Silica-Supported Cationic Gold(I) Complexes as Heterogeneous Catalysts for Regio- and Enantioselective Lactonization Reactions

Size: px
Start display at page:

Download "Silica-Supported Cationic Gold(I) Complexes as Heterogeneous Catalysts for Regio- and Enantioselective Lactonization Reactions"

Transcription

1 Silica-Supported Cationic Gold(I) Complexes as Heterogeneous Catalysts for Regio- and Enantioselective Lactonization Reactions Xing-Zhong Shu, Son C. Nguyen,Ying He, Fadekemi Oba, Qiao Zhang, Christian Canlas, Gabor A. Somorjai, A. Paul Alivisatos, and F. Dean Toste J. Am. Chem. Soc. 2015, 137, Literature Seminar Pauline Rullière 11 Novembre 2015

2 The Dean Toste group Asymmetric Chiral Anion Catalysis TORONTO B.Sc. MAJOR STANFORD PhD TROST 2000 POSTDOC GRUBBS CaLTeCH 2002 ASSISTANT 2009 BERKELEY FULL PROFESSOR Supramolecular Cluster Chemistry Toste, F. D. et al. J. Am. Chem. Soc. 2015, 137,

3 The Dean Toste group Asymmetric Chiral Anion Catalysis TORONTO B.Sc. MAJOR STANFORD PhD TROST 2000 POSTDOC GRUBBS CaLTeCH 2002 ASSISTANT 2009 BERKELEY FULL PROFESSOR Palladium Catalysis and Reactivity Supramolecular Cluster Chemistry Toste, F. D. et al. J. Am. Chem. Soc. 2014, 136,

4 The Dean Toste group Asymmetric Chiral Anion Catalysis TORONTO B.Sc. MAJOR STANFORD PhD TROST 2000 POSTDOC GRUBBS CaLTeCH 2002 ASSISTANT 2009 BERKELEY FULL PROFESSOR Gold Catalysis and Reactivity Palladium Catalysis and Reactivity Supramolecular Cluster Chemistry Toste, F. D. et al. J. Am. Chem. Soc. 2014, 136,

5 Pauline Rullière 11 Novembre 2015

6 Synergistic catalysis on a solid surface A good way to integrate both heterogeneous and homogeneous catalysis Easy to tune the catalyst heterogeneous vs homogeneous catalysis - asymmetric reactions + + sustainability - + industrial processes - + spatial positioning - How to heterogenize homogeneous catalysts? - encapsulation of the catalyst - sustainability of the catalytic system - encapsulating polymer as a cocatalyst - surface mediated design Gross, E.; Toste, F. D.; Somorjai, G. A. Catal. Lett. 2014, 145, 126. Tada, M.; Motokura, K.; Iwasawa, Y. Top Catal 2008, 48, 32. 6

7 Homogeneous synergistic catalysis Chiral ureas in asymmetric cooperative catalysis of acid-promoted Povarov reaction Cooperative bimetallic catalysis - conjugate addition of malonates (La and Na) - aza-henry reaction (Yb and K) - direct aldol reaction (La and Li) Xu, H.; Zuend, S. J.; Woll, M. G.; Tao, Y.; Jacobsen, E. N. Science 2010, 327, 986. Matsunaga, S.; Shibasaki, M. Chem. Commun. 2014, 50,

8 Synergistic catalysis on a solid surface A good way to integrate both heterogeneous and homogeneous catalysis Tuneable catalysis Cooperative action of : acid base acid thiol amine urea imidazole alcohol carboxylate Davis, M. E. et al. Chem. Soc. Rev. 2008, 37, Yu, C.; He, J. Chem. Commun. 2012, 48,

9 Synergistic catalysis on a solid surface A good way to integrate both heterogeneous and homogeneous catalysis Tuneable catalysis Imprints design Davis, M. E. et al. Chem. Soc. Rev. 2008, 37, Yu, C.; He, J. Chem. Commun. 2012, 48,

10 Immobilized synergistic catalysts : previous work Acid-base catalysis Motokura; Tada, M.; Iwasawa, Y. J. Am. Chem. Soc. 2007, 129,

11 Immobilized synergistic catalysts : previous work Acid-base catalysis With transition metal Noda, H.; Motokura, K.; Miyaji, A.; Baba, T. Angew. Chem. Int. Ed. 2012, 51,

12 Immobilized synergistic catalysts : previous work Acid-base catalysis With transition metal catalyst yield Pd complex 0 Pd complex + tertiary amine 0 SiO 2 /diamine/pd/net 2 96 SiO 2 /diamine/pd 26 SiO 2 /diamine/net 2 0 SiO 2 /diamine/pd + tertiary amine 6 SiO 2 /diamine/pd + SiO 2 /NEt 2 28 Noda, H.; Motokura, K.; Miyaji, A.; Baba, T. Angew. Chem. Int. Ed. 2012, 51,

13 Synthesis of the silica-supported catalyst 13

14 Synthesis of the silica-supported catalyst 14

15 Integrity of the adsorbed catalyst Au réf 15

16 Integrity of the adsorbed catalyst Au free BF 4 - Si-OH bonded BF 4 - free BF 4 - bulk BF 4-19 F NMR of Ph 3 PAuBF 4 in solution (MeCN) 19 F solid state NMR of SBA-15@Ph 3 PAuBF 4 16

17 Cationic metal complexes adsorbed through counter-anion bonding Non-covalent immobilization of homogeneous cationic rhodium Rege, F. M. de; Morita, D. K.; Ott, K. C.; Tumas, W.; Broene, R. D. Chem. Commun. 2000, Bianchini, C.; Burnaby, D. G.; Evans, J.; Frediani, P.; Meli, A.; Oberhauser, W.; Psaro, R.; Sordelli, L.; Vizza, F. J. Am. Chem. Soc. 1999, 121,

18 Integrity of the adsorbed catalyst 18

19 Improved lactonizations SBA-15 PPh 3 AuBF 3 AuBF 4 Subtrate time (min) yield time (min) yield efficiency (protodeauration) -> proximity of acid - regioselectivity -> bulkiness of supported catalyst 19

20 Mechanism Brown, T. J.; Weber, D.; Gagné, M. R.; Widenhoefer, R. A. J. Am. Chem. Soc. 2012, 134,

21 Enhanced regioselectivity - efficiency (protodeauration) -> proximity of acid - regioselectivity -> bulkiness of supported catalyst 21

22 Application to enantioselective nucleophilic addition to allenes Precedent in literature Lipshutz, B. H. et al. Angew. Chem. Int. Ed. 2014, 53,

23 Application to enantioselective nucleophilic addition to allenes Reasons for such a selectivity : confinement +/- dual catalysis

24 Sustainable chemistry?...catalyst recycling & recovery After 11 runs : 63% of molecular Ph 3 PAuBF 4 (FTIR) 3.2 % of leaching (ICP-OES) Presence of nanoparticles => Reduction to Au(0) 24

25 Perspectives and openings one-step synthesis from the homogeneous catalyst and it retains the tunable electronic and steric properties of the original molecular catalyst Improvement of support-catalyst strength => how to reduce leaching? Slow development of heterogeneous asymmetric catalysis Feasibility of chiral catalyst tuning Molecular control of solid matrix 25

26 Acknowledgement 26

Career Review of Dean Toste I. 2015/9/9 Zhi Ren

Career Review of Dean Toste I. 2015/9/9 Zhi Ren Career Review of Dean Toste I 2015/9/9 Zhi Ren Introduction F. Dean Toste, now in UC Berkeley Career: Full Professor since 2009-now Associate Professor 2006-2009 Assistant Professor 2002-2006 Faculty Scientist

More information

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010 Bifunctional Asymmetric Catalysts: Design and Applications Junqi Li CHEM 535 27 Sep 2010 Enzyme Catalysis vs Small-Molecule Catalysis Bronsted acid Lewis acid Lewis acid Bronsted base Activation of both

More information

The Career of Tristan H. Lambert

The Career of Tristan H. Lambert The Career of Tristan H. Lambert Jian Rong( 荣健 ) Hu Group Meeting Apr 11, 2016 Tristan H. Lambert: Biographical Notes Professional experience 2011-present: Associate Professor, Columbia University 2006-2011:

More information

Heterogeneous chiral catalysis on surfaces, in nanopores and with emulsions

Heterogeneous chiral catalysis on surfaces, in nanopores and with emulsions Prof. Can Li's Laboratory Heterogeneous chiral catalysis on surfaces, in nanopores and with emulsions Chiral catalysis is of great industrial interest for the production of enantiomerically pure compounds.

More information

Chiral Supramolecular Catalyst for Asymmetric Reaction

Chiral Supramolecular Catalyst for Asymmetric Reaction Chiral Supramolecular Catalyst for Asymmetric Reaction 2017/1/21 (Sat.) Literature Seminar Taiki Fujita (B4) 1 Introduction Rational design of chiral ligands remains very difficult. Conventional chiral

More information

CATALYSIS MULTICATALYST SYSTEM IN ASYMMETRIC. Wiley. Department of Chemistry

CATALYSIS MULTICATALYST SYSTEM IN ASYMMETRIC. Wiley. Department of Chemistry MULTICATALYST SYSTEM IN ASYMMETRIC CATALYSIS JIAN ZHOU Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai, China Wiley Preface

More information

Reactivity within Confined Nano-spaces

Reactivity within Confined Nano-spaces Reactivity within Confined Nano-spaces Larry Wolf Group Meeting 11-17-09 Encapsulating Cyclobutadiene hemicarcerand Anslyn, E. V; Dougherty, D. A. Modern Physical Organic Chemistry Cram. D. J. et. al.

More information

Morita Baylis Hillman Reaction. Aaron C. Smith 11/10/04

Morita Baylis Hillman Reaction. Aaron C. Smith 11/10/04 Morita Baylis Hillman Reaction Aaron C. Smith 11/10/04 Outline 1. Background 2. Development of Asymmetric Variants 3. Aza-Baylis Hillman Reaction 4. Applications of Baylis Hillman Adducts Outline 1. Background

More information

Hydrogen-Mediated C-C Bond Formation

Hydrogen-Mediated C-C Bond Formation EPFL - ISIC - LSPN Hydrogen-Mediated C-C Bond Formation History and selected examples The Research of Prof. Michael Krische (University of Texas at Austin) LSPN Group Seminar Mathias Mamboury Table of

More information

Chiral Ionic Liquids (CILs) in Asymmetric Synthesis: The story so far.

Chiral Ionic Liquids (CILs) in Asymmetric Synthesis: The story so far. Chiral Ionic Liquids (CILs) in Asymmetric Synthesis: The story so far. Literature Presentation Aman Desai 06.16.06 1. Angew. Chem. Int. Ed. 2006, 45, 3689 2. Angew. Chem. Int. Ed. 2006, 45, 3093 3. Tetrahedron:

More information

C H Activated Trifluoromethylation

C H Activated Trifluoromethylation Literature report C H Activated Trifluoromethylation Reporter:Yan Fang Superior:Prof. Yong Huang Jun. 17 th 2013 Contents Background Trifluoromethylation of sp-hybridized C-H Bonds Trifluoromethylation

More information

Michelangelo Gruttadauria

Michelangelo Gruttadauria Michelangelo Gruttadauria Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze - Edificio 17, 90128, Palermo 1 Main focus theme: Organic

More information

Povarov Reaction. Zain Yousaf 10/22/2013 University of Illinois at Urbana-Champaign

Povarov Reaction. Zain Yousaf 10/22/2013 University of Illinois at Urbana-Champaign Povarov Reaction Zain Yousaf 10/22/2013 University of Illinois at Urbana-Champaign Contents Introduction Chiral Lewis Acids Bronsted Acid Lanthanide complexes L-ramipril acid derived Sulfonamide Urea Derivative

More information

Direct Synthesis of H 2 O 2 on AgPt Octahedra: The Importance of Ag-Pt Coordination for High H 2 O 2 Selectivity

Direct Synthesis of H 2 O 2 on AgPt Octahedra: The Importance of Ag-Pt Coordination for High H 2 O 2 Selectivity Supporting Information Direct Synthesis of H 2 O 2 on AgPt Octahedra: The Importance of Ag-Pt Coordination for High H 2 O 2 Selectivity Neil M. Wilson, 1 Yung-Tin Pan, 1 Yu-Tsun Shao, 2 Jian-Min Zuo, 2

More information

Literature Report III

Literature Report III Literature Report III Regioselective ydroarylation of Alkynes Reporter: Zheng Gu Checker: Cong Liu Date: 2017-08-28 Cruz, F. A.; Zhu, Y.; Tercenio, Q. D.; Shen, Z.; Dong, V. M. J. Am. Chem. Soc. 2017,

More information

Asymmetric Catalysis by Lewis Acids and Amines

Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Lewis acid catalysis - Chiral (bisooxazoline) copper (II) complexes - Monodentate Lewis acids: the formyl -bond Amine catalysed reactions Asymmetric

More information

Palladium-catalyzed sp 3 C H activation. Yan Xu Dong Group Meeting Apr. 2, 2014

Palladium-catalyzed sp 3 C H activation. Yan Xu Dong Group Meeting Apr. 2, 2014 Palladium-catalyzed sp 3 C H activation, Yan Xu Dong Group Meeting Apr. 2, 2014 Content 1 Allylic C H activation 2 Benzylic C H activation Palladiumcatalyzed sp 3 C H activation 3 4 Common sp 3 C H activation:

More information

Non-Enzymatic Enantioselective Polyene Cyclizations. Adam Hill Chem 535 May, 2 nd 2013

Non-Enzymatic Enantioselective Polyene Cyclizations. Adam Hill Chem 535 May, 2 nd 2013 Non-Enzymatic Enantioselective Polyene Cyclizations Adam Hill Chem 535 May, 2 nd 2013 Enantioselective Polyene Cyclization (?) General Method to Rapidly Build Molecular Complexity (+) Exquisite Stereo-

More information

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Stable gold(iii) catalysts by oxidative addition of a carboncarbon Stable gold(iii) catalysts by oxidative addition of a carboncarbon bond Chung-Yeh Wu, Takahiro oribe, Christian Borch Jacobsen & F. Dean Toste ature, 517, 449-454 (2015) presented by Ian Crouch Literature

More information

Chiral Brønsted Acid Catalysis

Chiral Brønsted Acid Catalysis Chiral Brønsted Acid Catalysis Aryl Aryl Aryl Aryl S CF 3 2 P Fe CF 3 CF 3 2 Jack Liu ov. 16, 2004 CF 3 Introduction Chiral Brønsted acid catalysis in nature: enzymes and peptides Chiral Brønsted acid

More information

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid Shiqing Xu, Akimichi Oda, Thomas Bobinski, Haijun Li, Yohei Matsueda, and Ei-ichi Negishi Angew. Chem. Int. Ed. 2015,

More information

Magnesiothermic synthesis of sulfur-doped graphene as an efficient. metal-free electrocatalyst for oxygen reduction

Magnesiothermic synthesis of sulfur-doped graphene as an efficient. metal-free electrocatalyst for oxygen reduction Supporting Information: Magnesiothermic synthesis of sulfur-doped as an efficient metal-free electrocatalyst for oxygen reduction Jiacheng Wang, 1,2,3, * Ruguang Ma, 1,2,3 Zhenzhen Zhou, 1,2,3 Guanghui

More information

Elad Gross,, Jack H. Liu,, Selim Alayoglu,, Matthew A. Marcus, Sirine C. Fakra, F. Dean Toste,*, and Gabor A. Somorjai*,, 1.

Elad Gross,, Jack H. Liu,, Selim Alayoglu,, Matthew A. Marcus, Sirine C. Fakra, F. Dean Toste,*, and Gabor A. Somorjai*,, 1. pubs.acs.org/jacs Asymmetric Catalysis at the Mesoscale: Gold Nanoclusters Embedded in Chiral Self-Assembled Monolayer as Heterogeneous Catalyst for Asymmetric Reactions Elad Gross,, Jack H. Liu,, Selim

More information

Halogen Bond Applications in Organic Synthesis. Literature Seminar 2018/7/14 M1 Katsuya Maruyama

Halogen Bond Applications in Organic Synthesis. Literature Seminar 2018/7/14 M1 Katsuya Maruyama Halogen Bond Applications in Organic Synthesis Literature Seminar 2018/7/14 M1 Katsuya Maruyama 1 Contents 1. Introduction 2. Property of Halogen Bond 3. Application to Organic Synthesis 2 1. Introduction

More information

The Curious Case of Au Nanoparticles

The Curious Case of Au Nanoparticles The Curious Case of Au Nanoparticles Industrial reactions performed by metals 1 Low Au reactivity Predictions are typically based on d-band model Hold well for polycrystalline materials Coinage metals

More information

The aza-baylis-hillman Reaction: Mechanism, Asymmetric Catalysis, & Abnormal Adducts. Larry Wolf SED Group Meeting

The aza-baylis-hillman Reaction: Mechanism, Asymmetric Catalysis, & Abnormal Adducts. Larry Wolf SED Group Meeting The aza-baylis-hillman Reaction: Mechanism, Asymmetric Catalysis, & Abnormal Adducts Larry Wolf SED Group Meeting 04-10-07 Outline Brief historical account and Utility Mechanism Different methods for asymmetric

More information

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Lecture 6: Transition-Metal Catalysed C-C Bond Formation Lecture 6: Transition-Metal Catalysed C-C Bond Formation (a) Asymmetric allylic substitution 1 u - d u (b) Asymmetric eck reaction 2 3 Ar- d (0) Ar 2 3 (c) Asymmetric olefin metathesis alladium π-allyl

More information

Chapter 14. Principles of Catalysis

Chapter 14. Principles of Catalysis Organometallics Study Meeting 2011/08/28 Kimura Chapter 14. Principles of Catalysis 14. 1. General Principles 14.1.1. Definition of a Catalyst 14.1.2. Energetics of Catalysis 14.1.3. Reaction Coordinate

More information

Contents. List of. 2 Early pioneers of organic

Contents. List of. 2 Early pioneers of organic Contents List of V 1 1 2 Early pioneers of organic 3 2.1 15 3 Photophysics of 19 3.1 the 21 3.2 The 24 3.3 The Theoreticians' Perspective: A Closer 31 3.3.1 Transition 32 3.3.2 36 3.4 43 Flavin 45 4.1

More information

Literature Report. Catalytic Enantioselective Synthesis of Isoindolinones through a Biomimetic Approach. : Zhong Yan : Ji Zhou :

Literature Report. Catalytic Enantioselective Synthesis of Isoindolinones through a Biomimetic Approach. : Zhong Yan : Ji Zhou : Literature Report Catalytic Enantioselective Synthesis of Isoindolinones through a Biomimetic Approach Reporter Checker Date : Zhong Yan : Ji Zhou : 2017-12-22 Min, C.; Lin, Y.; Seidel, D. Angew. Chem.

More information

Catalytic oxidations: finding the optimum composition of AuPd coreshell nanoparticle catalysts

Catalytic oxidations: finding the optimum composition of AuPd coreshell nanoparticle catalysts Brazilian ChemComm Symposium Chemistry and Sustainable Energy 5 th November 2012, São Paulo, Brazil Catalytic oxidations: finding the optimum composition of AuPd coreshell nanoparticle catalysts Prof.

More information

Construction of Chiral Tetrahydro-β-Carbolines: Asymmetric Pictet Spengler Reaction of Indolyl Dihydropyridines

Construction of Chiral Tetrahydro-β-Carbolines: Asymmetric Pictet Spengler Reaction of Indolyl Dihydropyridines Literature Report V Construction of Chiral Tetrahydro-β-Carbolines: Asymmetric Pictet Spengler Reaction of Indolyl Dihydropyridines Reporter Checker Date : Xiao-Yong Zhai : Xin-Wei Wang : 2018-04-02 You,

More information

Recent advances in transition metal-catalyzed or -mediated cyclization of 2,3-allenoic acids: New methodologies for the synthesis of butenolides*

Recent advances in transition metal-catalyzed or -mediated cyclization of 2,3-allenoic acids: New methodologies for the synthesis of butenolides* Pure Appl. Chem., Vol. 76, No. 3, pp. 651 656, 2004. 2004 IUPAC Recent advances in transition metal-catalyzed or -mediated cyclization of 2,3-allenoic acids: New methodologies for the synthesis of butenolides*

More information

Supramolecular Catalysis

Supramolecular Catalysis Supramolecular Catalysis Edited by Piet W. N. M. van Leeuwen WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI List of Authors XIII 1 Introduction to Supramolecular Catalysis 1 Pablo Ballester

More information

Branched-Regioselective Hydroformylation with Catalytic Amounts of a Reversibly Bound Directing Group

Branched-Regioselective Hydroformylation with Catalytic Amounts of a Reversibly Bound Directing Group 1/12 Branched-egioselective ydroformylation with Catalytic Amounts of a eversibly Bound Directing Group h(i)/me C/ 2 MS 4A branched major by Christian U. Grünanger and Bernhard Breit Angew. Chem. Int.

More information

Advanced Organic Chemistry

Advanced Organic Chemistry D. A. Evans, G. Lalic Chem 530A Chemistry 530A Advanced Organic Chemistry Lecture notes part 8 Carbanions Organolithium and Grignard reagents Organocopper reagents 1. Direct metalation 2. From radical

More information

Stereoselective Organic Synthesis

Stereoselective Organic Synthesis Stereoselective rganic Synthesis Prabhat Arya Professor and Leader, Chemical Biology Program Dean, Academic Affairs, Institute of Life Sciences (An Associate Institute of University of yderabad Supported

More information

Oxidative couplings of two nucleophiles

Oxidative couplings of two nucleophiles Oxidative Couplings of Hydrocarbons Oxidative couplings of two nucleophiles Oxidants involved: O 2 H 2 O 2 high h valent metals(copper salts) halides(iodine(Ⅲ) oxidants) Lei, A. W. Chem. Rev., 2011, 111,

More information

Young Chemist s Panel - Review Meeting 2012

Young Chemist s Panel - Review Meeting 2012 Asymmetric Nucleophilic Catalysis Young Chemist s Panel - Review Meeting 2012 26th th November 2012 Dr. Dave Carbery, Department of Chemistry, University of Bath Setting the Context Catalysing Acyl Transfer

More information

Chiral Anions in Asymmetric Catalysis. Hannah Haley Burke Group Literature Seminar 13 April 2013

Chiral Anions in Asymmetric Catalysis. Hannah Haley Burke Group Literature Seminar 13 April 2013 Chiral Anions in Asymmetric Catalysis annah aley Burke Group Literature Seminar 13 April 2013 Key Ac2va2on Modes for Asymmetric Catalysis L M X 1 2 Coordinative interaction 'Lewis acid catalysis' Lewis

More information

Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity

Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity Reporter: Cong Liu Checker: Hong-Qiang Shen Date: 2017/02/27

More information

Chiral Brønsted Acid Catalysis

Chiral Brønsted Acid Catalysis another. 1 One interesting aspect of chiral Brønsted acid catalysis is that the single s orbital of hydrogen Chiral Brønsted Acid Catalysis Reported by Matthew T. Burk December 3, 2007 INTRODUCTION The

More information

Stereoselective reactions of enolates

Stereoselective reactions of enolates 1 Stereoselective reactions of enolates Chiral auxiliaries are frequently used to allow diastereoselective enolate reactions Possibly the most extensively studied are the Evan s oxazolidinones These are

More information

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc Chiral Catalyst II ast lecture we looked at asymmetric catalysis for oxidation and reduction Many other organic transformations, this has led to much investigation Today we will look at some others...

More information

Size-dependent catalytic activity of monodispersed nickel nanoparticles for the hydrolytic dehydrogenation of ammonia borane

Size-dependent catalytic activity of monodispersed nickel nanoparticles for the hydrolytic dehydrogenation of ammonia borane Size-dependent catalytic activity of monodispersed nickel nanoparticles for the hydrolytic dehydrogenation of ammonia borane Kun Guo a,b, Hailong Li c and Zhixin Yu a,b * a Department of Petroleum Engineering,

More information

Xiaopeng Yin The Wulff Group Michigan State University 6/6/2014. Career Summary. Eric N. Jacobsen

Xiaopeng Yin The Wulff Group Michigan State University 6/6/2014. Career Summary. Eric N. Jacobsen Xiaopeng Yin The Wulff Group Michigan State University 6/6/2014 Career Summary Eric N. Jacobsen About Eric N. Jacobsen PERSONAL Born February 22, 1960, New York, N.Y. Married to Virginia Estevez on May

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information Experimental details 1) Preparation of the catalytic materials 1,

More information

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group Literature eport Functionalization of C(sp 3 ) Bonds Using a Transient Directing Group eporter: Mu-Wang Chen Checker: Yue Ji Date: 2016-04-05 Yu, J.-Q. et al. Science 2016, 351, 252-256. Scripps esearch

More information

Asymmetric Catalysis by Chiral Hydrogen-Bond Donors

Asymmetric Catalysis by Chiral Hydrogen-Bond Donors Asymmetric Catalysis by Chiral Hydrogen-Bond Donors Angew. Chem. Int. Ed., 2006, 45, 1520~1543 Mark S. Taylor and Eric N. Jacobsen* Current Literature Presentation Zhenglai Fang Wipf s Group at Pitt Zhenglai

More information

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds Strategies for Catalytic Asymmetric Electrophilic a alogenation of Carbonyl Compounds 1 2 Y Catalyst [X + ] 1 X! 2 Y intermann, L. ; Togni, A. Angew. Chem. Int. Ed. 2000, 39, 4359 4362 amashima, Y.; Sodeoka,

More information

Anti-Markovnikov Olefin Functionalization

Anti-Markovnikov Olefin Functionalization Anti-Markovnikov Olefin Functionalization ~Prof. Robert H. Grubbs Work~ 4 th Literature Seminar July 5, 2014 Soichi Ito (D1) Contents 1. Introduction Flow of Prof. Grubbs Research Markovnikov s Rule Wacker

More information

Short Literature Presentation 10/4/2010 Erika A. Crane

Short Literature Presentation 10/4/2010 Erika A. Crane Copper-Catalyzed Enantioselective Synthesis of trans-1- Alkyl-2-substituted Cyclopropanes via Tandem Conjugate Additions-Intramolecular Enolate Trapping artog, T. D.; Rudolph, A.; Macia B.; Minnaard, A.

More information

Theodore E. Madey. Department of Physics and Astronomy, and Laboratory for Surface Modification

Theodore E. Madey. Department of Physics and Astronomy, and Laboratory for Surface Modification The Science of Catalysis at the Nanometer Scale Theodore E. Madey Department of Physics and Astronomy, and Laboratory for Surface Modification http://www.physics.rutgers.edu/lsm/ Rutgers, The State University

More information

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July Stereodivergent Catalysis Aragorn Laverny SED Group Meeting July 31 2018 1 Stereodivergent Catalysis In the context of asymmetric synthesis, a stereodivergent process is one that allows access to any given

More information

Suggested solutions for Chapter 40

Suggested solutions for Chapter 40 s for Chapter 40 40 PBLEM 1 Suggest mechanisms for these reactions, explaining the role of palladium in the first step. Ac Et Et BS () 4 2 1. 2. K 2 C 3 evision of enol ethers and bromination, the Wittig

More information

Nucleophilic Fluorination. Souvik Rakshit Burke group Literature Seminar July 13, 2013

Nucleophilic Fluorination. Souvik Rakshit Burke group Literature Seminar July 13, 2013 Nucleophilic Fluorination Souvik Rakshit Burke group Literature Seminar July 13, 2013 Relevance 20% of pharmaceuticals contain fluorine 5-fluorouracil Antineoplastic agent, 1957 Lipitor (Atorvastatin)

More information

The Vinylogous Aldol Reaction

The Vinylogous Aldol Reaction The Vinylogous Aldol Reaction Reporter: Sixuan Meng Supervisor: Prof. Huang 2013-09-09 Zanardi, F. et al. Chem. Rev. 2000, 100, 1929 Zanardi, F. et al.. Chem. Rev. 2011, 111, 3076 Introduction 2 3 Regiochemical

More information

NIH Postdoctoral Scholar Adviser: Professor Barry M. Trost. The University of Michigan, Ann Arbor, MI

NIH Postdoctoral Scholar Adviser: Professor Barry M. Trost. The University of Michigan, Ann Arbor, MI Kami L. Hull Current Position Assistant Professor Department of Chemistry University of Illinois at Urbana Champaign Office: (217) 300-0196 600 S. Mathews e-mail: kamihull@illinois.edu Champaign, IL 61821

More information

Profile. Broad Research Interests: Organocatalysis, Sustainable Chemistry, Synthetic Methodologies

Profile. Broad Research Interests: Organocatalysis, Sustainable Chemistry, Synthetic Methodologies Profile Srinivasan Easwar, Ph. D. Assistant Professor Department of Chemistry School of Chemical Sciences and Pharmacy Central University of Rajasthan Bandarsindri, Distt. Ajmer Rajasthan 305817 e-mail:

More information

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito 1 sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito 2016. 1. 30 1. Introduction 2 About Carbene 3 Brief history of carbene (~2000) Carbene Neutral compounds featuring a divalent carbon atom with only

More information

Abstracts. p67. X. Tan, H. Lv, and X. Zhang. R. Hudson and A. Moores

Abstracts. p67. X. Tan, H. Lv, and X. Zhang. R. Hudson and A. Moores IX 1.1.1 omogeneous Reduction of Alkenes X. Tan,. Lv, and X. Zhang p7 This chapter is focused on recent progress in the asymmetric hydrogenation of substituted alkenes, and the application of this methodology

More information

Julien Schmitt, postdoc in the Physical Chemistry department. Internship 2010: Study of the SAXS scattering pattern of mesoporous materials

Julien Schmitt, postdoc in the Physical Chemistry department. Internship 2010: Study of the SAXS scattering pattern of mesoporous materials Before starting Julien Schmitt, postdoc in the Physical Chemistry department Internship 2010: Study of the SAXS scattering pattern of mesoporous materials PhD 2011-2014: Self-assembly mechanism of mesoporous

More information

Multicatalyst Promoted Asymmetric Tandem Reactions

Multicatalyst Promoted Asymmetric Tandem Reactions Literature presentation Kishor Mohanan Multicatalyst Promoted Asymmetric Tandem Reactions Features of Tandem Catalysis Reduces the yield losses associated with the purification of intermediates, Save time,

More information

Synergistic Catalysis by Multifunctionalized Solid Surfaces for Nucleophilic Addition Reactions

Synergistic Catalysis by Multifunctionalized Solid Surfaces for Nucleophilic Addition Reactions Journal of the Japan Petroleum Institute, 57, (3), 95-108 (2014) 95 [Review Paper] Synergistic Catalysis by Multifunctionalized Solid Surfaces for Nucleophilic Addition Reactions Ken MTKURA Dept. of Environmental

More information

Recent applications of chiral binaphtholderived phosphoric acid in catalytic asymmetric reactions

Recent applications of chiral binaphtholderived phosphoric acid in catalytic asymmetric reactions Recent applications of chiral binaphtholderived phosphoric acid in catalytic asymmetric reactions 1. Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, ASAP. 2. Storer, R. L.; Carrera, D. E.;

More information

Strategies to Synthesize Supported Bimetallic Catalysts

Strategies to Synthesize Supported Bimetallic Catalysts Strategies to Synthesize Supported Bimetallic Catalysts M. Sankar Cardiff Catalysis Institute School of Chemistry Cardiff University, Cardiff United Kingdom sankar@cardiff.ac.uk Outline Ø Supported Bimetallic

More information

Reductive Elimination from High-Valent Palladium. Kazunori Nagao MacMillan Group Meeting

Reductive Elimination from High-Valent Palladium. Kazunori Nagao MacMillan Group Meeting Reductive Elimination from igh-valent Palladium Kazunori agao MacMillan Group eting Why do people focus on rging with C activation Facile reductive elimination DG C palladacycle oxidant complex C etero

More information

Dendrimer-Stabilized Metal Nanoparticles as Efficient Catalysts for Reversible Dehydrogenation/Hydrogenation of N-Heterocycles

Dendrimer-Stabilized Metal Nanoparticles as Efficient Catalysts for Reversible Dehydrogenation/Hydrogenation of N-Heterocycles Supporting Information Dendrimer-Stabilized Metal Nanoparticles as Efficient Catalysts for Reversible Dehydrogenation/Hydrogenation of N-Heterocycles Christophe Deraedt,, Rong Ye,, Walter T. Ralston,,

More information

Ethers can be symmetrical or not:

Ethers can be symmetrical or not: Chapter 14: Ethers, Epoxides, and Sulfides 175 Physical Properties Ethers can be symmetrical or not: linear or cyclic. Ethers are inert and make excellent solvents for organic reactions. Epoxides are very

More information

Phosphine-Catalyzed Formation of Carbon-Sulfur Bonds: Catalytic Asymmetric Synthesis of gamma-thioesters

Phosphine-Catalyzed Formation of Carbon-Sulfur Bonds: Catalytic Asymmetric Synthesis of gamma-thioesters Phosphine-Catalyzed Formation of Carbon-Sulfur Bonds: Catalytic Asymmetric Synthesis of gamma-thioesters The MIT Faculty has made this article openly available. Please share how this access benefits you.

More information

N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations

N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations Angew. Chem. Int. Ed. 2017, 10.1002. 1 N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations Reporter: En Li Supervisor: Prof. Yong

More information

Chemistry 335 Supplemental Slides: Interlude 1. Reduction: addition of hydrogen to the substrate. Oxidation: addition of oxygen to the substrate

Chemistry 335 Supplemental Slides: Interlude 1. Reduction: addition of hydrogen to the substrate. Oxidation: addition of oxygen to the substrate Interlude 1: Oxidations, Reductions & Other Functional Group Interconversions (FGI) 1. Definition of Oxidation and Reduction For practical purposes in organic chemistry, oxidation and reduction are defined

More information

Homogeneous vs Heterogeneous Catalysts

Homogeneous vs Heterogeneous Catalysts Homogeneous vs Heterogeneous Catalysts Homogeneous Liquid phase Low temperature High selectivity High diffusivity Easy heat transfer Difficult catalyst separation Expensive recycling Well-defined active

More information

D. X. Hu Towards Catalytic Enantioselective Halogenation of Alkenes Burns Group

D. X. Hu Towards Catalytic Enantioselective Halogenation of Alkenes Burns Group D. X. Hu Towards Catalytic Enantioselective Halogenation of Alkenes Burns Group Literature Review Organic Synthesis 10, 20, 50 Years from Now? Catalytic Enantioselective Halogenation October 6 th, 2012

More information

π-alkyne metal complex and vinylidene metal complex in organic synthesis

π-alkyne metal complex and vinylidene metal complex in organic synthesis Literature Seminar 080220 Kenzo YAMATSUGU (D1) π-alkyne metal complex and vinylidene metal complex in organic synthesis 0. Introduction ' ' = π-alkyne metal complex vinylidene metal complex ecently, electrophilic

More information

Tips for taking exams in 852

Tips for taking exams in 852 Comprehensive Tactical Methods in rganic Synthesis W. D. Wulff 1) Know the relative reactivity of carbonyl compounds Tips for taking exams in 852 Cl > > ' > > ' N2 eg: 'Mg Et ' 1equiv. 1equiv. ' ' Et 50%

More information

ChiralIonic Liquids. An Adolescent Technology. Jeremy Henle 1/24/12

ChiralIonic Liquids. An Adolescent Technology. Jeremy Henle 1/24/12 ChiralIonic Liquids An Adolescent Technology Jeremy Henle 1/24/12 Strategies in Asymmetric Synthesis Chiral Induction Starting Materials Chiral Catalysts Chiral Solvents Enantioenriched Chiral Auxillaries

More information

Enantioselective Protonations

Enantioselective Protonations Enantioselective Protonations Marc Timo Gieseler 25.02.2013 15.03.2013 Group Seminar AK Kalesse 1 verview Introduction Enantioselective Protonation of Cyclic Substrates Enantioselective Protonation of

More information

New bond. ph 4.0. Fischer esterification. New bond 2 O * New bond. New bond H 2N. New C-C bond. New C-C bond. New C-C bond. O Cl.

New bond. ph 4.0. Fischer esterification. New bond 2 O * New bond. New bond H 2N. New C-C bond. New C-C bond. New C-C bond. O Cl. Iverson C 0N KRE Table: For use in synthesis problems, count carbons in products and starting materials then identify location(s) of new s, especially C-C or C=C s. With that information, use the following

More information

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005 Chiral Proton Catalysis in rganic Synthesis Samantha M. Frawley rganic Seminar September 14 th, 2005 Seminar utline Introduction Lewis Acid-assisted Chiral Brønsted Acids Enantioselective protonation for

More information

Zr-Catalyzed Carbometallation

Zr-Catalyzed Carbometallation -Catalyzed Carbometallation C C C C ML n C C ML n ML n C C C C ML n ML n C C ML n Wipf Group esearch Topic Seminar Juan Arredondo November 13, 2004 Juan Arredondo @ Wipf Group 1 11/14/2004 Carbometallation

More information

Chem 253 Problem Set 7 Due: Friday, December 3, 2004

Chem 253 Problem Set 7 Due: Friday, December 3, 2004 Chem 253 roblem Set 7 ue: Friday, ecember 3, 2004 Name TF. Starting with the provided starting material, provide a concise synthesis of. You may use any other reagents for your synthesis. It can be assumed

More information

Manganese-Catalyzed Late- Stage Aliphatic C H Azidation

Manganese-Catalyzed Late- Stage Aliphatic C H Azidation Wipf group current literature Manganese-Catalyzed Late- Stage Aliphatic C H Azidation J. Am. Chem. Soc. 2015, 137, 5300 5303 Xiongyi Huang, Tova M. Bergsten, and John T. Groves Department of Chemistry,

More information

14-1 Reactions Involving Gain or Loss of Ligands Reactions Involving Modification of Ligands

14-1 Reactions Involving Gain or Loss of Ligands Reactions Involving Modification of Ligands Organometallic Reaction and Catalysis 14-1 Reactions Involving Gain or Loss of Ligands 14-2 Reactions Involving Modification of Ligands 14-3 Organometallic Catalysts 14-4 Heterogeneous Catalysts Inorganic

More information

Total synthesis of Spongistatin

Total synthesis of Spongistatin Literature Semminar 1. Introduction: Total synthesis of Spongistatin Chen Zhihua (M2) Isolation: Pettit et al. J. rg. Chem. 1993, 58, 1302. Kitagawa et al. Tetrahedron Lett. 1993, 34, 1993. Fusetani et

More information

Hao Xu, Ph.D. Current Research Topics Discovery of iron-catalyzed nitrogen atom transfer reactions for stereoselective olefin functionalization.

Hao Xu, Ph.D. Current Research Topics Discovery of iron-catalyzed nitrogen atom transfer reactions for stereoselective olefin functionalization. Hao Xu, Ph.D. Curriculum Vitae Georgia State University Tel: (404) 413-5553 Department of Chemistry Petit Science Center 319 Fax: (404) 413-5505 100 Piedmont Ave. SE http://sites.gsu.edu/hxu Atlanta, GA

More information

1. Experimental Methodology

1. Experimental Methodology Supporting Information Combining in situ NEXAFS spectroscopy and CO 2 methanation kinetics to study Pt and Co nanoparticle catalysts reveals key insights into the role of platinum in promoted cobalt catalysis.

More information

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02 Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02 Xiao, W.-J. et al. J. Am. Chem. Soc. 2016, 138, 8360.

More information

Application of Ionic Liquids in Michael Addition Reactions

Application of Ionic Liquids in Michael Addition Reactions Application of Ionic Liquids in Michael Addition Reactions by Haiying DU Apr. 12, 2012 Contents The definition and the advantage of ionic liquids The important of Michael addition The use of ionic liquids

More information

Elad Gross, Xing-Zhong Shu, Selim Alayoglu, Hans A. Bechtel, Michael C. Martin, F. Dean Toste,*, and Gabor A. Somorjai*, 1.

Elad Gross, Xing-Zhong Shu, Selim Alayoglu, Hans A. Bechtel, Michael C. Martin, F. Dean Toste,*, and Gabor A. Somorjai*, 1. pubs.acs.org/jacs In Situ IR and X ray High Spatial-Resolution Microspectroscopy Measurements of Multistep Organic Transformation in Flow Microreactor Catalyzed by Au Nanoclusters Elad Gross, Xing-Zhong

More information

The Synthesis of Molecules Containing Quaternary Stereogenic Centers via the Intramolecular Asymmetric Heck Reaction

The Synthesis of Molecules Containing Quaternary Stereogenic Centers via the Intramolecular Asymmetric Heck Reaction The Synthesis of Molecules Containing Quaternary Stereogenic Centers via the Intramolecular Asymmetric Heck Reaction Reported by Eric P. Gillis April 19, 2007 INTRODUCTION The enantioselective synthesis

More information

Rachel Whittaker Dong Group Literature Talk October 10, Ref: Perez-Temprano, M.H, Casares, J.A., Espinet, P., Chem. Eur. J. 2012, 18, 1864.

Rachel Whittaker Dong Group Literature Talk October 10, Ref: Perez-Temprano, M.H, Casares, J.A., Espinet, P., Chem. Eur. J. 2012, 18, 1864. Rachel Whittaker Dong Group Literature Talk October 10, 2013 Ref: Perez-Temprano, M.H, Casares, J.A., Espinet, P., Chem. Eur. J. 2012, 18, 1864. Overview Introduction Group Exchange C-C Bond Forming Reactions

More information

Lewis Base Catalysis in Organic Synthesis

Lewis Base Catalysis in Organic Synthesis Hu Group Lewis Base Catalysis in Organic Synthesis Group Meeting Yuwen Zeng Sep. 28 th, 2014 Introduction Definitions Basic concepts Presentation Outline Lewis base catalysis: n- * Interactions Electrophilic

More information

Discussion Addendum for: Au(I)-Catalyzed Hydration of Alkynes: 2,8-Nonanedione

Discussion Addendum for: Au(I)-Catalyzed Hydration of Alkynes: 2,8-Nonanedione DI:10.15227/orgsyn.089.0126 Discussion Addendum for: (I)-Catalyzed Hydration of Alkynes: 2,8-onanedione H 2 S 4, H 2 CH 3 (PPh 3 ) Prepared by Teruyuki Hayashi. 1 riginal article: Eiichiro Mizushima, Dong-Mei

More information

1. Addition of HBr to alkenes

1. Addition of HBr to alkenes eactions of Alkenes I eading: Wade chapter 8, sections 8-1- 8-8 tudy Problems: 8-47, 8-48, 8-55, 8-66, 8-67, 8-70 Key Concepts and kills: Predict the products of additions to alkenes, including regiochemistry

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation

Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation Asymmetric Synthesis of Medium-Sized ings by Intramolecular Au(I)-Catalyzed Cyclopropanation 1 2 Iain D. G. Watson, Stefanie itter, and F. Dean Toste JACS, ASAP, 1/22/2009 DI: 10.1021/ja8085005 2.5 mol%

More information

Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides"

Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides The (E)-(Z) System for Designating Alkene Diastereomers The Cahn-Ingold-Prelog convention is used to assign

More information

Figure 1. Oxidation by iron-oxo complex. supported by porous solid

Figure 1. Oxidation by iron-oxo complex. supported by porous solid Oxidation of Ethane to Ethanol by N 2 O in a Metal-Organic Framework with Coordinatively Unsaturated Iron(II) Sites Long, J.R, et al., Nat. Chem. 2014, 6, 590. Mechanism of Oxidation of Ethane to Ethanol

More information

Recent Advances of Alkyne Metathesis. Group Meeting Timothy Chang

Recent Advances of Alkyne Metathesis. Group Meeting Timothy Chang Recent Advances of Alkyne Metathesis Group Meeting Timothy Chang 11-09-10 Fischer Carbyne and Schrock Alkylidyne Fischer Doublet LX type 4e Schrock Quartet X 3 type 6e -1-3 lone pair covalent p-back bonding

More information