previous learning. Expectations

GRADE 10A: Physics 2. UNIT 10AP.2 8 hours. Mechanics and kinematics. Resources. About this unit. Previous learning. Expectations GRADE 10A: Physics 2 Mechanics and kinematics UNIT 10AP.2 8 hours About this unit This unit is the second of seven units on physics for Grade 10 advanced. The unit is designed to guide your planning and

More information

Physics Pre-comp diagnostic Answers

Physics Pre-comp diagnostic Answers Name Element Physics Pre-comp diagnostic Answers Grade 8 2017-2018 Instructions: THIS TEST IS NOT FOR A GRADE. It is to help you determine what you need to study for the precomps. Just do your best. Put

More information

General Physics I Lab. M1 The Atwood Machine

General Physics I Lab. M1 The Atwood Machine Purpose General Physics I Lab In this experiment, you will learn the basic operation of computer interfacing and use it in an experimental study of Newton s second law. Equipment and components Science

More information

July 19 - Work and Energy 1. Name Date Partners

July 19 - Work and Energy 1. Name Date Partners July 19 - Work and Energy 1 Name Date Partners WORK AND ENERGY Energy is the only life and is from the Body; and Reason is the bound or outward circumference of energy. Energy is eternal delight. William

More information

Planning Ahead. Homework set 1 due W Save your chicken bones for lab on week 6 Level III: Motion graphs No class next Monday

Planning Ahead. Homework set 1 due W Save your chicken bones for lab on week 6 Level III: Motion graphs No class next Monday Planning Ahead Homework set 1 due W-9-12-18 Save your chicken bones for lab on week 6 Level III: Motion graphs No class next Monday Planning Ahead Lecture Outline I. Physics Solution II. Visualization

More information

PHYSICS 221 SPRING EXAM 1: February 20, 2014; 8:15pm 10:15pm

PHYSICS 221 SPRING EXAM 1: February 20, 2014; 8:15pm 10:15pm PHYSICS 221 SPRING 2014 EXAM 1: February 20, 2014; 8:15pm 10:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

More information

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) 121 Textbook Reference: Knight, Chapter 13.1-3, 6. SYNOPSIS In

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2017

AAPT UNITED STATES PHYSICS TEAM AIP 2017 2017 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 2017 2017 F = ma Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = 10 N/kg throughout this

More information

Experiment: Momentum & Impulse in Collisions (Video)

Experiment: Momentum & Impulse in Collisions (Video) Phy201: General Physics I Laboratory 1 Experiment: Momentum & Impulse in Collisions (Video) Objectives: To utilize momentum carts to investigate the nature of different types of collisions To perform video

More information

Acceleration and Force: I

Acceleration and Force: I Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Acceleration and Force: I Name Partners Pre-Lab You are required to finish this section before coming to the lab, which will be checked

More information

Practice Midterm Exam 1 Physics 14

Practice Midterm Exam 1 Physics 14 Booklet Number Practice Midterm Exam 1 Physics 14 Last Name First Name To get a full credit show the all calculations steps in the spaces provided. All work must be shown in order to receive FULL credit.

More information

November 16, 2006 PHYS101 Test2 - Free Response Section Page 3

November 16, 2006 PHYS101 Test2 - Free Response Section Page 3 Last Name: First Name: Print your LAST and FIRST name on the front of your blue book, on this question sheet, the multiple-choice question sheet and the multiple-choice answer sheet. TIME ALLOWED 90 MINUTES

More information

Dynamics & Kinematics: Newton s Laws of Motion in One-Dimensional Motion

Dynamics & Kinematics: Newton s Laws of Motion in One-Dimensional Motion Universiti Teknologi MARA Fakulti Sains Gunaan Dynamics & Kinematics: Newton s Laws of Motion in One-Dimensional Motion PHY406: A Physical Science Activity Name: HP: Lab # 5: The goal of today s activity

More information

Physics 2310 Lab #3 Driven Harmonic Oscillator

Physics 2310 Lab #3 Driven Harmonic Oscillator Physics 2310 Lab #3 Driven Harmonic Oscillator M. Pierce (adapted from a lab by the UCLA Physics & Astronomy Department) Objective: The objective of this experiment is to characterize the behavior of a

More information

Chapter 6. Circular Motion and Other Applications of Newton s Laws

Chapter 6. Circular Motion and Other Applications of Newton s Laws Chapter 6 Circular Motion and Other Applications of Newton s Laws Circular Motion Two analysis models using Newton s Laws of Motion have been developed. The models have been applied to linear motion. Newton

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two men, Joel and Jerry, push against a wall. Jerry stops after 10 min, while Joel is

More information

Department of Natural Sciences Clayton State University. Physics 1111 Quiz 1

Department of Natural Sciences Clayton State University. Physics 1111 Quiz 1 Physics 1111 Quiz 1 June 4, 007 Name _SOLUTION 1. Solve for x: (.5 x + 5) 1/ = 4.5 x + 5 = 16.5 x = 11 x = 4.40. Solve for t: 3 t 8t + 15 = 0 t 1, = 8 +/- (8-4(3)(15)) 1/ t 1, = 8 +/- (-116) 1/ No real

More information

Chapter 3 Lecture. Pearson Physics. Acceleration and Accelerated Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 3 Lecture. Pearson Physics. Acceleration and Accelerated Motion. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 3 Lecture Pearson Physics Acceleration and Accelerated Motion Prepared by Chris Chiaverina Chapter Contents Acceleration Motion with Constant Acceleration Position-Time Graphs with Constant Acceleration

More information

Calculating Acceleration

Calculating Acceleration Calculating Acceleration Textbook pages 392 405 Before You Read Section 9. 2 Summary How do you think a velocity-time graph might differ from the position-time graph you learned about in the previous chapter?

More information

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge HSC PHYSICS ONLINE DYNAMICS TYPES O ORCES Electrostatic force (force mediated by a field - long range: action at a distance) the attractive or repulsion between two stationary charged objects. AB A B BA

More information

Forces and Newton s Second Law

Forces and Newton s Second Law Forces and Newton s Second Law Goals and Introduction Newton s laws of motion describe several possible effects of forces acting upon objects. In particular, Newton s second law of motion says that when

More information

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the

More information

Object Impact on the Free Surface and Added Mass Effect Laboratory Fall 2005 Prof. A. Techet

Object Impact on the Free Surface and Added Mass Effect Laboratory Fall 2005 Prof. A. Techet Object Impact on the Free Surface and Added Mass Effect.016 Laboratory Fall 005 Prof. A. Techet Introduction to Free Surface Impact Free surface impact of objects has applications to ocean engineering

More information

4 Study Guide. Forces in One Dimension Vocabulary Review

4 Study Guide. Forces in One Dimension Vocabulary Review Date Period Name CHAPTER 4 Study Guide Forces in One Dimension Vocabulary Review Write the term that correctly completes the statement. Use each term once. agent force Newton s second law apparent weight

More information

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time.

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time. Chapter: Chapter 2 Learning Objectives LO 2.1.0 Solve problems related to position, displacement, and average velocity to solve problems. LO 2.1.1 Identify that if all parts of an object move in the same

More information

EXPERIMENT 4 ONE DIMENSIONAL MOTION

EXPERIMENT 4 ONE DIMENSIONAL MOTION EXPERIMENT 4 ONE DIMENSIONAL MOTION INTRODUCTION This experiment explores the meaning of displacement; velocity, acceleration and the relationship that exist between them. An understanding of these concepts

More information

OSCILLATIONS OF A SPRING-MASS SYSTEM AND A TORSIONAL PENDULUM

OSCILLATIONS OF A SPRING-MASS SYSTEM AND A TORSIONAL PENDULUM EXPERIMENT Spring-Mass System and a Torsional Pendulum OSCILLATIONS OF A SPRING-MASS SYSTEM AND A TORSIONAL PENDULUM Structure.1 Introduction Objectives. Determination of Spring Constant Static Method

More information

MOTION ALONG A STRAIGHT LINE

MOTION ALONG A STRAIGHT LINE MOTION ALONG A STRAIGHT LINE 2 21 IDENTIFY: The average velocity is Let be upward EXECUTE: (a) EVALUATE: For the first 115 s of the flight, When the velocity isn t constant the average velocity depends

More information

LABORATORY V PREDICTING NON-REPETITIVE MOTION

LABORATORY V PREDICTING NON-REPETITIVE MOTION LABORATORY V PREDICTING NON-REPETITIVE MOTION In this section, you will continue working on problems in dynamics, the relationship of force and acceleration especially in complex situations that occur

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT VECTOR DYNAMICS MULTIPLE CHOICE / 45 OPEN ENDED / 75 TOTAL / 120 NAME: 1. Unless acted on by an external net force, an object will stay at rest

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Lecture 2-2 02-2 1 Last time: Displacement, velocity, graphs Today: Constant acceleration, free fall 02-2 2 Simplest case with non-zero acceleration Constant acceleration: a

More information

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive? 1 The slope of the tangent on a position-time graph equals the instantaneous velocity 2 The area under the curve on a velocity-time graph equals the: displacement from the original position to its position

More information

2. SKIP THIS YEAR What event will produce the greatest increase in the gravitational force between the two masses?

2. SKIP THIS YEAR What event will produce the greatest increase in the gravitational force between the two masses? Forces Review: look over all labs and worksheets. Your answers should be in another color pen. This is not all inclusive of items on the test but a very close representation. 1. The table shows the results

More information

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates.

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates. Learning Goals Experiment 3: Force After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Find your center of mass by

More information