Catalytic oxidations: finding the optimum composition of AuPd coreshell nanoparticle catalysts

Size: px
Start display at page:

Download "Catalytic oxidations: finding the optimum composition of AuPd coreshell nanoparticle catalysts"

Transcription

1 Brazilian ChemComm Symposium Chemistry and Sustainable Energy 5 th November 2012, São Paulo, Brazil Catalytic oxidations: finding the optimum composition of AuPd coreshell nanoparticle catalysts Prof. Dr. Liane M. Rossi Laboratory of Nanomaterials and Catalysis Instituto de Química Universidade de São Paulo Av. Prof. Lineu Prestes 748 São Paulo , SP Brasil lrossi@iq.usp.br

2 Catalytic oxidations are widely used in the manufacture of bulk petrochemicals, but are not a commonplace in the fine chemicals and pharmaceutical industry, and at the organic laboratory level: Stoichiometric Oxidations are very far from being ideal from the green point of view! hazardous or toxic chemicals volatile organic solvents large amounts of toxic wastes Oxidizing reagent Residue KMnO 4 Mn 2+ /MnO 2 K 2 CrO 4 Cr 3+ CH 3 COOOH t-buooh CH 3 COOH t-buoh ClO - Cl - H 2 O 2 O 2 H 2 O H 2 O

3 Green oxidizing agents, O 2 and H 2 O 2, do not readily react in a selective way with organic substrates, unless a catalyst is present. Catalytic Oxidations Control the reactivity of oxygen species to obtain valuable organic oxygenates and avoid overoxidation. R-CH 2 -OH R-CHO R-COOH CO 2 + H 2 O Discriminate functional groups in the same molecule. Oxidations in fine chemicals is generally more difficult, however, owing to the multifunctional nature of the molecules of interest.

4 Development of metal nanoparticle catalyst *Gold was discovered as an active catalyst in the late 80s after the seminal contribution of Haruta and Hutching.

5 Metal nanoparticle catalyst Soluble NPs high control on particle size, size distribution and surface chemistry Supported NPs Future Targets Control on particle size, size distribution and uniform dispersion of NPs on solid supports - dial up the active sites Prevent metal leaching Improve metal recovery Understand the role of stabilizers on metal NP catalysis

6 Supported metal NPs Immobilization of pre-formed metal NPs Metal salt impregnation and reduction method Catalyst Support M x+ M x+ M x+ M x+ M x+ M x+ M x+ Poor control on metal dispersion Particles size and sized distribution

7 Supported metal NPs Ligand-assisted method Nanoscale, 2012, 4, Catalyst Support M x+ M x+ M x+ M x+ M x+ M M x+ x+ R= NH 2 R= NH NH 2 None Si(OR) 3 = NH 2, en, COOH, SH, PR 2,... Tune NPs size with uniform dispersion of NPs on supports Inorganic Chemistry, 2009, 48, 4640.

8 Supported metal NPs Ligand-assisted method Nanoscale, 2012, 4, Catalyst Support M x+ M x+ M x+ M x+ M x+ M M x+ x+ Si(OR) 3 = NH 2, en, COOH, SH, PR 2,... Improve metal recovery using magnetic support Applied Catalysis. A, General, 2008, 338, 52.

9 Supported metal NPs Ligand-assisted method Nanoscale, 2012, 4, Catalyst Support M x+ M x+ M x+ M x+ M x+ M M x+ x+ Si(OR) 3 = NH 2, en, COOH, SH, PR 2,... Low metal leaching ChemCatChem, 2012, 4, 698.

10 Supported metal NPs Ligand-assisted method: metal support interaction Chemistry A European Journal, 2011, 17, 4626.

11 t Supported metal NPs Ligand-assisted method: metal support interaction X-ray absorption fine structure spectroscopy studies Au 3+ Au 3+ Au 3+ Au (a) (b) (c) Au L 3 -edge SiO 2 -Au (d) Au σ+ H 2 N H 2 N Au σ+ NH 2 NH 2 NH 2 O O Si O Si O O O O Si O O O O Si O Au σ+ NH 2 NH 2 Au σ+ SiO 2 -NH 2 -Au 3+ NH (e) Energy / ev (a) Au(CH 3 COO) 3 (b) SiO 2 -Au 3+ (c) HAuCl 4 (d) SiO 2 -NH 2 -Au (e) Au foil Chemistry A European Journal, 2011, 17, 4626.

12 Selected examples of magnetically recoverable catalysts Rh NPs PtNPs Ir NPs Ru NPs Applied Catalysis. A, General, 2008, 338, 52. Catalysis Communications, 2009, 10, ChemCatChem, 2012, 4, 698. Applied Catalysis. A, General, 2009, 360, 177. Applied Catalysis. B, Environmental, 2009, 90, 688.

13 Selected examples of magnetically recoverable catalysts NiNPs PdNPs AuNPs ACS Catalysis, 2012, 2, 925. Inorganic Chemistry., 2009, 48, Appl. Catal. B, Environ., 2010, 100, 42. Journal of Catalysis, 2010, 276, 382. Chemistry A European Journal, 2011, 17, Green Chemistry, 2010, 12, 144. Green Chemistry, 2009, 11, 1366.

14 Conversion (%) Supported Au NP catalysts AuNPs Oxidation of benzyl alcohol K 2 CO 3 = high selectivity and conversion rates, but low catalyst stability In the search for a more stable catalysts, we first chose to adhere to the literature by adding Pd to our supported gold catalyst 100 Selectivity =96% Chemistry A European Journal, 2011, 17, Green Chemistry, 2010, 12, 144. Green Chemistry, 2009, 11, K 2 CO 3 KOH Et 3 N absence of base

15 Considerations Open question Supported Au NP catalysts AuNPs... AuPdNPs Bimetallic NPs = metallic domain distributions: alloys (AB) or core-shell (A@B or B@A) NPs How much Pd should be added to activate Au NPs? Chemistry A European Journal, 2011, 17, Green Chemistry, 2010, 12, 144. Green Chemistry, 2009, 11, AuPd alloy NPs have received special attention in catalytic applications. However, the surface of an AuPd alloy NP differs from its corresponding bulk concentration Core-shell NPs can be obtained by the reduction of palladium over pre-formed gold NPs, and vice versa

16 Supported AuPd NP catalysts Oxidation of benzyl alcohol Chemistry A European Journal, 2011, 17, 4626.

17 Supported AuPd NP catalysts Catalytic performance of the catalysts in the oxidation reaction with benzyl alcohol. The amount of Au is fixed (3.4 mol), while the amount of Pd varies from 0 to 40 mol % (i.e., 0 to 1.4 mol). Reaction conditions: 1 ml (10 mmol) benzyl alcohol, 75 mg catalyst (3.4 µmolau), 0 to 1.4 µmol Pd(OAc) 2, 6 bar O 2, 2.5 h, 100 C.

18 Supported AuPd NP catalysts morphologically structured Au-rich core and a Pd-rich shell TEM and HAADF-STEM image of a Au:Pd = 10:1 supported catalyst particle and the respective Au and Pd maps. The particle compositional distribution is observed in the line scans, measured from the regions delimited by the lines indicated in both maps. The hemispherical shape observed in the Au line scan contrasts with the flat distribution measured for Pd, which shows its concentration at the particle shell.

19 Supported AuPd NP catalysts morphologically structured Au-rich core and a Pd-rich shell (a) BF-STEM image of a supported catalyst particle Au:Pd = 5:2 (b) HAADF-STEM image of the supported catalyst particle and the respective Au and Pd maps. The particle compositional distribution is observed in the line scans, measured from the regions delimited by the lines indicated in both maps. The hemispherical shape observed in the Au line scan contrasts with the flat distribution measured for Pd, which shows its concentration at the particle shell.

20 Supported AuPd NP catalysts morphologically structured Au-rich core and a Pd-rich shell Catalytic performance of the Au@Pd catalysts in the oxidation reaction with benzyl alcohol. The amount of Au is fixed (3.4 mol), while the amount of Pd varies from 0 to 40 mol % (i.e., 0 to 1.4 mol). Reaction conditions: 1 ml (10 mmol) benzyl alcohol, 75 mg catalyst (3.4 µmolau), 0 to 1.4 µmol Pd(OAc) 2, 6 bar O 2, 2.5 h, 100 C.

21 Supported AuPd NP catalysts Full-shell cluster model: The most active catalyst, with 89.9% Au and 9.1% Pd, is very close to the nominal composition for the complete coverage of Au cores ( nm) with one atomic layer of Pd.

22 Activity Final Remarks Hypothesis based on morphological and catalytic studies: the deposition of one atomic layer of Pd on Au resulted in a Au core-pd-rich shell catalyst of maximum activity Pd added

23 Final Remarks The Au:Pd molar ratio needed to form a monolayer of Pd might change as a function of Au core size. Consequently, one can expect the maximum activity to occur at differing AuPd compositions when using Au core size or size distribution other than the one we used in our study. ~3 nm AuNP ~45% surface atoms ~40 mol% Pd for monolayer ~10 nm AuNP ~16% surface atoms ~15 mol% Pd for monolayer ~20 nm AuNP ~8% surface atoms ~8 mol% Pd for monolayer Experiments in progress!

24 Final Remarks Au core Pd-rich shell: the distribution of metal domains and the Au:Pd ratio are both important for the synergistic effect observed. high selectivity of Au high activity of Pd High activity and selectivity meeting the increasing demand for environmentally friendly chemical processes

25 ACKNOWLEDGMENTS Group Tiago Artur da Silva - PhD Fernanda Parra da Silva -PhD Lucas L. R. Vono - PhD Marco Aurélio S. Garcia - PhD Natália J. S. Costa Post Doc Jean-Claudio Costa Post Doc Leonardo Gomes Santos Undergrad Bruna Julio - Undergrad Rafael L. Oliveira Inna M. Nangoi Marcos J. Jacinto Fernando B. Effenberger Collaboration Pedro K. Kiyohara (IF/USP) Renato F. Jardim (IF/USP) Richard Landers (Unicamp) Daniela Zanchet (Unicamp) Érico Teixeira-Neto (IQ-USP) Elena Goussevskaia (UFMG) Paulo A. Z. Suarez (UnB) Joel C. Rubim (UnB) Karine Philippot (LCC/CNRS, Toulouse, France)

PROJECT 20: SUPPORTED METALS NANOPARTICLES AS CATALYST FOR THE PROX REACTION

PROJECT 20: SUPPORTED METALS NANOPARTICLES AS CATALYST FOR THE PROX REACTION PROJECT 20: SUPPORTED METALS NANOPARTICLES AS CATALYST FOR THE PROX REACTION Prof. Elisabete M. Assaf, PhD IQSC - USP Prof. José M. Assaf, PhD; Janaina F. Gomes, PhD; Aline R. L. Miranda, Ms DEQ - UFSCar

More information

Strategies to Synthesize Supported Bimetallic Catalysts

Strategies to Synthesize Supported Bimetallic Catalysts Strategies to Synthesize Supported Bimetallic Catalysts M. Sankar Cardiff Catalysis Institute School of Chemistry Cardiff University, Cardiff United Kingdom sankar@cardiff.ac.uk Outline Ø Supported Bimetallic

More information

The Curious Case of Au Nanoparticles

The Curious Case of Au Nanoparticles The Curious Case of Au Nanoparticles Industrial reactions performed by metals 1 Low Au reactivity Predictions are typically based on d-band model Hold well for polycrystalline materials Coinage metals

More information

Magnetic Silica Particles for Catalysis

Magnetic Silica Particles for Catalysis 4 Magnetic Silica Particles for atalysis Abstract Monodisperse magnetizable colloidal silica particles in a stable dispersion have been functionalized with a homogeneous catalyst: a PP-pincer Pd-complex.

More information

One pot synthesis and systematic study of photophysical, magnetic properties and

One pot synthesis and systematic study of photophysical, magnetic properties and Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018 One pot synthesis and systematic

More information

AP Chemistry. 9. Which of the following species CANNOT function as an oxidizing agent? (A) Cr 2 O 72 (B) MnO 4 (C) NO 3 (D) S (E) I

AP Chemistry. 9. Which of the following species CANNOT function as an oxidizing agent? (A) Cr 2 O 72 (B) MnO 4 (C) NO 3 (D) S (E) I Name AP Chemistry AP Chemistry Exam Part I: 40 Questions, 40 minutes, Multiple Choice, No Calculator Allowed Bubble the correct answer on your scantron for each of the following. Use the following answers

More information

A Simple and Green Method for Synthesis of Ag and Au Nanoparticles Using Biopolymers and Sugars as Reducing Agents.

A Simple and Green Method for Synthesis of Ag and Au Nanoparticles Using Biopolymers and Sugars as Reducing Agents. A Simple and Green Method for Synthesis of Ag and Au Nanoparticles Using Biopolymers and Sugars as Reducing Agents. German Ayala, Luci Cristina O. Vercik, Leticcia G. Ferreira, Andres Vercik and Thiago

More information

Modern Alchemy : Catalysis by Gold Nano-particles: Part 1

Modern Alchemy : Catalysis by Gold Nano-particles: Part 1 Modern Alchemy : Catalysis by Gold Nano-particles: Part 1 PIRE-ECCI/ICMR Summer Conference SantaBarbara 17 August, 2006 Masatake Haruta Tokyo Metropolitan University 1. Overview on Gold 2. CO Oxidation

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS TYPES OF CHEMICAL REACTIONS Precipitation Reactions Compounds Soluble Ionic Compounds 1. Group 1A cations and NH 4 + 2. Nitrates (NO 3 ) Acetates (CH 3 COO ) Chlorates (ClO 3 ) Perchlorates (ClO 4 ) Solubility

More information

Theodore E. Madey. Department of Physics and Astronomy, and Laboratory for Surface Modification

Theodore E. Madey. Department of Physics and Astronomy, and Laboratory for Surface Modification The Science of Catalysis at the Nanometer Scale Theodore E. Madey Department of Physics and Astronomy, and Laboratory for Surface Modification http://www.physics.rutgers.edu/lsm/ Rutgers, The State University

More information

often display a deep green color due to where the SPR occurs (i.e., the wavelength of light that interacts with this specific morphology).

often display a deep green color due to where the SPR occurs (i.e., the wavelength of light that interacts with this specific morphology). Synthesis-Dependent Catalytic Properties of Gold Nanoparticles Nanoscience is the study of materials that have dimensions, intuitively, on the nanoscale, typically between 1 100 nm. This field has received

More information

Supplementary Figure 2. (a) XRD patterns of the MOF and the simulated Ni-MOF-74

Supplementary Figure 2. (a) XRD patterns of the MOF and the simulated Ni-MOF-74 Supplementary Figure 1. Low-magnification TEM image of Pt-Ni frame @ MOF. The scale bar is 200 nm. Supplementary Figure 2. (a) XRD patterns of the Pt-Ni @ MOF and the simulated Ni-MOF-74 pattern. (b) XRD

More information

Student Manual for Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System

Student Manual for Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System Student Manual for Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System icholas J. Hill, Jessica M. Hoover and Shannon S. Stahl* Department of Chemistry, University of Wisconsin-Madison, 1101

More information

State of São Paulo. Brasil. Localization. Santo André

State of São Paulo. Brasil. Localization. Santo André Brasil State of São Paulo Localization Santo André The Group www.crespilho.com Frank N. Crespilho Pablo R. S. Abdias Group Leader Synthesis of nanostructured materials using polyelectrolytes Andressa R.

More information

One-pot Solvent-free Synthesis of Sodium Benzoate from the Oxidation of Benzyl Alcohol over Novel Efficient AuAg/TiO 2 Catalysts

One-pot Solvent-free Synthesis of Sodium Benzoate from the Oxidation of Benzyl Alcohol over Novel Efficient AuAg/TiO 2 Catalysts Electronic Supplementary Information One-pot Solvent-free Synthesis of Sodium Benzoate from the Oxidation of Benzyl Alcohol over Novel Efficient AuAg/TiO 2 Catalysts Ying Wang, Jia-Min Zheng, Kangnian

More information

Green Oxidations with Tungsten Catalysts. by Mike Kuszpit Michigan State University

Green Oxidations with Tungsten Catalysts. by Mike Kuszpit Michigan State University Green xidations with Tungsten Catalysts by Mike Kuszpit Michigan State University xidations in rganic Chemistry [] [] R 1 R 1 R 1 [] R 1 R 2 R 1 R 2 [] R 1 R 2 R 1 R 2 R 1 R 2 [] R 1 R 2 Essential as building

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Chem 6A Michael J. Sailor, UC San Diego 1 Announcements: Thursday (Sep 29) quiz: Bring student ID or we cannot accept your quiz! No notes, no calculators Covers chapters 1 and

More information

Synthesis and Characterization of Gold-Palladium Nanoparticles Catalyst For Improved Hydrogen Fuel Cell Performance

Synthesis and Characterization of Gold-Palladium Nanoparticles Catalyst For Improved Hydrogen Fuel Cell Performance Synthesis and Characterization of Gold-Palladium Nanoparticles Catalyst For Improved Hydrogen Fuel Cell Performance Adam Bennett a, Helen Liu a, Allen Tran a, Likun Wang b, Miriam Rafailovich a,b* a,b

More information

Chapter Test B. Chapter: Chemical Equilibrium. following equilibrium system? 2CO(g) O 2 (g) ^ 2CO 2 (g)

Chapter Test B. Chapter: Chemical Equilibrium. following equilibrium system? 2CO(g) O 2 (g) ^ 2CO 2 (g) Assessment Chapter Test B Chapter: Chemical Equilibrium PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. What is

More information

Depressing the hydrogenation and decomposition. nanoparticles on oxygen functionalized. carbon nanofibers. Supporting Information

Depressing the hydrogenation and decomposition. nanoparticles on oxygen functionalized. carbon nanofibers. Supporting Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2015 Depressing the hydrogenation and decomposition reaction in H 2 O 2 synthesis

More information

[Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles

[Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles [Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles Jong Wook Hong, Young Wook Lee, Minjung Kim, Shin Wook Kang, and Sang Woo Han * Department of

More information

Supporting information

Supporting information Supporting information imetallic AuRh nanodendrites consisting of Au icosahedron cores and atomically ultrathin Rh nanoplate shells: synthesis and light-enhanced catalytic activity Yongqiang Kang 1,2,

More information

Sub-10-nm Au-Pt-Pd Alloy Trimetallic Nanoparticles with. High Oxidation-Resistant Property as Efficient and Durable

Sub-10-nm Au-Pt-Pd Alloy Trimetallic Nanoparticles with. High Oxidation-Resistant Property as Efficient and Durable Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Sub-10-nm Au-Pt-Pd Alloy Trimetallic Nanoparticles with High

More information

Supporting Information

Supporting Information Supporting Information A Rational Solid-state Synthesis of Supported Au-Ni Bimetallic Nanoparticles with Enhanced Activity for Gas-phase Selective Oxidation of Alcohols Wuzhong Yi, a Wentao Yuan, b Ye

More information

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section CHEM 1215 Exam III John III. Gelder November 10, 1999 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and

More information

TEM image of derivative 1 and fluorescence spectra of derivative 1 upon addition of

TEM image of derivative 1 and fluorescence spectra of derivative 1 upon addition of Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2016 Supramolecular ensemble of PBI derivative and Cu 2 O NPs: Potential photo catalysts for

More information

Ligand coated metal nanoparticles and quantum dots

Ligand coated metal nanoparticles and quantum dots The Supramolecular Nano Materials Group Ligand coated metal nanoparticles and quantum dots Francesco Stellacci Department of Materials Science and Engineering frstella@mit.edu Outline Self-Assembled Monolayers

More information

METHANOL OXIDATION OVER AU/ γ -AL 2 O 3 CATALYSTS

METHANOL OXIDATION OVER AU/ γ -AL 2 O 3 CATALYSTS Bajopas Volume 2 Number 2 December, 29 Bayero Journal of Pure and Applied Sciences, 2(2): 149-154 Received: May, 29 Accepted: July, 29 METHANOL OXIDATION OVER AU/ γ -AL 2 O 3 CATALYSTS Abdullahi Nuhu Kano

More information

Supplementary information

Supplementary information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary information Real-time imaging and elemental mapping of AgAu nanoparticle transformations

More information

CHAPTER 6. SOLVENT-FREE SELECTIVE OXIDATION OF -PINENE OVER Co-SBA-15 CATALYST

CHAPTER 6. SOLVENT-FREE SELECTIVE OXIDATION OF -PINENE OVER Co-SBA-15 CATALYST 135 CHAPTER 6 SOLVENT-FREE SELECTIVE OXIDATION OF -PINENE OVER Co-SBA-15 CATALYST 6.1 INTRODUCTION -Pinene is a terpenoid family of organic compound which is inexpensive, readily available and renewable

More information

M09/4/CHEMI/SPM/ENG/TZ1/XX+ CHEMISTRY. Monday 18 May 2009 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M09/4/CHEMI/SPM/ENG/TZ1/XX+ CHEMISTRY. Monday 18 May 2009 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M09/4/CHEMI/SPM/ENG/TZ1/XX+ 22096110 CHEMISTRY standard level Paper 1 Monday 18 May 2009 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so.

More information

Silesian University of Technology, Poland Recoverable and recyclable catalysts for sustainable chemical processes

Silesian University of Technology, Poland Recoverable and recyclable catalysts for sustainable chemical processes Silesian University of Technology, Poland Recoverable and recyclable catalysts for sustainable chemical processes Anna Chrobok What are the challenges for the sustainable chemical industry today? reduce

More information

M10/4/CHEMI/SPM/ENG/TZ2/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M10/4/CHEMI/SPM/ENG/TZ2/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M10/4/CHEMI/SPM/ENG/TZ/XX+ 106116 CHEMISTRY standard level Paper 1 Wednesday 1 May 010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

A nanoscale perspective on the effect of acid washing of carbon catalyst supports

A nanoscale perspective on the effect of acid washing of carbon catalyst supports A nanoscale perspective on the effect of acid washing of carbon catalyst supports Emir Bouleghlimat, Philip R. Davies, Robert J. Davies, Jiri Kulahvy, David J. Morgan, School of Chemistry, Cardiff University

More information

Chemistry Standard level Paper 1

Chemistry Standard level Paper 1 M15/4/CHEMI/SPM/ENG/TZ1/XX Chemistry Standard level Paper 1 Thursday 14 May 2015 (afternoon) 45 minutes Instructions to candidates Do not open this examination paper until instructed to do so. Answer all

More information

Ir-Re Alloy as a highly active catalyst for the hydrogenolysis

Ir-Re Alloy as a highly active catalyst for the hydrogenolysis Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2014 Supporting Information Ir-Re Alloy as a highly active catalyst for the hydrogenolysis

More information

Revision of Important Concepts. 1. Types of Bonding

Revision of Important Concepts. 1. Types of Bonding Revision of Important Concepts 1. Types of Bonding Electronegativity (EN) often molecular often ionic compounds Bonding in chemical substances Bond energy: Is the energy that is released when a bond is

More information

Chemistry Standard level Paper 1

Chemistry Standard level Paper 1 Chemistry Standard level Paper 1 Thursday 12 May 2016 (morning) 45 minutes Instructions to candidates Do not open this examination paper until instructed to do so. Answer all the questions. For each question,

More information

8. Relax and do well.

8. Relax and do well. CHEM 1215 Exam III John III. Gelder November 11, 1998 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and

More information

**The partially (-) oxygen pulls apart and surrounds the (+) cation. The partially (+) hydrogen pulls apart and surrounds the (-) anion.

**The partially (-) oxygen pulls apart and surrounds the (+) cation. The partially (+) hydrogen pulls apart and surrounds the (-) anion. #19 Notes Unit 3: Reactions in Solutions Ch. Reactions in Solutions I. Solvation -the act of dissolving (solute (salt) dissolves in the solvent (water)) Hydration: dissolving in water, the universal solvent.

More information

Rh 3d. Co 2p. Binding Energy (ev) Binding Energy (ev) (b) (a)

Rh 3d. Co 2p. Binding Energy (ev) Binding Energy (ev) (b) (a) Co 2p Co(0) 778.3 Rh 3d Rh (0) 307.2 810 800 790 780 770 Binding Energy (ev) (a) 320 315 310 305 Binding Energy (ev) (b) Supplementary Figure 1 Photoemission features of a catalyst precursor which was

More information

S 8 + F 2 SF 6 4/9/2014. iclicker Participation Question: Balance the following equation by inspection: H + + Cr 2 O 7 + C 2 H 5 OH

S 8 + F 2 SF 6 4/9/2014. iclicker Participation Question: Balance the following equation by inspection: H + + Cr 2 O 7 + C 2 H 5 OH Today: Redox Reactions Oxidations Reductions Oxidation Numbers Half Reactions Balancing in Acidic Solution Balancing in Basic Solution QUIZ 3 & EXAM 3 moved up by one day: Quiz 3 Wednesday/Thursday next

More information

Silica-Supported Cationic Gold(I) Complexes as Heterogeneous Catalysts for Regio- and Enantioselective Lactonization Reactions

Silica-Supported Cationic Gold(I) Complexes as Heterogeneous Catalysts for Regio- and Enantioselective Lactonization Reactions Silica-Supported Cationic Gold(I) Complexes as Heterogeneous Catalysts for Regio- and Enantioselective Lactonization Reactions Xing-Zhong Shu, Son C. Nguyen,Ying He, Fadekemi Oba, Qiao Zhang, Christian

More information

Chapter 4. The Major Classes of Chemical Reactions 4-1

Chapter 4. The Major Classes of Chemical Reactions 4-1 Chapter 4 The Major Classes of Chemical Reactions 4-1 The Major Classes of Chemical Reactions 4.1 The Role of Water as a Solvent 4.2 Writing Equations for Aqueous Ionic Reactions 4.3 Precipitation Reactions

More information

Mild and Efficient Oxidation of Primary and Secondary Alcohols Using NiO 2 /Silica Gel System (Solvent Free)

Mild and Efficient Oxidation of Primary and Secondary Alcohols Using NiO 2 /Silica Gel System (Solvent Free) ISSN: 0973-4945; CDEN ECJA E- Chemistry http://www.e-journals.net 2011, 8(2), 491-494 Mild and Efficient xidation of Primary and Secondary Alcohols Using Ni 2 /Silica Gel System (Solvent Free) MAMMAD KTI

More information

Fuel Cells in Energy Technology. Tutorial 5 / SS solutions. Prof. W. Schindler, Jassen Brumbarov / Celine Rüdiger

Fuel Cells in Energy Technology. Tutorial 5 / SS solutions. Prof. W. Schindler, Jassen Brumbarov / Celine Rüdiger Fuel Cells in Energy Technology Tutorial 5 / SS 2013 - solutions Prof. W. Schindler, Jassen Brumbarov / Celine Rüdiger 05.06.2013 Homework 3: What hydrogen flow rate (g/hour) is required to generate 1

More information

M11/4/CHEMI/SPM/ENG/TZ2/XX CHEMISTRY STANDARD LEVEL PAPER 1. Monday 9 May 2011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M11/4/CHEMI/SPM/ENG/TZ2/XX CHEMISTRY STANDARD LEVEL PAPER 1. Monday 9 May 2011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M11/4/CHEMI/SPM/ENG/TZ/XX 116116 CHEMISTRY STANDARD LEVEL PAPER 1 Monday 9 May 011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

Unit-8 Equilibrium. Rate of reaction: Consider the following chemical reactions:

Unit-8 Equilibrium. Rate of reaction: Consider the following chemical reactions: Unit-8 Equilibrium Rate of reaction: Consider the following chemical reactions: 1. The solution of sodium chloride and silver nitrate when mixed, there is an instantaneous formation of a precipitate of

More information

NAME: SECOND EXAMINATION

NAME: SECOND EXAMINATION 1 Chemistry 64 Winter 1994 NAME: SECOND EXAMINATION THIS EXAMINATION IS WORTH 100 POINTS AND CONTAINS 4 (FOUR) QUESTIONS THEY ARE NOT EQUALLY WEIGHTED! YOU SHOULD ATTEMPT ALL QUESTIONS AND ALLOCATE YOUR

More information

CHEMISTRY 1A SPRING 2011 EXAM 1 KEY CHAPTERS 1-4

CHEMISTRY 1A SPRING 2011 EXAM 1 KEY CHAPTERS 1-4 You might find the following useful. Electronegativities H 2.2 CHEMISTRY 1A SPRING 2011 EXAM 1 KEY CHAPTERS 1- Li Be B C N O F 0.98 1.57 2.0 2.55.0..98 Na Mg Al Si P S Cl 0.9 1.1 1.61 1.9 2.19 2.58.16

More information

SCH4U: Practice Exam

SCH4U: Practice Exam SCHU_07-08 SCHU: Practice Exam Energy in Chemistry 1. Which of the following correctly describes a reaction that absorbs heat from the surroundings? a. the reaction is endothermic b. H for this reaction

More information

Chemistry 122 Wrap-Up Review Kundell

Chemistry 122 Wrap-Up Review Kundell Chapter 11 Chemistry 122 Wrap-Up Review Kundell 1. The enthalpy (heat) of vaporization for ethanol (C 2 H 5 OH) is 43.3 kj/mol. How much heat, in kilojoules, is required to vaporize 115 g of ethanol at

More information

Magnetic halloysite: an envirmental nanocatalyst for the synthesis of. benzoimidazole

Magnetic halloysite: an envirmental nanocatalyst for the synthesis of. benzoimidazole doi:10.3390/ecsoc-21-04726 Magnetic halloysite: an envirmental nanocatalyst for the synthesis of benzoimidazole Ali Maleki*, Zoleikha Hajizadeh Catalysts and Organic Synthesis Research Laboratory, Department

More information

Direct Catalytic Conversion of Methane

Direct Catalytic Conversion of Methane Direct Catalytic Conversion of Methane Xiulian Pan, Zengjian An, Ding Ma, Yide Xu, Xinhe Bao State Key Laboratory of Catlaysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences www.fruit.dicp.ac.cn

More information

Recoverable rhodium nanoparticles: Synthesis, characterization and catalytic performance in hydrogenation reactions

Recoverable rhodium nanoparticles: Synthesis, characterization and catalytic performance in hydrogenation reactions Available online at www.sciencedirect.com Applied Catalysis A: General 338 (2008) 52 57 www.elsevier.com/locate/apcata Recoverable rhodium nanoparticles: Synthesis, characterization and catalytic performance

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information Experimental details 1) Preparation of the catalytic materials 1,

More information

Supplementary Figure 1 HAADF-STEM images of 0.08%Pt/FeO x -R200 single-atom catalyst with different magnifications. Scale bar: a, 20 nm; b, 10 nm; c,

Supplementary Figure 1 HAADF-STEM images of 0.08%Pt/FeO x -R200 single-atom catalyst with different magnifications. Scale bar: a, 20 nm; b, 10 nm; c, Supplementary Figure 1 HAADF-STEM images of 0.08%Pt/FeO x -R200 single-atom catalyst with different magnifications. Scale bar: a, 20 nm; b, 10 nm; c, 2 nm; d, 2 nm. The low magnification images demonstrate

More information

XXI. Part I Synthesis, Characterization, and Evaluation of Nanocatalysts in Ionic Liquids 1

XXI. Part I Synthesis, Characterization, and Evaluation of Nanocatalysts in Ionic Liquids 1 V List of Contributors XI Preface XV Foreword XIX Symbols and Abbreviations XXI Part I Synthesis, Characterization, and Evaluation of Nanocatalysts in Ionic Liquids 1 1 Fe, Ru, and Os Nanoparticles 3 Madhu

More information

Shaping Single-crystalline Trimetallic Pt Pd Rh Nanocrystals toward. High-efficiency C C Splitting of Ethanol in Conversion to CO 2

Shaping Single-crystalline Trimetallic Pt Pd Rh Nanocrystals toward. High-efficiency C C Splitting of Ethanol in Conversion to CO 2 Supporting Information Shaping Single-crystalline Trimetallic Pt Pd Rh Nanocrystals toward High-efficiency C C Splitting of Ethanol in Conversion to CO 2 Wei Zhu,, Jun Ke,, Si-Bo Wang, Jie Ren, Hong-Hui

More information

Monitoring the Surface Chemistry of Functionalized Nanomaterials with a Microfluidic Electronic Tongue

Monitoring the Surface Chemistry of Functionalized Nanomaterials with a Microfluidic Electronic Tongue Supporting Information Monitoring the Surface Chemistry of Functionalized Nanomaterials with a Microfluidic Electronic Tongue Flavio M. Shimizu, Anielli M. Pasqualeti, Fagner R. Todão, Jessica F. A. de

More information

TRU Chemistry Contest Chemistry 12 May 21, 2003 Time: 90 minutes

TRU Chemistry Contest Chemistry 12 May 21, 2003 Time: 90 minutes TRU Chemistry Contest Chemistry 12 May 21, 2003 Time: 90 minutes Last Name First name School Teacher Please follow the instructions below. We will send your teacher a report on your performance. Top performers

More information

Supporting Information

Supporting Information Supporting Information for "Size-Controlled Pd Nanoparticle Catalysts Prepared by Galvanic Displacement into a Porous Si-Iron Oxide Nanoparticle Host." Taeho Kim, a Xin Fu, b David Warther, a and Michael

More information

Magnetically-driven selective synthesis of Au clusters on Fe 3 O 4 Nanoparticles

Magnetically-driven selective synthesis of Au clusters on Fe 3 O 4 Nanoparticles Electronic Supplementary Material (ESI) for Chemical Communications Magnetically-driven selective synthesis of Au clusters on Fe 3 O 4 Nanoparticles Víctor Sebastian, M. Pilar Calatayud, Gerardo F. Goya

More information

Arborescent Polymers as Templates for the Preparation of Metallic Nanoparticles

Arborescent Polymers as Templates for the Preparation of Metallic Nanoparticles Arborescent Polymers as Templates for the Preparation of Metallic Nanoparticles Jason Dockendorff Department of Chemistry University of Waterloo Outline 1. 1. Focus and Purpose of of Research 2. 2. The

More information

Special Properties of Au Nanoparticles

Special Properties of Au Nanoparticles Special Properties of Au Nanoparticles Maryam Ebrahimi Chem 7500/750 March 28 th, 2007 1 Outline Introduction The importance of unexpected electronic, geometric, and chemical properties of nanoparticles

More information

Titration a solution of known concentration, called a standard solution

Titration a solution of known concentration, called a standard solution Acid-Base Titrations Titration is a form of analysis in which we measure the volume of material of known concentration sufficient to react with the substance being analyzed. Titration a solution of known

More information

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 The development of the periodic table brought a system of order to what was otherwise an collection of thousands of pieces of information.

More information

Incontro per l orientamento alla tesi sperimentale

Incontro per l orientamento alla tesi sperimentale Corso di Laurea Magistrale in Chimica e Tecnologia del armaco Corso di Laurea Magistrale in armacia Incontro per l orientamento alla tesi sperimentale Prof.ssa Daniela Lanari 22 ovembre 2017, Aula A via

More information

Problem Set III Stoichiometry - Solutions

Problem Set III Stoichiometry - Solutions Chem 121 Problem set III Solutions - 1 Problem Set III Stoichiometry - Solutions 1. 2. 3. molecular mass of ethane = 2(12.011) + 6(1.008) = 30.07 g 4. molecular mass of aniline = 6(12.011) + 7(1.008) +

More information

Sacrifical Template-Free Strategy

Sacrifical Template-Free Strategy Supporting Information Core/Shell to Yolk/Shell Nanostructures by a Novel Sacrifical Template-Free Strategy Jie Han, Rong Chen and Rong Guo* School of Chemistry and Chemical Engineering, Yangzhou University,

More information

Photon Energy Threshold in Direct Photocatalysis with Metal Nanoparticles Key Evidence from Action Spectrum of the Reaction

Photon Energy Threshold in Direct Photocatalysis with Metal Nanoparticles Key Evidence from Action Spectrum of the Reaction Supporting Information Photon Energy Threshold in Direct Photocatalysis with Metal Nanoparticles Key Evidence from Action Spectrum of the Reaction Sarina Sarina, a Esa Jaatinen, a Qi Xiao, a,b Yi Ming

More information

Chemical Reactions Chapter 12 Study Guide (Unit 9)

Chemical Reactions Chapter 12 Study Guide (Unit 9) Name: Hr: Understand and be able to explain all of the key concepts. Define and understand all of the survival words Memorize the names and symbols for these elements: (Ag, Al, Ar, As, Au, B, Ba, Be, Br,

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

Pharmaceutical Analytical Chemistry PHCM223 Lecture 9 REDOX REACTIONS (I) Dr. Nesrine El Gohary 9 th lecture

Pharmaceutical Analytical Chemistry PHCM223 Lecture 9 REDOX REACTIONS (I) Dr. Nesrine El Gohary 9 th lecture Pharmaceutical Analytical Chemistry PHCM223 Lecture 9 REDOX REACTIONS (I) Dr. Nesrine El Gohary 9 th lecture Learning outcomes Define redox reactions. Apply redox titrations. Detect the end point of redox

More information

Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH) 2 and MgO

Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH) 2 and MgO Supporing Information Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH) 2 and MgO Chun-Jiang Jia, Yong Liu, Hans Bongard, Ferdi Schüth* Max-Planck-Institut für Kohlenforschung,

More information

Compounds in Aqueous Solution

Compounds in Aqueous Solution 1 Compounds in Aqueous Solution Many reactions involve ionic compounds, especially reactions in water KMnO 4 in water K + (aq) ) + MnO 4- (aq) 2 CCR, page 149 3 How do we know ions are present in aqueous

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1066 Facile removal of stabiliser-ligands from supported gold nanoparticles Jose A. Lopez-Sanchez 1, Nikolaos Dimitratos 1, Ceri Hammond 1, Gemma L. Brett 1, Lokesh Kesavan 1, Saul White

More information

Design of a new family of catalytic support based on thiol containing plasma polymer films

Design of a new family of catalytic support based on thiol containing plasma polymer films Design of a new family of catalytic support based on thiol containing plasma polymer films Dr. D. Thiry damien.thiry@umons.ac.be Chimie des Interactions Plasma Surface (ChIPS), CIRMAP, University of Mons,

More information

Stoichiometry Practice Problems

Stoichiometry Practice Problems Name Period CRHS Academic Chemistry Stoichiometry Practice Problems Due Date Assignment On-Time (100) Late (70) 9.1 9.2 9.3 9.4 9.5 Warm-Up EC Notes, Homework, Exam Reviews and Their KEYS located on CRHS

More information

CHEMICAL OXIDATION. The use of oxidizing agents without the need of microorganisms for the reactions to proceed

CHEMICAL OXIDATION. The use of oxidizing agents without the need of microorganisms for the reactions to proceed CHEMICAL OXIDATION The use of oxidizing agents without the need of microorganisms for the reactions to proceed oxidizing agents : O 3, H 2 O 2, Cl 2 or HOCl or O 2 etc catalysts : ph, transition metals,

More information

Basic Concepts of Chemistry and Chemical Calculations. The ratio of the average mass factor to one twelfth of the mass of an atom of carbon-12

Basic Concepts of Chemistry and Chemical Calculations. The ratio of the average mass factor to one twelfth of the mass of an atom of carbon-12 Basic Concepts of Chemistry and Chemical Calculations Relative Atomic mass: The relative atomic mass is defined as the ratio of the average atomic mass factor to the unified atomic mass unit. (Or) The

More information

Chem 1A Dr. White Fall Handout 4

Chem 1A Dr. White Fall Handout 4 Chem 1A Dr. White Fall 2014 1 Handout 4 4.4 Types of Chemical Reactions (Overview) A. Non-Redox Rxns B. Oxidation-Reduction (Redox) reactions 4.6. Describing Chemical Reactions in Solution A. Molecular

More information

Name AP Chemistry September 30, 2013

Name AP Chemistry September 30, 2013 Name AP Chemistry September 30, 2013 AP Chemistry Exam Part I: 40 Questions, 40 minutes, Multiple Choice, No Calculator Allowed Bubble the correct answer on the blue side of your scantron for each of the

More information

IB Chemistry. Topic 3: Periodicity. Name

IB Chemistry. Topic 3: Periodicity. Name IB Chemistry Topic 3: Periodicity Name Topic 3 and 13 Periodicity Alkali metals: Group 1 elements. Strength of metallic bond gets weaker as atoms get larger. Anion: A charged ion. Decrease in size across

More information

Section 3: Etching. Jaeger Chapter 2 Reader

Section 3: Etching. Jaeger Chapter 2 Reader Section 3: Etching Jaeger Chapter 2 Reader Etch rate Etch Process - Figures of Merit Etch rate uniformity Selectivity Anisotropy d m Bias and anisotropy etching mask h f substrate d f d m substrate d f

More information

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate.

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. 1 Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. You should be able to: Vocabulary of water solubility Differentiate between

More information

Supporting Information

Supporting Information Supporting Information Single Enzyme Direct Biomineralization of CdSe and CdSe-CdS Core-Shell Quantum Dots Zhou Yang 1, Li Lu 2, Christopher J. Kiely 1,2, Bryan W. Berger* 1,3, and Steven McIntosh* 1 1

More information

Electrostatic interactions to modulate the reflective assembly of nanoparticles at the oilwater

Electrostatic interactions to modulate the reflective assembly of nanoparticles at the oilwater Supplemental Information Electrostatic interactions to modulate the reflective assembly of nanoparticles at the oilwater interface Mingxiang Luo, Gloria K. Olivier, and Joelle Frechette* Department of

More information

A green and efficient oxidation of alcohols by supported gold. conditions

A green and efficient oxidation of alcohols by supported gold. conditions A green and efficient oxidation of alcohols by supported gold catalysts using aqueous H 2 O 2 under organic solvent-free conditions Ji Ni, Wen-Jian Yu, Lin He, Hao sun, Yong Cao,* He-Yong He, and Kang-Nian

More information

( ) SENIOR 4 CHEMISTRY FINAL PRACTICE REVIEW TEST VALUE: TOTAL 100 MARKS. Multiple Choice. Ca (PO ) 3Ca + 2PO. Name Student Number

( ) SENIOR 4 CHEMISTRY FINAL PRACTICE REVIEW TEST VALUE: TOTAL 100 MARKS. Multiple Choice. Ca (PO ) 3Ca + 2PO. Name Student Number SENIOR 4 CHEMISTRY FINAL PRACTICE REVIEW TEST Name Student Number Attending Phone Number Address NonAttending ANSWER EY VALUE: TOTAL 100 MARS PART A Multiple Choice 1. (c) Using the solubility chart i)

More information

klm Mark Scheme Chemistry 6421 General Certificate of Education Thermodynamics and Further Inorganic Chemistry 2010 examination - January series

klm Mark Scheme Chemistry 6421 General Certificate of Education Thermodynamics and Further Inorganic Chemistry 2010 examination - January series Version.: 0502 klm General Certificate of Education Chemistry 642 CHM5 Thermodynamics and Further Inorganic Chemistry Mark Scheme 200 examination - January series Mark schemes are prepared by the Principal

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 156 Copper Nanoparticles: Green Synthesis Characterization Y.Suresh*1, S.Annapurna*2, G.Bhikshamaiah*3, A.K.Singh#4 Abstract Present work describes the synthesis nanoparticles using papaya extract as a

More information

Towards the pressure and material gap in heterogeneous catalysis: hydrogenation of acrolein over silver catalysts

Towards the pressure and material gap in heterogeneous catalysis: hydrogenation of acrolein over silver catalysts Towards the pressure and material gap in heterogeneous catalysis: hydrogenation of acrolein over silver catalysts M. Bron 1, M. Bonifer 1, A. Knop-Gericke 2, D. Teschner 2, J. Kröhnert 2, F.C. Jentoft

More information

Cadiz-Paris Train Line; Catalysts, Nanostructures and EELS Spectroscopy. Susana Trasobares

Cadiz-Paris Train Line; Catalysts, Nanostructures and EELS Spectroscopy. Susana Trasobares Cadiz-Paris Train Line; Catalysts, Nanostructures and EELS Spectroscopy Susana Trasobares 2010 Paris Odile Stéphan Mathieu Kociak Christian Colliex 1997 Cadiz Miguel López-Haro Juan C. Hernandez Jose A.

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/321/5894/1331/dc1 Supporting Online Material for Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation Andrew A. Herzing, Christopher J.

More information

Selective Catalytic Dimethyl Disulphide Conversion into Dimethyl Sulphide

Selective Catalytic Dimethyl Disulphide Conversion into Dimethyl Sulphide Chemistry for Sustainable Development 21 (2013) 471 478 471 UDC 547.279.3:547.279.1:542.97:547.261 Selective Catalytic Dimethyl Disulphide Conversion into Dimethyl Sulphide A. V. MASHKINA and L. N. KHAIRULINA

More information

J. Am. Chem. Soc. 2009, 131,

J. Am. Chem. Soc. 2009, 131, Palladium Nanoparticles on Graphite Oxide and Its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuki-Miyaura Coupling Reaction J. Am. Chem. Soc. 2009, 131, 8262 8270 Rolf Műlhaupt

More information

Circle the letters only. NO ANSWERS in the Columns! (3 points each)

Circle the letters only. NO ANSWERS in the Columns! (3 points each) Chemistry 1304.001 Name (please print) Exam 4 (100 points) April 12, 2017 On my honor, I have neither given nor received unauthorized aid on this exam. Signed Date Circle the letters only. NO ANSWERS in

More information

Permeable Silica Shell through Surface-Protected Etching

Permeable Silica Shell through Surface-Protected Etching Permeable Silica Shell through Surface-Protected Etching Qiao Zhang, Tierui Zhang, Jianping Ge, Yadong Yin* University of California, Department of Chemistry, Riverside, California 92521 Experimental Chemicals:

More information

Green nanoscience: Opportunities and challenges for innovation

Green nanoscience: Opportunities and challenges for innovation Green nanoscience: Opportunities and challenges for innovation Jim Hutchison Department of Chemistry, University of Oregon Director, UO Materials Science Institute Director, ONAMI Safer Nanomaterials and

More information