Deterministic Seismic Hazard Analysis of GORAKHPUR Region

Size: px
Start display at page:

Download "Deterministic Seismic Hazard Analysis of GORAKHPUR Region"

Transcription

1 IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 09 March 2016 ISSN (online): X Deterministic Seismic Hazard Analysis of GORAKHPUR Region Sagar Tripathi Department of Civil Engineering Madan Mohan Malaviya University of Technology, Gorakhpur Sana Zafar Department of Civil Engineering Madan Mohan Malaviya University of Technology, Gorakhpur Abstract Many earthquakes have been knowledgeable in Indian peninsular shield, which was previously treated to be seismically steady. Seismic risk assessment refers to an evaluation of ground motion parameters at a particular area by considering some past earthquake evidence. In the current study seismic risk assessment is performed for the Gorakhpur city. It is a highly seismic prone area. It comes under zone IV. The manuscript presents the resolve of peak ground acceleration (PGA) and maximum credible earthquake (MCE). MCE has been dogged by taking into account the local seismotectonic movement in a propos 350 km radius about Gorakhpur city. The seismic risk in provisions of peak horizontal acceleration was estimated to be 0.312g using attenuation model by Sharma (2000) and 0.032g using attenuation model by Iyenger and Raghukanth (2004). The calculated peak horizontal acceleration in the nearby reading is in verification with the observed values of Nepal earthquakes and is furthermore similar to standards reported in additional studies. Keywords: Peak Ground Acceleration (PGA), Maximum Credible Earthquake (MCE), Seismic hazard I. INTRODUCTION Earthquake is an unexpected sadistic vibration of the earth, naturally causing huge devastation, as a end result of activities within volcanic stroke or the earth's shell. The current district of Gorakhpur stuck between Long. 83º 05' E and 83º 56 E and Lat. 26º 13 N and 27º 29' N. In 1971 it occupied area about 6,301 sq.km and population which was 30, 38,177 (14, 57,587 females). The area occupies the north-eastern place of the state next to the area of Deoria, and comprises a large stretch of country lying to the north of the river Ghaghra. In the zonal map of country (India) the area deceit in zone IV answerable to modest spoil by earthquakes. While till now no foremost earthquake occurred near to it, the zone being not distant from the Himalayan Boundary fault, experiences the special effects of modest to grand earthquakes stirring there. The seismic strength may not go beyond to VIII on the Modified Mercalli scale in The forests are usually originating in the northern scrap of the regionwhile in the earlier period they comprehensive as far as to the south of area (Gorakhpur) and along the Rapti in south-eastern part of the region. All rights reserved by 345

2 Fig. 1: Earthquake affects the study area (GORAKHPUR) [Google] A lot of instruction to be learned which are extremely necessary to preparation of structures and still to diminish such calamities in prospect due to many past earthquakes. The risks connected through earthquakes are called as seismic risks. Work carry out in seismic design & earthquake engg. Involves many things like mitigation of seismic risks and discovery of sources involve in the risk. Basically the damage due to earthquake mainly depends on three factors: - Path characteristics and earthquake source - Neighborhood geological and geotechnical spot conditions - Construction features and structural design Seismic hazard analyses entail the quantitative assessment of ground quaking hazards at a meticulous region. Two type of analysis are done for the estimation of the seismic risks. - Probabilistic Seismic hazard analysis (PSHA) All rights reserved by 346

3 - Deterministic Seismic hazard analysis (DSHA) Initial approach taken to seismic risk investigation discovered in nuclear power engineering applications In Deterministic Seismic Hazard Analysis (DSHA), is organized for a meticulous earthquake, also realistic or assumed. The Deterministic Seismic Hazard approach uses the identified seismic sources suitably by the accessible historical seismic and geographical data to generate discrete, single-valued events or models of ground motion at the site in general one or more earthquakes are detailed by location and magnitude with admiration to the location. Generally the earthquakes are implicit to happen on the part of the location nearby to the site. The spot ground motions are expected deterministically, given site condition the magnitude and source to-site distance DSHA mainly consist of four steps are as follows (Kramer, 1996). - Identification and characterization of all sources - Selection of source-site distance parameter - Selection of controlling earthquake. - Definition of hazard using controlling earthquake Fig. 2: Four Step DSHA Process [Google] Here we are using two main equations for the finding of the peak ground acceleration (PGA). Following equation is describe as follows. And also we will compare the PGA values getting from these two relation for Gorakhpur region. - Iyenger and Raghukanth (2004) - Sharma (2000) Iyenger and Raghukanth (2004) The peak ground acceleration (PGA) at substratum stage is expected by the attenuation relation of sturdy ground movement projected for Peninsular India ln(y) = C 1 + C 2 (M-6) + C 3 (M-6) 2 C 4 r ln(r) ln(ꜫ) Where r is hypocentral distance, M is magnitude, C 1, C 2, C 3, and C 4 are the constant whose values are written below (C 1 = ), (C 2 = ), (C 3 = ), (C 4 = ), (ln(ꜫ) = ) ln(ꜫ) taken as zero 0 because it is very small. Sharma (2000) For the Himalayan region an attenuation connection for peak horizontal ground accelerations in India has been urbanized. Where M is the magnitude, A is the peak ground acceleration (g) and X is the hypocentral space from the source. Using relationship the vertical to horizontal acceleration ratio with admiration to the hypocentral space. Log A h(g) = [ M log 10 ( X + e M )] Maximum Credible Earthquake (MCE) The major earthquake that appears competent of taking place under the recognized tectonic construction for a seismic source or detailed fault, as based on geologic and seismologic information. Based on the highest earthquake from deterministic analysis (DSHA). There may be several MCEs for a place, each starting a unlike fault or seismic source. Controlling earthquake the earthquake that is predictable to make the strongest stage of quaking at a location., controlling earthquake is not based on earthquake size. It is based on ground motions. Controlling earthquake can be based on probabilistic or All rights reserved by 347

4 deterministic methods. For critical structures, controlling earthquake may same as the MCE from a seismic source or specific fault. For simple structures, controlling earthquake is fewer than the MCE and generally based on probabilistic methods. The first step of computing the peak ground acceleration is gathering of the data like magnitude, epicentral distance, faults etc which is necessary in calculation and then the equation through which PGA can be calculated. So there are some collected data is written in the table which we consider while calculation of PGA for the GORAKHPUR region. And the two equations which are used to find PGA and then compare their values are already discussed above. Fig. 3: relation in epicenter and depth [Google] Table - 1 Fault Detail around Gorakhpur Sr. no. Faults Name Magnitude (M) Epicentre 1. Slip along Main Frontal Thrust Slip along Main Frontal Thrust Slip along Main Frontal Thrust Main Frontal Thrust Main Frontal Thrust Himalayan frontal thrust Main Frontal Thrust Main Frontal Thrust Himalayan frontal thrust Main Frontal Thrust Main Frontal Thrust Main Frontal Thrust Strike Slip Motion on Sleep Fault Main Frontal Thrust Table:-2 Major Earthquake around Study Area GORAKHPUR Sr. no. Date Latitude ( 0 N) Longitude ( 0 S) Magnitude Depth (Km) 1 16/05/ /05/ /04/ /04/ /02/ /11/ /11/ /09/ /11/ /08/ /08/ /05/ /07/ /03/ Table - 3 Calculated PGA Values Peak Ground Acceleration (PGA) Sr. No. Magnitude (M) Hypocentral Distance (R) Sharma (2000) Iyenger and Raghukanth (2004) All rights reserved by 348

5 Max of PGA g g II. CONCLUSION In the current study, peak ground accelerations (PGA) at rock level have been estimated for the Gorakhpur region covering Long. 83º 05' E and 83º 56 E and Lat. 26º 13 N and 27º 29' N. In 2016 using state of the art deterministic seismic hazard analysis. The PGA calculated shows that the Main Frontal Thrust (MFT) is capable of producing peak horizontalacceleration (Ah) of g using attenuation relationships by Sharma (2000) and peak horizontal acceleration (Ah) of g using attenuation relationships by Iyenger and Raghukanth (2004). Maximum Credible Earthquake for the Gorakhpur region is 7.8 at which maximum value of peak ground acceleration is calculated. Peak horizontal acceleration is destructive in nature and the mainly destruction of building depends on the duration of earthquake. The earthquake data of entire Gorakhpur and its neighboring area has been organized which will be helpful for lots of seismic studies in the area. The outcome developed in this cram is preface in nature however certainly provides the several bases in the plan of new services and defensive accessible structures. III. ACKNOWLEDGMENT Authors would honestly like to thank eveyone from all across India for their co-operation and kind help and to be part of this project. This work has been carried out in civil engineering department of madan mohan malviya university of technology, Gorakhpur. REFERENCE Journal manuscript [1] Kramer. S. L.: 1996, Geotechnical Earthquake Engineering. Published by Pearson Education Pte Ltd. [2] Wang, Z.: 2005, Discussion on problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants, Eng. Geol. 78, ; Eng. Geol. 82, [3] Krinitzsky, E.: 2005, Discussion on problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants, Eng. Geol. 78, ; Eng. Geol. 82, [4] Mithilesh Kumar, H. R. Wason and Ranjit Das Deterministic Seismic Hazard Assessment Of Dehradun City Proceedings of Indian Geotechnical Conference Dec.22-24,2013, Roorkee [5] T. G. Sitharam* and p. Anbazhagan, seismic hazard analysis for the banglore region (2007) natural hazards (2007) 40: [6] Iyengar, R. N. and Raghukanth, S. T. G.: 2004, Attenuation of strong ground motion in peninsular India, Seismol. Res. Lett. 75(4), [7] K. S. Rao, T. P. Thaker, A. Aggarawal, T. Bhandari and S. Kabra DETERMINISTIC SEISMIC HAZARD ASSESSMENT OF ahemdabad region Gujarat international journal of earth science and engineering April 2012, P.P [8] BIS-1893 (2002). Indian standard criteria for earthquake resistant design of structures, Part 1 General provisions and buildings. Bureau of Indian Standards, New Delhi, India [9] Ganapathy.G.P A deterministic seismic hazard analysis for the major c ultural heritagesites of Tamil Nadu, India International journal of geomantic and geosciences vol. 1, no3, 2010 [10] A.G. HULL &A. Augello and R.S. Yeats deterministic seismic hazard analysis of northwest Orgon, U.S.A pacific conference on earthquake engineering [11] Muhammad Waseem1, Muhammad Asif Khan1, Muhammad Waqas Javed1 and Syed Mohammad Ali2 deterministic seismic hazard analysis for Peshawar, Pakistan Journal of Himalayan Earth Sciences 46(1) (2013)67-72 [12] NEELIMA SATYAM. D and K. S. RAO, Estimation of Peak Ground Acceleration for Delhi Region using Finsim, a Finite Fault Simulation Technique International Journal of Earth Sciences and Enginee ring ISSN , Vol. 02, No. 03, pp , July 2009 [13] BIS-1893 (2002). Indian standard criteria for earthquake resistant design of structures, Part 1 General provisions and buildings. Bureau of Indian Standards, New Delhi, India. [14] Biswas, S.K. (1987). Regional Tectonic Framework, Structure and Evolution of the Western Marginal Basins of India, Tectonophysics, 135, [15] Biswas, S. K. (1999). A Review on the Evolution of Rift Basins in India During Gondwana with Special Reference to Western Indian Basins and Their Hydrocarbon Prospects, PINSA 65 (3) [16] Chandra, U. (1977). Earthquakes of PI- A Seismotectonic Study, Bull. Seismol. Soc. Am., 67(5), [17] Mark, R. K.: 1977, Application of linear statistical model of earthquake magnitude versus fault length in estimating maximum expectable earthquakes, Geology 5, [18] Project Vasundhara: 1994, Geo scientific Analysis, Database creation and Development of GIS for parts of south Indian Peninsular Shield. ISSN O [19] O Leary, D. W., Driedman, J. D. and Pohn, H. A.: 1976, Lineaments, linear, lineation: Some proposed new standards for old terms, Geol. Soc. Am. Bull. 87, [20] Radhakrishnan, B. P. and Vaidyanathan, R.: 1997, Geology of Karnataka, Geological Society of India, Bangalore. Ramalingeswara Rao, B. and Sitapathi Rao, P.: 1984, Historical seismicity of peninsular India, Bull. Seismol. Soc. Am. 74, [21] Rao, R., Seshamma, C. V. and Mandal, P.: 1998, Estimation of Coda Qc and spectral characteristics of some moderate earthquakes of southern Indian peninsula, Unpublished Report. [22] GSI. (2000), Seismotectonic Atlas of India and Its Environs, Geological Survey of india. All rights reserved by 349

6 [23] IS-1893 (Part1): 2002, Indian Standard Criteria for Earthquake Resistant Design of Structures, Fifth Revision. Bureau of Indian Standard, New Delhi. [24] Kumar, P. (2009), Seismic Hazard Assessment of Uttarakhand, M.Tech dissertation, Department of Earthquake Engineering, Indian Institute of Technology, Roorkee. [25] Lang, D. H., Singh, Y., Prasad J. S. R. (2012), Comparing Empirical and Analytical Estimates of Earthquake Loss Assessment for the City of Dehradun, India, Earthquake Spectra, 28(2), [26] Mark, R.K. (1977), Application of Linear Statistical Models of Earthquake Magnitude Versus Fault Length in Estimating Maximum expectable Earthquakes, Geology 5, [27] Martin, S. and Szeliga, W. (2010), A Catalog of Felt Intensity Data for 570 Earthquakes in India from 1636 to 2009, Bulletin of the Seismological Society of America, 100(2), [28] Reiter, L. (1990), Earthquake Hazard Analysis, Columbia University Press, New York, 254. [29] Sharma, M. L. (2000), Attenuation Relationship for Estimation of Peak Ground Vertical Acceleration Using Data from Strong Motion Arrays in India, Proceedings of Twelfth World Conference on Earthquake Engineering, Paper No All rights reserved by 350

CHAPTER 3 METHODOLOGY

CHAPTER 3 METHODOLOGY 32 CHAPTER 3 METHODOLOGY 3.1 GENERAL In 1910, the seismological society of America identified the three groups of earthquake problems, the associated ground motions and the effect on structures. Indeed

More information

Estimation of Peak Ground Acceleration for Delhi Region using Finsim, a Finite Fault Simulation Technique

Estimation of Peak Ground Acceleration for Delhi Region using Finsim, a Finite Fault Simulation Technique 215 Estimation of Peak Ground Acceleration for Delhi Region using Finsim, a Finite Fault Simulation Technique NEELIMA SATYAM. D* and K. S. RAO** * Earthquake Engineering Research Centre, International

More information

Estimation of hazard assessment by FINSIM for west coast and son narmada faults

Estimation of hazard assessment by FINSIM for west coast and son narmada faults Estimation of hazard assessment by FINSIM for west coast and son narmada faults Shivamanth Angadi 1, Mayank Desai 2 1 Research Scholar, Dept. of Applied Mechanics, SVNIT, SURAT-39007, India 2 Assistant

More information

Spatial variation of maximum considered and design basis earthquakes in peninsular India

Spatial variation of maximum considered and design basis earthquakes in peninsular India Spatial variation of maximum considered and design basis earthquakes in peninsular India Kishor Jaiswal and Ravi Sinha* Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400

More information

Deterministic Seismic Hazard Assessment of Quetta, Pakistan

Deterministic Seismic Hazard Assessment of Quetta, Pakistan Deterministic Seismic Hazard Assessment of Quetta, Pakistan M.A. Shah Micro Seismic Studies Programme, Islamabad, Pakistan Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan M.

More information

Seismic hazard analysis and microzonation of Coimbatore Corporation

Seismic hazard analysis and microzonation of Coimbatore Corporation Indian Journal of Geo Marine Sciences Vol.46 (11), November 2017, pp. 2207-2214 Seismic hazard analysis and microzonation of Coimbatore Corporation K E Viswanathan 1 & K Elangovan 2 1 Department of Civil

More information

PEAK GROUND HORIZONTAL ACCELERATION ATTENUATION RELATIONSHIP FOR LOW MAGNITUDES AT SHORT DISTANCES IN SOUTH INDIAN REGION

PEAK GROUND HORIZONTAL ACCELERATION ATTENUATION RELATIONSHIP FOR LOW MAGNITUDES AT SHORT DISTANCES IN SOUTH INDIAN REGION PEAK GROUND HORIZONTAL ACCELERATION ATTENUATION RELATIONSHIP FOR LOW MAGNITUDES AT SHORT DISTANCES IN SOUTH INDIAN REGION C.Srinivasan 1, M.L.Sharma 2, J. Kotadia 2 and Y.A.Willy 1 1. National Institute

More information

AMPLIFICATION FROM ISOSEISMAL MAP AND SITE RESPONSE ANALYSIS

AMPLIFICATION FROM ISOSEISMAL MAP AND SITE RESPONSE ANALYSIS Abstract No 117 AMPLIFICATION FROM ISOSEISMAL MAP AND SITE RESPONSE ANALYSIS Anbazhagan P Lecturer, Department of Civil Engineering /Indian Institute of Science, Bangalore 560012, Email: anbazhagan@civil.iisc.ernet.in

More information

SEISMIC HAZARD ANALYSIS FOR AHMEDABAD CITY

SEISMIC HAZARD ANALYSIS FOR AHMEDABAD CITY Proceedings of Indian Geotechnical Conference December 22-24, 2013, Roorkee SEISMIC HAZARD ANALYSIS FOR AHMEDABAD CITY T. Bhandari, PG Student, Department of Civil Engineering, IIT Delhi, bhandaritushar1390@gmail.com

More information

IGC. 50 th INDIAN GEOTECHNICAL CONFERENCE PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR WARANGAL CONSIDERING SINGLE SEISMOGENIC ZONING

IGC. 50 th INDIAN GEOTECHNICAL CONFERENCE PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR WARANGAL CONSIDERING SINGLE SEISMOGENIC ZONING 50 th IGC 50 th INDIAN GEOTECHNICAL CONFERENCE 17 th 19 th DECEMBER 2015, Pune, Maharashtra, India Venue: College of Engineering (Estd. 1854), Pune, India PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR WARANGAL

More information

SEISMIC HAZARD ANALYSIS. Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1

SEISMIC HAZARD ANALYSIS. Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1 SEISMIC HAZARD ANALYSIS Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1 Seismic Hazard Analysis Deterministic procedures Probabilistic procedures USGS hazard

More information

EARTHQUAKE HAZARD ASSESSMENT IN KAZAKHSTAN

EARTHQUAKE HAZARD ASSESSMENT IN KAZAKHSTAN EARTHQUAKE HAZARD ASSESSMENT IN KAZAKHSTAN Dr Ilaria Mosca 1 and Dr Natalya Silacheva 2 1 British Geological Survey, Edinburgh (UK) imosca@nerc.ac.uk 2 Institute of Seismology, Almaty (Kazakhstan) silacheva_nat@mail.ru

More information

Site specific seismic study for a power plant site at Samalkot, Godavari rift basin in Peninsular India

Site specific seismic study for a power plant site at Samalkot, Godavari rift basin in Peninsular India Site specific seismic study for a power plant site at Samalkot, Godavari rift basin in Peninsular India A. Boominathan, M.G.Vikshalakshie & RM.Subramanian Department of Civil Engineering, Indian Institute

More information

Codal provisions of seismic hazard in Northeast India

Codal provisions of seismic hazard in Northeast India Codal provisions of seismic hazard in Northeast India Sandip Das 1, Vinay K. Gupta 1, * and Ishwer D. Gupta 2 1 Department of Civil Engineering, Indian Institute of Technology, Kanpur 208 016, India 2

More information

SAFETY CHECK OF SONDUR DAM FOR CHANGED SEISMIC CONDITION Aryak shori 1, R.K.Tripthi 2 and M. K. Verma 3

SAFETY CHECK OF SONDUR DAM FOR CHANGED SEISMIC CONDITION Aryak shori 1, R.K.Tripthi 2 and M. K. Verma 3 ABSTRACT SAFETY CHECK OF SONDUR DAM FOR CHANGED SEISMIC CONDITION Aryak shori 1, R.K.Tripthi 2 and M. K. Verma 3 The paper presents Seismic Hazard Analysis (SHA) of Sondur dam situated in Chhattisgarh

More information

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: April, 2016

International Journal of Modern Trends in Engineering and Research  e-issn No.: , Date: April, 2016 International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:2349-9745, Date: 28-30 April, 2016 A REVIEW ON DEVELOPMENT OF SEISMIC HAZARD ANALYSIS OF INDIA Shivamanth A

More information

THE EFFECT OF THE LATEST SUMATRA EARTHQUAKE TO MALAYSIAN PENINSULAR

THE EFFECT OF THE LATEST SUMATRA EARTHQUAKE TO MALAYSIAN PENINSULAR JURNAL KEJURUTERAAN AWAM (JOURNAL OF CIVIL ENGINEERING) Vol. 15 No. 2, 2002 THE EFFECT OF THE LATEST SUMATRA EARTHQUAKE TO MALAYSIAN PENINSULAR Assoc. Prof. Dr. Azlan Adnan Hendriyawan Structural Earthquake

More information

PROBABILISTIC SEISMIC HAZARD ASSESSMENT OF KARNATAKA STATE

PROBABILISTIC SEISMIC HAZARD ASSESSMENT OF KARNATAKA STATE PROBABILISTIC SEISMIC HAZARD ASSESSMENT OF KARNATAKA STATE Submitted to: CiSTUP Indian Institute of Science Bangalore 560 012 Investigator(s) from IISc: Prof. T. G. Sitharam Professor, Department of Civil

More information

Earthquake maximum magnitude estimation considering regional seismotectonic parameters

Earthquake maximum magnitude estimation considering regional seismotectonic parameters Southern Cross University epublications@scu 23rd Australasian Conference on the Mechanics of Structures and Materials 2014 Earthquake maximum magnitude estimation considering regional seismotectonic parameters

More information

Ground motion relations for India

Ground motion relations for India Ground motion relations for India Abstract In this article, a study on attenuation of ground motion is undertaken for India. To derive the relations, India is divided into seven regions based on seismo-tectonic

More information

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Kazuki Koketsu 1, Hiroe Miyake 2, Srinagesh Davuluri 3 and Soma Nath Sapkota 4 1. Corresponding

More information

Estimation of Seismic Hazard Using PSHA in and around National Capital Region (NCR) of India

Estimation of Seismic Hazard Using PSHA in and around National Capital Region (NCR) of India Geosciences 2017, 7(4): 109-116 DOI: 10.5923/j.geo.20170704.01 Estimation of Seismic Hazard Using PSHA in and around National Capital Region (NCR) of India S. Sarkar, D. Shanker * Department of Earthquake

More information

Overview of Seismic PHSA Approaches with Emphasis on the Management of Uncertainties

Overview of Seismic PHSA Approaches with Emphasis on the Management of Uncertainties H4.SMR/1645-29 "2nd Workshop on Earthquake Engineering for Nuclear Facilities: Uncertainties in Seismic Hazard" 14-25 February 2005 Overview of Seismic PHSA Approaches with Emphasis on the Management of

More information

ATTENUATION FUNCTION RELATIONSHIP OF SUBDUCTION MECHANISM AND FAR FIELD EARTHQUAKE

ATTENUATION FUNCTION RELATIONSHIP OF SUBDUCTION MECHANISM AND FAR FIELD EARTHQUAKE ATTENUATION FUNCTION RELATIONSHIP OF SUBDUCTION MECHANISM AND FAR FIELD EARTHQUAKE Rozaimi Mohd Noor 1, Saffuan Wan Ahmad 2, Azlan Adnan 1 and Ramli Nazir 1 1 Faculty of Civil Engineering, Universiti Teknologi

More information

Source Parameters and Scaling Relation for Local Earthquakes in the Garhwal and Kumaun Himalaya, India

Source Parameters and Scaling Relation for Local Earthquakes in the Garhwal and Kumaun Himalaya, India Cloud Publications International Journal of Advanced Seismology 2013, Volume 1, Issue 1, pp. 1-15, Article ID Sci-84 Research Article Open Access Source Parameters and Scaling Relation for Local Earthquakes

More information

SEISMIC HAZARD ANALYSIS

SEISMIC HAZARD ANALYSIS SEISMIC HAZARD ANALYSIS Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1 This topic addresses deterministic and probabilistic seismic hazard analysis, ground

More information

Geotechnical Earthquake Engineering

Geotechnical Earthquake Engineering Geotechnical Earthquake Engineering by Dr. Deepankar Choudhury Humboldt Fellow, JSPS Fellow, BOYSCAST Fellow Professor Department of Civil Engineering IIT Bombay, Powai, Mumbai 400 076, India. Email: dc@civil.iitb.ac.in

More information

SEISMIC INPUT FOR CHENNAI USING ADAPTIVE KERNEL DENSITY ESTIMATION TECHNIQUE

SEISMIC INPUT FOR CHENNAI USING ADAPTIVE KERNEL DENSITY ESTIMATION TECHNIQUE SEISMIC INPUT FOR CHENNAI USING ADAPTIVE KERNEL DENSITY ESTIMATION TECHNIQUE G. R. Dodagoudar Associate Professor, Indian Institute of Technology Madras, Chennai - 600036, goudar@iitm.ac.in P. Ragunathan

More information

Seismic Source Characterization in Siting New Nuclear Power Plants in the Central and Eastern United States

Seismic Source Characterization in Siting New Nuclear Power Plants in the Central and Eastern United States Seismic Source Characterization in Siting New Nuclear Power Plants in the Central and Eastern United States ABSTRACT : Yong Li 1 and Nilesh Chokshi 2 1 Senior Geophysicist, 2 Deputy Director of DSER Nuclear

More information

5. Probabilistic Seismic Hazard Analysis

5. Probabilistic Seismic Hazard Analysis Probabilistic Seismic Hazard Analysis (PSHA) proposed by C.A. Cornell (1968) used to determine the design earthquake for all locations in USA. PSHA gives a relative quantification i of the design earthquake,

More information

Uniform Hazard Spectrum(UHS) for performance based seismic design

Uniform Hazard Spectrum(UHS) for performance based seismic design Uniform Hazard Spectrum(UHS) for performance based seismic design *Jun-Kyoung Kim 1), Soung-Hoon Wee 2) and Seong-Hwa Yoo 2) 1) Department of Fire Protection and Disaster Prevention, Semyoung University,

More information

Probabilistic Seismic Hazard Analysis of Nepal considering Uniform Density Model

Probabilistic Seismic Hazard Analysis of Nepal considering Uniform Density Model Proceedings of IOE Graduate Conference, 2016 pp. 115 122 Probabilistic Seismic Hazard Analysis of Nepal considering Uniform Density Model Sunita Ghimire 1, Hari Ram Parajuli 2 1 Department of Civil Engineering,

More information

Synthetic Accelerograms due to Moderate/ Strong Earthquakes in National Capital (Delhi) Region

Synthetic Accelerograms due to Moderate/ Strong Earthquakes in National Capital (Delhi) Region P-341 Synthetic Accelerograms due to Moderate/ Strong Earthquakes in National Capital (Delhi) Region S. S. Teotia, Manisha* and Dinesh Kumar Department of Geophysics, Kurukshetra Summary The National Capital

More information

Seismic hazard map around Taiwan through a catalog-based deterministic approach

Seismic hazard map around Taiwan through a catalog-based deterministic approach Seismic hazard map around Taiwan through a catalog-based deterministic approach Duruo Huang & Jui-Pin Wang The Hong Kong University of Science and Technology, Hong Kong SUMMARY: This study developed a

More information

ESTIMATION AND SPATIAL MAPPING OF SEISMICITY PARAMETERS IN WESTERN HIMALAYA, CENTRAL HIMALAYA AND INDO-GANGETIC PLAIN

ESTIMATION AND SPATIAL MAPPING OF SEISMICITY PARAMETERS IN WESTERN HIMALAYA, CENTRAL HIMALAYA AND INDO-GANGETIC PLAIN ESTIMATION AND SPATIAL MAPPING OF SEISMICITY PARAMETERS IN WESTERN HIMALAYA, CENTRAL HIMALAYA AND INDO-GANGETIC PLAIN Monalisha Nayak * * Correspondent Author, Ph.D. Research Scholar, Department of Civil

More information

Geotechnical Earthquake Engineering

Geotechnical Earthquake Engineering Geotechnical Earthquake Engineering by Dr. Deepankar Choudhury Humboldt Fellow, JSPS Fellow, BOYSCAST Fellow Professor Department of Civil Engineering IIT Bombay, Powai, Mumbai 400 076, India. Email: dc@civil.iitb.ac.in

More information

ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT

ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT Edward H FIELD 1 And SCEC PHASE III WORKING GROUP 2 SUMMARY Probabilistic seismic hazard analysis

More information

ENGINEERING-SEISMOLOGICAL ASPECTS OF EARTHQUAKE SCENARIO DEVELOPMENT ON THE EXAMPLE OF TASHKENT, UZBEKISTAN

ENGINEERING-SEISMOLOGICAL ASPECTS OF EARTHQUAKE SCENARIO DEVELOPMENT ON THE EXAMPLE OF TASHKENT, UZBEKISTAN International Journal of Geology, Earth & Environmental Sciences ISSN: 2277-281 (Online) 218 Vol. 8 (2) May-August, pp. 3-35/Alixanovich ENGINEERING-SEISMOLOGICAL ASPECTS OF EARTHQUAKE SCENARIO DEVELOPMENT

More information

Seismic Hazard Assessment of Uttar Pradesh

Seismic Hazard Assessment of Uttar Pradesh Seismic Hazard Assessment of Uttar Pradesh Shravan Kishor Gupta #1, Arvind Kumar #2, Amit Kumar Tomar #3 # M.tech 4 th sem Student, Department of Civil Engineering, Roorkee Institute of Technology, Roorkee

More information

Development of Probabilistic Seismic Hazard Analysis for International Sites, Challenges and Guidelines

Development of Probabilistic Seismic Hazard Analysis for International Sites, Challenges and Guidelines Development of Probabilistic Seismic Hazard Analysis for International Sites, Challenges and Guidelines ABSTRACT Dr. Antonio Fernandez Ares Paul C. Rizzo Associates, Inc. 500 Penn Center Boulevard, Suite

More information

EARTHQUAKE CLUSTERS, SMALL EARTHQUAKES

EARTHQUAKE CLUSTERS, SMALL EARTHQUAKES EARTHQUAKE CLUSTERS, SMALL EARTHQUAKES AND THEIR TREATMENT FOR HAZARD ESTIMATION Gary Gibson and Amy Brown RMIT University, Melbourne Seismology Research Centre, Bundoora AUTHORS Gary Gibson wrote his

More information

Introduction to Engineering Seismology Lecture 11

Introduction to Engineering Seismology Lecture 11 Lecture 11: Safety of Individual Site; Concept of Seismic Microzonation; Need for Microzonation; Types and Scale; Methodology Topics Introduction to Seismic Microzonation Steps for Seismic Microzonation

More information

Estimation of Regional Seismic Hazard in the Korean Peninsula Using Historical Earthquake Data between A.D. 2 and 1995

Estimation of Regional Seismic Hazard in the Korean Peninsula Using Historical Earthquake Data between A.D. 2 and 1995 Bulletin of the Seismological Society of America, Vol. 94, No. 1, pp. 269 284, February 2004 Estimation of Regional Seismic Hazard in the Korean Peninsula Using Historical Earthquake Data between A.D.

More information

Seismic Hazard Switzerland. When, where, and how often does certain shaking occur in Switzerland?

Seismic Hazard Switzerland. When, where, and how often does certain shaking occur in Switzerland? Seismic Hazard Switzerland When, where, and how often does certain shaking occur in Switzerland? Hazard The hazard map shows where and how often certain incidents of horizontal acceleration are likely.

More information

Ground motion attenuation relations of small and moderate earthquakes in Sichuan region

Ground motion attenuation relations of small and moderate earthquakes in Sichuan region Earthq Sci (2009)22: 277 282 277 Doi: 10.1007/s11589-009-0277-x Ground motion attenuation relations of small and moderate earthquakes in Sichuan region Lanchi Kang 1, and Xing Jin 1,2 1 Fuzhou University,

More information

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society 14-16 April, 2011, Auckland, New Zealand Modelling Strong Ground Motions for Subduction Events

More information

Tectonic Hazard Evaluations for Korean Nuclear Sites

Tectonic Hazard Evaluations for Korean Nuclear Sites Tectonic Hazard Evaluations for Korean Nuclear Sites June 13-17, 2011 Jakarta, INDONESIA Hyunwoo LEE (heanu@kins.re.kr) Korea Institute of Nuclear Safety 1 2 3 4 5 Introduction Tectonic Environment of

More information

Evaluation of Acceleration Time-Histories for Design of Nuclear Facilities at Kalpakkam (India)

Evaluation of Acceleration Time-Histories for Design of Nuclear Facilities at Kalpakkam (India) Evaluation of Acceleration Time-Histories for Design of Nuclear Facilities at Kalpakkam (India) L. Kanagarathinam, G. R. Dodagoudar & A. Boominathan Indian Institute of Technology Madras, Chennai SUMMARY:

More information

Probabilistic Seismic Hazard Analysis in Thailand and Adjacent Areas by Using Regional Seismic Source Zones

Probabilistic Seismic Hazard Analysis in Thailand and Adjacent Areas by Using Regional Seismic Source Zones Probabilistic Seismic Hazard Analysis in Thailand and Adjacent Areas by Using Regional Seismic Source Zones Santi Pailoplee 1*, Yuichi Sugiyama 2 and Punya Charusiri 1 1. Earthquake and Tectonic Geology

More information

On the damage caused by the Chamoli earthquake of 29 March, 1999

On the damage caused by the Chamoli earthquake of 29 March, 1999 Journal of Asian Earth Sciences 19 (2001) 129±134 www.elsevier.nl/locate/jseaes On the damage caused by the Chamoli earthquake of 29 March, 1999 I. Sarkar*, A.K. Pachauri, M. Israil Department of Earth

More information

Microzonation of Earthquake Hazard: Indian Experiences

Microzonation of Earthquake Hazard: Indian Experiences Microzonation of Earthquake Hazard: Indian Experiences T.G. SITHARAM* AND P.ANBAZHAGAN** * Professor and ** Research Scholar, Department of Civil Engineering, Indian Institute of Science, Bangalore-560

More information

Interpretive Map Series 24

Interpretive Map Series 24 Oregon Department of Geology and Mineral Industries Interpretive Map Series 24 Geologic Hazards, Earthquake and Landslide Hazard Maps, and Future Earthquake Damage Estimates for Six Counties in the Mid/Southern

More information

Seismic Hazard Assessment by Preparing S1 and Ss maps for Baluchistan Province, Pakistan

Seismic Hazard Assessment by Preparing S1 and Ss maps for Baluchistan Province, Pakistan Journal of Himalayan Earth Sciences Volume 49, No. 2, 2016, pp. 129-136 Seismic Hazard Assessment by Preparing S1 and Ss maps for Baluchistan Province, Pakistan 1 2 3* Habil Ahmad, Shaukat Ali Khan and

More information

Module 7 SEISMIC HAZARD ANALYSIS (Lectures 33 to 36)

Module 7 SEISMIC HAZARD ANALYSIS (Lectures 33 to 36) Lecture 34 Topics Module 7 SEISMIC HAZARD ANALYSIS (Lectures 33 to 36) 7.3 DETERMINISTIC SEISMIC HAZARD ANALYSIS 7.4 PROBABILISTIC SEISMIC HAZARD ANALYSIS 7.4.1 Earthquake Source Characterization 7.4.2

More information

Earthquakes in Canada

Earthquakes in Canada Earthquakes in Canada Maurice Lamontagne, Ph.D., ing. Geological Survey of Canada Natural Resources Canada 1 What is an Earthquake? P S P S P PS 2 2 Movement on a fault plane causes vibrations The larger

More information

Magnitude 6.9 GULF OF CALIFORNIA

Magnitude 6.9 GULF OF CALIFORNIA A pair of strong earthquakes struck off the coast of Mexico early Thursday only minutes apart. The magnitude 6.9 and 6.2 were centered about 85 miles northeast of Guerrero Negro in the Mexican state of

More information

A study on seismicity and seismic hazard for Karnataka State

A study on seismicity and seismic hazard for Karnataka State A study on seismicity and seismic hazard for Karnataka State T G Sitharam 1, Naveen James 1,, KSVipin 1 and K Ganesha Raj 2 1 Department of Civil Engineering, Indian Institute of Science, Bangalore 560

More information

Site specific seismic hazard assessment a case study of Guanyin offshore wind farm 場址特定地震危害度評估 - 以觀音離岸風力發電廠為例

Site specific seismic hazard assessment a case study of Guanyin offshore wind farm 場址特定地震危害度評估 - 以觀音離岸風力發電廠為例 Site specific seismic hazard assessment a case study of Guanyin offshore wind farm 場址特定地震危害度評估 - 以觀音離岸風力發電廠為例 Supervisor : Dr. Chyi-Tyi Lee and Dr. Kuo-Fong Ma Speaker : Jia-Cian Gao 2018/04/26 1 1. A

More information

Seismic Microzonation: Principles, Practices and Experiments

Seismic Microzonation: Principles, Practices and Experiments Seismic Microzonation: Principles, Practices and Experiments Sitharam, T. G Professor, Department of Civil Engineering,Indian Institute of Science, Bangalore, India-560012 sitharam@civil.iisc.ernet.in

More information

Ground-Motion Attenuation Relationships for Subduction- Zone Earthquakes in Northern Taiwan

Ground-Motion Attenuation Relationships for Subduction- Zone Earthquakes in Northern Taiwan Ground-Motion Attenuation Relationships for Subduction- Zone Earthquakes in Northern Taiwan Lin, P.S., Lee, C.T. Bulletin of the Seismology Society of America (2008) Presenter: Yang Pei-Xin Adviser: Lee

More information

Deaggregation of the Regional Seismic Hazard: City of Patras, Greece.

Deaggregation of the Regional Seismic Hazard: City of Patras, Greece. Proceedings of the 1st IASME / WSEAS International Conference on Geology and Seismology (GES'07), Portoroz, Slovenia, May 15-17, 2007 57 Deaggregation of the Regional Seismic Hazard: City of Patras, Greece.

More information

Seismic Hazard and Risk Assessments for Beijing Tianjin Tangshan, China, Area

Seismic Hazard and Risk Assessments for Beijing Tianjin Tangshan, China, Area Pure Appl. Geophys. Ó 2010 Birkhäuser / Springer Basel AG DOI 10.1007/s00024-010-0115-z Pure and Applied Geophysics Seismic Hazard and Risk Assessments for Beijing Tianjin Tangshan, China, Area FUREN XIE,

More information

SEISMIC HAZARD CHARACTERIZATION AND RISK EVALUATION USING GUMBEL S METHOD OF EXTREMES (G1 AND G3) AND G-R FORMULA FOR IRAQ

SEISMIC HAZARD CHARACTERIZATION AND RISK EVALUATION USING GUMBEL S METHOD OF EXTREMES (G1 AND G3) AND G-R FORMULA FOR IRAQ 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2898 SEISMIC HAZARD CHARACTERIZATION AND RISK EVALUATION USING GUMBEL S METHOD OF EXTREMES (G1 AND G3)

More information

Probabilistic seismic hazard assessment for Nepal

Probabilistic seismic hazard assessment for Nepal Risk Analysis VII PI-45 Probabilistic seismic hazard assessment for Nepal H. Ram Parajuli1, J. Kiyono2, H. Taniguchi1, K. Toki1 & P. Nath Maskey3 1 Ritsumeikan Global Innovation Research Organization,

More information

Earthquake. What is it? Can we predict it?

Earthquake. What is it? Can we predict it? Earthquake What is it? Can we predict it? What is an earthquake? Earthquake is the vibration (shaking) and/or displacement of the ground produced by the sudden release of energy. Rocks under stress accumulate

More information

A note on ground motion recorded during Mw 6.1 Mae Lao (Northern Thailand) earthquake on 5 May 2014

A note on ground motion recorded during Mw 6.1 Mae Lao (Northern Thailand) earthquake on 5 May 2014 Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia A note on ground motion recorded during Mw 6.1 Mae Lao

More information

EARTHQUAKE INTENSITY AND MAGNITUDE

EARTHQUAKE INTENSITY AND MAGNITUDE GRADE VI EARTHQUAKE INTENSITY AND MAGNITUDE At the end of the module, you should be able to: Differentiate intensity from the magnitude of an earthquake Try to Recall In your notebook, answer the following

More information

Introducing a New Approach for Modelling the Near Field Effects in Probabilistic Seismic Hazard Analysis

Introducing a New Approach for Modelling the Near Field Effects in Probabilistic Seismic Hazard Analysis ORIGINAL ARTICLE Received 18 Mar. 2014 Accepted 25 Aug. 2014 Published 25 Nov. 2014 Copyright 2014 Scienceline Publication Journal of Civil Engineering and Urbanism Volume 4, Issue 6: 592-598 (2014) ISSN-2252-0430

More information

Hazard and Vulnerability of Moderate Seismicity Regions

Hazard and Vulnerability of Moderate Seismicity Regions Hazard and Vulnerability of Moderate Seismicity Regions presented by Professor Tso-Chien PAN Dean, College of Engineering Director, 25 October 2010 DRM GDLN Session on Earthquake Vulnerability Reduction

More information

Earthquake Disaster Management in India

Earthquake Disaster Management in India Earthquake Disaster Management in India Akshay B. Ahlawat JRF in Geography Abstract: The fact is that natural disasters are always unexpected events which affect human life as well as nature itself. Earthquakes

More information

ATTENUATION RELATIONSHIP FOR ESTIMATION OF PEAK GROUND VERTICAL ACCELERATION USING DATA FROM STRONG MOTION ARRAYS IN INDIA

ATTENUATION RELATIONSHIP FOR ESTIMATION OF PEAK GROUND VERTICAL ACCELERATION USING DATA FROM STRONG MOTION ARRAYS IN INDIA ATTENUATION RELATIONSHIP FOR ESTIMATION OF PEAK GROUND VERTICAL ACCELERATION USING DATA FROM STRONG MOTION ARRAYS IN INDIA Mukat L SHARMA 1 SUMMARY An attenuation relationship for peak vertical ground

More information

DIRECT HAZARD ANALYSIS OF INELASTIC RESPONSE SPECTRA

DIRECT HAZARD ANALYSIS OF INELASTIC RESPONSE SPECTRA DIRECT HAZARD ANALYSIS OF INELASTIC RESPONSE SPECTRA ABSTRACT Y. Bozorgnia, M. Hachem, and K.W. Campbell Associate Director, PEER, University of California, Berkeley, California, USA Senior Associate,

More information

School of Computer Science and Engineeering,VIT University,Vellore. Emai: Received on: Accepted on:

School of Computer Science and Engineeering,VIT University,Vellore. Emai: Received on: Accepted on: ISSN: 975-766X CODEN: IJPTFI Available Online through Research Article www.ijptonline.com AN APPROACH TO PREDICT EARHQUAKE DAMAGE USING REGRESSION TECHNIQUE Ankit Panchariya, J.Jabanjalin Hilda, C.Srimathi,

More information

Engineering Characteristics of Ground Motion Records of the Val-des-Bois, Quebec, Earthquake of June 23, 2010

Engineering Characteristics of Ground Motion Records of the Val-des-Bois, Quebec, Earthquake of June 23, 2010 CSCE 2011 General Conference - Congrès générale 2011 de la SCGC Ottawa, Ontario June 14-17, 2011 / 14 au 17 juin 2011 Engineering Characteristics of Ground Motion Records of the Val-des-Bois, Quebec, Earthquake

More information

GEOL/GEOE 344: EARTHQUAKES AND SEISMIC HAZARDS (FALL 2001) FINAL EXAM NAME: TIME AVAILABLE: 120 MINUTES TOTAL POINTS: 110

GEOL/GEOE 344: EARTHQUAKES AND SEISMIC HAZARDS (FALL 2001) FINAL EXAM NAME: TIME AVAILABLE: 120 MINUTES TOTAL POINTS: 110 GEOL/GEOE 344: EARTHQUAKES AND SEISMIC HAZARDS (FALL 2001) FINAL EXAM NAME: TIME AVAILABLE: 120 MINUTES TOTAL POINTS: 110 (yep, that s 10 bonus points, just for showing up!) Instructions: There are several

More information

Probabilistic seismic hazard analysis for Bangalore

Probabilistic seismic hazard analysis for Bangalore Nat Hazards (2009) 48:145 166 DOI 10.1007/s11069-008-9253-3 ORIGINAL PAPER Probabilistic seismic hazard analysis for Bangalore P. Anbazhagan Æ J. S. Vinod Æ T. G. Sitharam Received: 20 August 2007 / Accepted:

More information

EARTHQUAKE FORECASTING IN BANGLADESH AND ITS SURROUNDING REGIONS

EARTHQUAKE FORECASTING IN BANGLADESH AND ITS SURROUNDING REGIONS EARTHQUAKE FORECASTING IN BANGLADESH AND ITS SURROUNDING REGIONS B. K. Chakravorti Department of Physics, Begum Rokeya University, Rangpur, Bangladesh M. Kundar Department of Physics, Jagannath University,

More information

Damage Estimation of the Road Bridge Structure Using the Seismic Hazard map for BCM in Hokkaido, Japan

Damage Estimation of the Road Bridge Structure Using the Seismic Hazard map for BCM in Hokkaido, Japan Damage Estimation of the Road Bridge Structure Using the Seismic Hazard map for BCM in Hokkaido, Japan T. Sato & H. Nishi Civil Engineerring Research Institute for Cold Region, PWRI,Japan T. Ikeda & Y.

More information

Earthquake Distribution in Northeast India from

Earthquake Distribution in Northeast India from Earthquake Distribution in Northeast India from 1961-2010 Abong A. A. 1, George A. M. 2, Awhuwhe E. A. 3 1 Department of Physics, Cross River University of Technology, P.M.B 1123, Calabar Nigeria 2 Department

More information

Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes

Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes N.J. Gregor Consultant, Oakland, California, USA N.A. Abrahamson University of California, Berkeley, USA K.O. Addo BC

More information

Accelerograms for building design for hard soil in Mexico City

Accelerograms for building design for hard soil in Mexico City Earthquake Resistant Engineering Structures V 23 Accelerograms for building design for hard soil in Mexico City M. A. Jaimes Téllez, E. Reinoso Angulo & M. Ordaz Schroeder Engineering Institute, UNAM,

More information

RISK OF PRINCIPAL DISASTERS IN INDIA AND IMPACTS OF DISASTERS ON ECONOMIC DEVELOPMENT

RISK OF PRINCIPAL DISASTERS IN INDIA AND IMPACTS OF DISASTERS ON ECONOMIC DEVELOPMENT RISK OF PRINCIPAL DISASTERS IN INDIA AND IMPACTS OF DISASTERS ON ECONOMIC DEVELOPMENT At the Himachal Pradesh Institute of Public Administration Shimla 05. 05.2012 Improve Disaster Management with the

More information

Natural Hazards Mitigation in Iceland

Natural Hazards Mitigation in Iceland Natural Hazards Mitigation in Iceland With special emphasis on earthquake risk Júlíus Sólnes Professor of civil and environmental engineering Dept. of engineering, University of Iceland Cambridge, 19th

More information

GIS INTEGRATION FOR MICROZONATION HAZARD MAPPING -A CASE STUDY OF BANGALORE CITY, INDIA

GIS INTEGRATION FOR MICROZONATION HAZARD MAPPING -A CASE STUDY OF BANGALORE CITY, INDIA GIS INTEGRATION FOR MICROZONATION HAZARD MAPPING -A CASE STUDY OF BANGALORE CITY, INDIA J.N. Narendara Kumar 1, Anbazhagan, P. 2 and T.G. Sitharam 2 1 Sky Group. GIS consultant & Services, Vijayanagar,

More information

Technical Article TRICOLITE. Pledged to Excellence SAFE, EFFICIENT, RELIABLE POWER DISTRIBUTION SOLUTIONS

Technical Article TRICOLITE. Pledged to Excellence SAFE, EFFICIENT, RELIABLE POWER DISTRIBUTION SOLUTIONS Technical Article SAFE, EFFICIENT, RELIABLE POWER DISTRIBUTION SOLUTIONS EARTHQUAKES & SEISMIC COMPLIANCE OF LV SWITCHGEAR ASSEMBLY Random vibrations, such as those caused by an earthquake, cause shocks

More information

Using GIS Software for Identification and Zoning of the Areas Prone to Liquefaction in the Bed Soil of the Dams

Using GIS Software for Identification and Zoning of the Areas Prone to Liquefaction in the Bed Soil of the Dams Indian Journal of Science and Technology, Vol 8(S9), 62-66, May 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 DOI: 10.17485/ijst/2015/v8iS9/68555 Using GIS Software for Identification and Zoning

More information

Geotechnical Earthquake Engineering

Geotechnical Earthquake Engineering Geotechnical Earthquake Engineering by Dr. Deepankar Choudhury Professor Department of Civil Engineering IIT Bombay, Powai, Mumbai 400 076, India. Email: dc@civil.iitb.ac.in URL: http://www.civil.iitb.ac.in/~dc/

More information

POTENTIAL SEISMICITY OF YANGON REGION (GEOLOGICAL APPROACH)

POTENTIAL SEISMICITY OF YANGON REGION (GEOLOGICAL APPROACH) Advances in Geosciences Vol. 26: Solid Earth (2010) Ed. Kenji Satake c World Scientific Publishing Company POTENTIAL SEISMICITY OF YANGON REGION (GEOLOGICAL APPROACH) HLA HLA AUNG Member, Myanmar Earthquake

More information

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena Environmental Geology Chapter 8 Earthquakes and Related Phenomena Fall 2013 Northridge 1994 Kobe 1995 Mexico City 1985 China 2008 Earthquakes Earthquake Magnitudes Earthquake Magnitudes Richter Magnitude

More information

Commentary Appendix A DEVELOPMENT OF MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION MAPS FIGURES THROUGH

Commentary Appendix A DEVELOPMENT OF MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION MAPS FIGURES THROUGH Commentary Appendix A DEVELOPMENT OF MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION MAPS FIGURES 3.3-1 THROUGH 3.3-14 BACKGROUND The maps used in the Provisions through 1994 provided the A a (effective peak

More information

Ground Motion Studies for Critical Sites in North-West Bangladesh

Ground Motion Studies for Critical Sites in North-West Bangladesh Science & Technology Conference 2011 Vienna, June 8-10, 2011 Ground Motion Studies for Critical Sites in North-West Bangladesh Dr. Tahmeed M. Al Hussaini Professor of Civil Engineering, Bangladesh University

More information

Malaysian Journal of Civil Engineering 22(1) : (2010) Malaysia

Malaysian Journal of Civil Engineering 22(1) : (2010) Malaysia AN INVESTIGATION ON THE ATTENUATION CHARACTERISTICS OF DISTANT GROUND MOTIONS IN PENINSULAR MALAYSIA BY COMPARING VALUES OF RECORDED WITH ESTIMATED PGA AND PGV Sherliza Zaini Sooria 1*, Sumio Sawada 2,

More information

A Statistical Analysis of Completeness of Earthquake Data around Dehradun city and its Implications for Seismicity Evaluation

A Statistical Analysis of Completeness of Earthquake Data around Dehradun city and its Implications for Seismicity Evaluation A Statistical Analysis of Completeness of Earthquake Data around Dehradun city and its Implications for Seismicity Evaluation S. Gupta Risk Modeling and Insurance, RMSI, India S. Kumar ABES Engineering

More information

DETERMINISTIC SEISMIC HAZARD ANALYSIS OF AMBIKAPUR DISTRICT HEADQUARTER OF CHHATTISGARH STATE [INDIA]

DETERMINISTIC SEISMIC HAZARD ANALYSIS OF AMBIKAPUR DISTRICT HEADQUARTER OF CHHATTISGARH STATE [INDIA] Malaysian Journal of Civil Engineering 28(2):315-326 (2016) TECHNICAL NOTE DETERMINISTIC SEISMIC HAZARD ANALYSIS O AMBIKAPUR DISTRICT HEADQUARTER O CHHATTISGARH STATE [INDIA] Ashish Kumar Parashar 1 *,

More information

Nepal earthquake of April 25, 2015

Nepal earthquake of April 25, 2015 University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2015 Nepal earthquake of April 25, 2015 T G Sitharam

More information

Comparison of response spectra from Australian earthquakes and North American attenuation models

Comparison of response spectra from Australian earthquakes and North American attenuation models Comparison of response spectra from Australian earthquakes and North American attenuation models T. Dhu, T. Allen, P. Cummins, M. Leonard, D. Robinson and J. Schneider Geoscience Australia, Canberra, ACT,

More information

Seismic site response analysis for Australia

Seismic site response analysis for Australia Seismic site response analysis for Australia Anita Amirsardari 1, Elisa Lumantarna 2, Helen M. Goldsworthy 3 1. Corresponding Author. PhD Candidate, Department of Infrastructure Engineering, University

More information

PROBABILISTIC SEISMIC HAZARD ANALYSIS AND ESTIMATION OF SPECTRAL STRONG GROUND MOTION ON BED ROCK IN NORTH EAST INDIA

PROBABILISTIC SEISMIC HAZARD ANALYSIS AND ESTIMATION OF SPECTRAL STRONG GROUND MOTION ON BED ROCK IN NORTH EAST INDIA 4th International Conference on Earthquake Engineering Taipei, Taiwan October 12-13, 2006 Paper No. 015 PROBABILISTIC SEISMIC HAZARD ANALYSIS AND ESTIMATION OF SPECTRAL STRONG GROUND MOTION ON BED ROCK

More information

The investigation of the design parameters of the Iranian earthquake code of practice based on hazard analysis

The investigation of the design parameters of the Iranian earthquake code of practice based on hazard analysis The investigation of the design parameters of the Iranian earthquake code of practice based on hazard analysis G. Ghodrati Arniri & H. Rabet Es-haghi Department of Civil Engineering, Iran University of

More information

Borah Peak Earthquake HAZUS Scenario Project Executive Summary Idaho Bureau of Homeland Security Idaho Geological Survey Western States Seismic

Borah Peak Earthquake HAZUS Scenario Project Executive Summary Idaho Bureau of Homeland Security Idaho Geological Survey Western States Seismic Borah Peak Earthquake HAZUS Scenario Project Executive Summary Idaho Bureau of Homeland Security Idaho Geological Survey Western States Seismic Policy Council 12/30/2008 The HAZUS-MH analysis of the Borah

More information