ChiralIonic Liquids. An Adolescent Technology. Jeremy Henle 1/24/12

Size: px
Start display at page:

Download "ChiralIonic Liquids. An Adolescent Technology. Jeremy Henle 1/24/12"

Transcription

1 ChiralIonic Liquids An Adolescent Technology Jeremy Henle 1/24/12

2 Strategies in Asymmetric Synthesis Chiral Induction Starting Materials Chiral Catalysts Chiral Solvents Enantioenriched Chiral Auxillaries ChiralIonic Liquids

3 ChiralSolvents What does the actual solvent look like? What role do solvents play in the course of asymmetric reactions? Can solvents convey chiral information?

4 Molecular ChiralSolvents Advantages Hypothesized generality Potential for asymmetric unimolecular reactions Disadvantages Cost Complicated synthesis Reusibilityissues with molecular solvents Separation of products nly example: 10-20% ee, 40% in fortuitous cases Asymmetric Grignard Solvent Seebach, D., et al.,rganic Syntheses, Coll. Vol. 7, p.41 (1990); Vol. 61, p.24 (1983). Ionic liquids minimize these disadvantages!

5 Ionic Liquids Molten Salts NaCl, KCl, etc. High melting points When liquid, very viscous Corrosive Rarely useful to use 800 C molten salt in organic synthesis Ionic Liquids Low melting points (< 100 C) Manyliquid at room temperature Variable viscosities Designed solvent Reactivity also controlled

6 Ionic Liquids Known since the 1920s MP: 8 C Sugden, S.; Wilkins, H. JCS. (1929) Chloroalluminate ILs discovered in the late 1940s MP: 40 C Hurley, F. H.; Wier, Jr., T. P. J. Electrochem. Soc. (1951), 98, 207. Did not become widely useful in organic until the 1990s: neutral ILs MP: 15 C Wilkes, J. S.;Zaworotko, M.J.JCSCC. (1992), 965.

7 Ionic Liquids Common cations Common anions Cl -, Br -, BF 4-, PF 6-, SbF 6-, N 3-, CH 3 C 2-, CF 3 C 2 -

8 Ionic Liquids as rganic Solvents Substitute for polar/aqueous solvent systems But can be used with water sensitive substrates Stabilize charged intermediates Wide liquid phase temperature range Non-volatile Designer solvents Ease of product separation More expensive, but recyclable

9 Ionic Liquids in rganic Synthesis Hydrogenation C-C Coupling Chauvin, Y., et. al. ACIEE. (1995), 34, Mathew, C. J.; Smith, P. J.; Welton, T. Chem. Comm. 2000, 1249

10 Ionic Liquids in rganic Synthesis Baylis-Hillman Increased rate explained by association of IL with zwitterionic intermediate

11 Ionic Liquids in rganic Synthesis Diels-Alder Reactions Increased endo:exo selectivity (favoring endo) ILs act as lewisacids Can be used in conjunction with lewis acid Can be used in conjunction with lewis acid additives

12 Ionic Liquids in rganic Synthesis Diels-Alder Selectivity Endo:exo ratio similar to polar organic solvents MeH: 6.7, Acetone: 4.2 Aggarwal, A., et al. Green Chem. 2002, 4,

13 ChiralIonic Liquids Ideal candidates for chiral solvent system Easily synthesized, usually using members of the chiral pool of natural products More polymeric/highly ordered than molecular solvents Requires interaction for transmission of chiral information Consist of at least one chiral ion Chiral Cations Chiral Anion Doubly Chiral CILs

14 ChiralCations Ammonium Cations Imidazolium cations Pyridinium cations Gaumont, A-C., et al. Catalytic Methods in Asymmetric Synthesis: Advanced Materials, Techniques, and Applications

15 ChiralAnions Lactate based Amino acid based anions Tartrates, Sugars, Etc. Gaumont, A-C., et al. Catalytic Methods in Asymmetric Synthesis: Advanced Materials, Techniques, and Applications

16 Doubly ChiralIonic Liquids

17 Current Development Strategies with CILs As chiral solvents Achiral catalysts, stoichiometric reactions Chiral co-solvents and additives pockets of chirality rganocatalysts Attach organocatalytic moeities to ILs IL supported transition metal ligands

18 CIL as ChiralSolvent Initial Examples Asymmetric Baylis-Hillman First to achieve higher than 25% ee using chiral solvent 44% ee, 60% yield Demonstrated that H necessary for induction Hydrogen bonding

19 CIL as ChiralSolvent Initial Examples Asymmetric Aza-Baylis-Hillman Utilizing chiral anions, achieving up to 84% ee Comparable to contemporary catalysts H + [MtA + ] H Br Ts N + Me B PPh 3,rt,24h Br Ts HN Me 39%yield,84%ee Leitner,etal.Angew.Chem.Int.Ed.2006,45,2689

20 CIL as ChiralSolvent rigin of Stereoselectivity in Baylis-Hillman Close association of the chiralionic liquid with the zwitterionic intermediate

21 CIL as ChiralCo-solvent First Michael addition with CIL Further work begins to couple CILs with transition metal catalysis

22 CIL as ChiralSolvent Transition Metal Catalysis Utilizing close ion pairing

23 Extending hydrogenation CIL as ChiralSolvent Transition Metal Catalysis N H C 2 Me H 2,[Rh(cod) 2 ]BF 4 ligand,cil,tea(20eq) N H C 2 Me 99% yield 69%ee K 3 S PPh 2 PPh 2 C 2 Me N H 2 (CF 3 S 2 ) 2 N - K 3 S ligand Reused up to 5 times without reloading catalyst/solvent Pro-atropoisomericligandconveys chiralinformation from CIL to active complex CIL Leitner, W., et al. Chem. Commun. 2007, 4012

24 CIL as ChiralSolvent Transition Metal Catalysis Sharpless Dihydroxylation R nhex NHnHex N N nhex Ph nhex H C K 2 s 2 (H) 4 (0.5mol%),NM rt,24h Industrial Scalability R H H R=n-Bu,yield95%,85%ee R=Ph,yield92%,72%ee L.C.Branco,P.M.P.Gois,N.M.T.Lourenço,V.B.Kurteva, C.A.M.Afonso.Chem.Commun.2006, Reuse s/cil solution multiple times without purification

25 rganocatalysiswith CILs Proline derived CILs Initial results only on the model system

26 rganocatalysiswith CILs Asymmetric Aldol

27 rganocatalysiswith CILs CIL/IL solvent systems Extending 1,4 addition scope Innovation is using ionic liquid as solvent with CIL as the catalyst Broad range of ketones and nitroalkenes(15 examples)

28 Case Study: Diels-Alder Already known that ILs can enhance rate/selectivity of Diels-Alder reactions

29 Case Study: Diels-Alder First attempts yield poor enantioselectivity < 5% ee observed

30 Case Study: Diels-Alder Me + CIL C 2 Me HN N C10 H 21 90%yield,78:21dr,0%ee H Pernak, J., et al. Tetrahedron Lett. 2006, 47, Me CIL Ph N Ph TMS H N C 8H 17 Ph CF 3 S 3 60%de,0%ee H H H Ph N N Ph CF 3 S 3 68%de,0%ee N H Vo-Thanh,G.,etal.J.rg.Chem.2006,2,18. Vo-Thanh, G., et al. Tetrahedron. 2009, 65, 2260.

31 Case Study: Diels-Alder Combining technologies Combining ILs with chiral transition metal ligands

32 Case Study: Diels-Alder Aza-Diels-Alder Catalyst reusable up to 6 times before any loss of enantioselectivity

33 UnimolecularReactions Low enantioselectivity, but proof of concept Armstrong, D. W., et al. rg. Lett. 2005, 7, 335. Enantioselectivity observed when R = H Ion pairing required for chiral induction

34 Advantages of CIL as Chiral Source Can be used as a chiralsolvent source for certain transformations When paired with metal catalysts, decrease metal loading amounts Remove volatile solvents Ease of product separation/recyclability Industrial scalability Can use CIL within an IL system

35 Future Directions Asymmetric organocatalysis has become main focus However, chiral solvent systems still being investigated PTC solvents, homogenous cosolvents To date, no reasonable improvements over those reported Developing reusable CIL/IL systems Broadening the scope of known transformations Resolving techniques utilizing CIL systems

36 Conclusions ver the past decade, CILs have become more useful in organic synthesis As chiralsolvents, systems still require improvements in practicality However, CILs have been shown to be effective catalysts and However, CILs have been shown to be effective catalysts and additives, warranting consideration in industrial applications

Chiral Ionic Liquids (CILs) in Asymmetric Synthesis: The story so far.

Chiral Ionic Liquids (CILs) in Asymmetric Synthesis: The story so far. Chiral Ionic Liquids (CILs) in Asymmetric Synthesis: The story so far. Literature Presentation Aman Desai 06.16.06 1. Angew. Chem. Int. Ed. 2006, 45, 3689 2. Angew. Chem. Int. Ed. 2006, 45, 3093 3. Tetrahedron:

More information

Morita Baylis Hillman Reaction. Aaron C. Smith 11/10/04

Morita Baylis Hillman Reaction. Aaron C. Smith 11/10/04 Morita Baylis Hillman Reaction Aaron C. Smith 11/10/04 Outline 1. Background 2. Development of Asymmetric Variants 3. Aza-Baylis Hillman Reaction 4. Applications of Baylis Hillman Adducts Outline 1. Background

More information

Asymmetric Catalysis by Lewis Acids and Amines

Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Lewis acid catalysis - Chiral (bisooxazoline) copper (II) complexes - Monodentate Lewis acids: the formyl -bond Amine catalysed reactions Asymmetric

More information

Suggested solutions for Chapter 41

Suggested solutions for Chapter 41 s for Chapter 41 41 PBLEM 1 Explain how this synthesis of amino acids, starting with natural proline, works. Explain the stereoselectivity of each step after the first. C 2 C 2 3 CF 3 C 2 2 Pd 2 C 2 +

More information

Chiral Brønsted Acid Catalysis

Chiral Brønsted Acid Catalysis Chiral Brønsted Acid Catalysis Aryl Aryl Aryl Aryl S CF 3 2 P Fe CF 3 CF 3 2 Jack Liu ov. 16, 2004 CF 3 Introduction Chiral Brønsted acid catalysis in nature: enzymes and peptides Chiral Brønsted acid

More information

Chiral Supramolecular Catalyst for Asymmetric Reaction

Chiral Supramolecular Catalyst for Asymmetric Reaction Chiral Supramolecular Catalyst for Asymmetric Reaction 2017/1/21 (Sat.) Literature Seminar Taiki Fujita (B4) 1 Introduction Rational design of chiral ligands remains very difficult. Conventional chiral

More information

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes A ighly Efficient rganocatalyst for Direct Aldol Reactions of Ketones and Aldehydes Zhuo Tang, Zhi-ua Yang, Xiao-ua Chen, Lin-Feng Cun, Ai-Qiao Mi, Yao-Zhong Jiang, and Liu-Zhu Gong Contribution from the

More information

Ionic Liquids (IL s): An Ionic Liquid-Supported Ruthenium Carbene Complexes for RCM in Ionic Liquids

Ionic Liquids (IL s): An Ionic Liquid-Supported Ruthenium Carbene Complexes for RCM in Ionic Liquids Ionic Liquids (IL s): An Ionic Liquid-Supported Ruthenium Carbene Complexes for RCM in Ionic Liquids J. Am. Chem. Soc. 2003, 125, 9248-49 Angew. Chem. Int. Ed. 2003, 42, 3395-3398 Literature presentation

More information

Development of Small Organic Molecules as Catalysts for Asymmetric

Development of Small Organic Molecules as Catalysts for Asymmetric Development of Small Organic Molecules as Catalysts for Asymmetric Organic Transformations The development of new and efficient catalysts capable of catalyzing enantioselective transformation in a controlled

More information

Nucleophilic Substitutions. Ionic liquids

Nucleophilic Substitutions. Ionic liquids ucleophilic Substitutions & Ionic liquids S 2 Reaction S 2 Substitution Reaction ucleophilic (electron rich) Bimolecular The rate depends on the concentration of both of the reactants S 2 Reaction Mechanism

More information

Shi Asymmetric Epoxidation

Shi Asymmetric Epoxidation Shi Asymmetric Epoxidation Chiral dioxirane strategy: R 3 + 1 xone, ph 10.5, K 2 C 3, H 2, C R 3 formed in situ catalyst (10-20 mol%) is prepared from D-fructose, and its enantiomer from L-sorbose oxone,

More information

Homogeneous Catalysis - B. List

Homogeneous Catalysis - B. List omogeneous Catalysis - B. List 2.2.2 Research Area "rganocatalytic Asymmetric α-alkylation of Aldehydes" (B. List) Involved:. Vignola, A. Majeed Seayad bjective: α-alkylations of carbonyl compounds are

More information

Chiral Bronsted Acids as Catalysts

Chiral Bronsted Acids as Catalysts Chiral Bronsted Acids as Catalysts Short Literature Seminar 6/3/08 Dustin aup BIL Derived osphoric Acids - First reported in 1992 as a ligand by irrung and coworkers. 4 h 2 irrung Tet. Lett. 1992, 33,

More information

Enantioselective Protonations

Enantioselective Protonations Enantioselective Protonations Marc Timo Gieseler 25.02.2013 15.03.2013 Group Seminar AK Kalesse 1 verview Introduction Enantioselective Protonation of Cyclic Substrates Enantioselective Protonation of

More information

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005 Chiral Proton Catalysis in rganic Synthesis Samantha M. Frawley rganic Seminar September 14 th, 2005 Seminar utline Introduction Lewis Acid-assisted Chiral Brønsted Acids Enantioselective protonation for

More information

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc Chiral Catalyst II ast lecture we looked at asymmetric catalysis for oxidation and reduction Many other organic transformations, this has led to much investigation Today we will look at some others...

More information

O + k 2. H(D) Ar. MeO H(D) rate-determining. step?

O + k 2. H(D) Ar. MeO H(D) rate-determining. step? ame: CEM 633: Advanced rganic Chem: ysical Problem Set 6 (Due Thurs, 12/8/16) Please do not look up references until after you turn in the problem set unless otherwise noted. For the following problems,

More information

CATALYSIS MULTICATALYST SYSTEM IN ASYMMETRIC. Wiley. Department of Chemistry

CATALYSIS MULTICATALYST SYSTEM IN ASYMMETRIC. Wiley. Department of Chemistry MULTICATALYST SYSTEM IN ASYMMETRIC CATALYSIS JIAN ZHOU Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai, China Wiley Preface

More information

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: Z-enolates: M 2 M 2 syn 2 C 2 favored 2 M 2 anti disfavored E-enolates: M 2 2 C 3 C 3 C 2 favored 2 M M disfavored In

More information

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R eaction using diarylprolinol silyl ether derivatives as catalyst 1) C Et K C 3, ) MgBr, TF TMS hexane, 0 o C TBS p- C 6 4, T C Et 85%, 99% ee Angew. Chem., nt. Ed., 44, 41 (005). rg. Synth., 017, 94, 5.

More information

Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction Mechanisms. Group Meeting Aaron Bailey 12 May 2009

Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction Mechanisms. Group Meeting Aaron Bailey 12 May 2009 Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction chanisms Group eting Aaron Bailey 12 May 2009 What is a Non-Linear Effect? In asymmetric catalysis, the ee (er) of the

More information

Parallel Kinetic Resolution. Group Meeting Timothy Chang

Parallel Kinetic Resolution. Group Meeting Timothy Chang Parallel Kinetic Resolution (PKR) Group Meeting 09 29 2009 Timothy Chang Vedejs, E.; Chen, X. J. Am. Chem. Soc. 1997, 119, 2584. Tanaka, K.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 8078. KR versus PKR The

More information

The aza-baylis-hillman Reaction: Mechanism, Asymmetric Catalysis, & Abnormal Adducts. Larry Wolf SED Group Meeting

The aza-baylis-hillman Reaction: Mechanism, Asymmetric Catalysis, & Abnormal Adducts. Larry Wolf SED Group Meeting The aza-baylis-hillman Reaction: Mechanism, Asymmetric Catalysis, & Abnormal Adducts Larry Wolf SED Group Meeting 04-10-07 Outline Brief historical account and Utility Mechanism Different methods for asymmetric

More information

Stereoselective reactions of the carbonyl group

Stereoselective reactions of the carbonyl group 1 Stereoselective reactions of the carbonyl group We have seen many examples of substrate control in nucleophilic addition to the carbonyl group (Felkin-Ahn & chelation control) If molecule does not contain

More information

Application of Ionic Liquids in Michael Addition Reactions

Application of Ionic Liquids in Michael Addition Reactions Application of Ionic Liquids in Michael Addition Reactions by Haiying DU Apr. 12, 2012 Contents The definition and the advantage of ionic liquids The important of Michael addition The use of ionic liquids

More information

CHM 320 Laboratory Projects Spring, 2009

CHM 320 Laboratory Projects Spring, 2009 M 320 Laboratory Projects Spring, 2009 I. Enantioselective Reduction of Benzofuran-2-yl Methyl Ketone using Enzymes from arrots. Typically, the reduction of an unsymmetrical, achiral ketone with a hydride

More information

Stereoselective Organic Synthesis

Stereoselective Organic Synthesis Stereoselective rganic Synthesis Prabhat Arya Professor and Leader, Chemical Biology Program Dean, Academic Affairs, Institute of Life Sciences (An Associate Institute of University of yderabad Supported

More information

INNOVATIVE MATERIALS FOR RESEARCH AND INDUSTRY. Elena-Oana CROITORU 1

INNOVATIVE MATERIALS FOR RESEARCH AND INDUSTRY. Elena-Oana CROITORU 1 INNOVATIVE MATERIALS FOR RESEARCH AND INDUSTRY Elena-Oana CROITORU 1 ABSTRACT Research, development and implementation of products and innovative technologies that aim to reduce or eliminate the use and

More information

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010 Bifunctional Asymmetric Catalysts: Design and Applications Junqi Li CHEM 535 27 Sep 2010 Enzyme Catalysis vs Small-Molecule Catalysis Bronsted acid Lewis acid Lewis acid Bronsted base Activation of both

More information

Diels-Alder Reaction

Diels-Alder Reaction Diels-Alder Reaction Method for synthesis of 6-membered ring ne-step, concerted reaction Termed [4+2] cycloaddition reaction where 4 and 2 electrons react. + Diels-Alder Reaction Discovered by. Diels and

More information

Tips for taking exams in 852

Tips for taking exams in 852 Comprehensive Tactical Methods in rganic Synthesis W. D. Wulff 1) Know the relative reactivity of carbonyl compounds Tips for taking exams in 852 Cl > > ' > > ' N2 eg: 'Mg Et ' 1equiv. 1equiv. ' ' Et 50%

More information

Advanced Organic Chemistry

Advanced Organic Chemistry D. A. Evans, G. Lalic Question of the day: Chemistry 530A TBS Me 2 C Me toluene, 130 C 70% TBS C 2 Me H H Advanced rganic Chemistry Me Lecture 16 Cycloaddition Reactions Diels _ Alder Reaction Photochemical

More information

Corey-Bakshi. Bakshi-Shibata Reduction. Name Reaction Nilanjana Majumdar

Corey-Bakshi. Bakshi-Shibata Reduction. Name Reaction Nilanjana Majumdar Corey-Bakshi Bakshi-Shibata Reduction Name Reaction Nilanjana Majumdar 02.27.09 utline Introduction Background CBS Reaction Application to Synthesis Introduction Born: 12 th July, 1928 in Methuen, Massachusetts,

More information

Catalytic Enantioselective Diels-Alder Reactions Chwee T.S 1 and Wong M.W 2

Catalytic Enantioselective Diels-Alder Reactions Chwee T.S 1 and Wong M.W 2 Catalytic Enantioselective Diels-Alder Reactions Chwee T.S 1 and Wong M.W 2 Department of Chemistry,Faculty of Science, National University of Singapore 10 Kent Ridge Road, Singapore 117546 Abstract Theoretical

More information

Chapter 5B. Functional Group Transformations: The Chemistry. Related Reactions

Chapter 5B. Functional Group Transformations: The Chemistry. Related Reactions Chapter 5B Functional Group Transformations: The Chemistry of fcarbon-carbon C b π-bonds B d and Related Reactions Oxymercuation-Demercuration Markovnikov hydration of a double bond 1 Mechanism Comparision

More information

Green Oxidations with Tungsten Catalysts. by Mike Kuszpit Michigan State University

Green Oxidations with Tungsten Catalysts. by Mike Kuszpit Michigan State University Green xidations with Tungsten Catalysts by Mike Kuszpit Michigan State University xidations in rganic Chemistry [] [] R 1 R 1 R 1 [] R 1 R 2 R 1 R 2 [] R 1 R 2 R 1 R 2 R 1 R 2 [] R 1 R 2 Essential as building

More information

Dual enantioselective control by heterocycles of (S)-indoline derivatives*

Dual enantioselective control by heterocycles of (S)-indoline derivatives* Pure Appl. Chem., Vol. 77, No. 12, pp. 2053 2059, 2005. DOI: 10.1351/pac200577122053 2005 IUPAC Dual enantioselective control by heterocycles of (S)-indoline derivatives* Yong Hae Kim, Doo Young Jung,

More information

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July 344 Organic Chemistry Laboratory Summer 2013 Lecture 6 Transition metal organometallic chemistry and catalysis July 30 2013 Summary of Grignard lecture Organometallic chemistry - the chemistry of compounds

More information

Department of Chemistry, University of Saskatchewan Saskatoon SK S7N 4C9, Canada. Wipf Group. Tyler E. Benedum Current Literature February 26, 2005

Department of Chemistry, University of Saskatchewan Saskatoon SK S7N 4C9, Canada. Wipf Group. Tyler E. Benedum Current Literature February 26, 2005 Ward, D.E; Jheengut, V.; Akinnusi, O.T. Enantioselective Direct Intermolecular Aldol Reactions with Enantiotopic Group Selectivity and Dynamic Kinetic Resolution, Organic Letters 2005, ASAP. Department

More information

Chiral Auxiliaries. attach auxiliary Substrate Substrate Auxiliary

Chiral Auxiliaries. attach auxiliary Substrate Substrate Auxiliary Chiral Auxiliaries Previously on Advanced ynthesis... Discussed the need for stereoselective synthesis Looked at the use of resolution, the chiral pool and substrate control t there are some potential

More information

Name: CHEM 633: Advanced Organic Chemistry: Physical Final Exam. Please answer the following questions clearly and concisely.

Name: CHEM 633: Advanced Organic Chemistry: Physical Final Exam. Please answer the following questions clearly and concisely. Name: 1 CEM 633: Advanced rganic Chemistry: Physical Final Exam Please answer the following questions clearly and concisely. You may write your answers in the space provided and/or on additional pages.

More information

Journal Club Presentation by Remond Moningka 04/17/2006

Journal Club Presentation by Remond Moningka 04/17/2006 β-alkyl-α-allylation of Michael Acceptors through the Palladium-Catalyzed Three-Component Coupling between Allylic Substrate, Trialkylboranes, and Activated lefins Yoshinori Yamamoto, et al. J. rg. Chem.

More information

Chiral Anions in Asymmetric Catalysis. Hannah Haley Burke Group Literature Seminar 13 April 2013

Chiral Anions in Asymmetric Catalysis. Hannah Haley Burke Group Literature Seminar 13 April 2013 Chiral Anions in Asymmetric Catalysis annah aley Burke Group Literature Seminar 13 April 2013 Key Ac2va2on Modes for Asymmetric Catalysis L M X 1 2 Coordinative interaction 'Lewis acid catalysis' Lewis

More information

Recent applications of chiral binaphtholderived phosphoric acid in catalytic asymmetric reactions

Recent applications of chiral binaphtholderived phosphoric acid in catalytic asymmetric reactions Recent applications of chiral binaphtholderived phosphoric acid in catalytic asymmetric reactions 1. Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, ASAP. 2. Storer, R. L.; Carrera, D. E.;

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

Hydrogen-Mediated C-C Bond Formation

Hydrogen-Mediated C-C Bond Formation EPFL - ISIC - LSPN Hydrogen-Mediated C-C Bond Formation History and selected examples The Research of Prof. Michael Krische (University of Texas at Austin) LSPN Group Seminar Mathias Mamboury Table of

More information

Heterogeneous chiral catalysis on surfaces, in nanopores and with emulsions

Heterogeneous chiral catalysis on surfaces, in nanopores and with emulsions Prof. Can Li's Laboratory Heterogeneous chiral catalysis on surfaces, in nanopores and with emulsions Chiral catalysis is of great industrial interest for the production of enantiomerically pure compounds.

More information

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid Shiqing Xu, Akimichi Oda, Thomas Bobinski, Haijun Li, Yohei Matsueda, and Ei-ichi Negishi Angew. Chem. Int. Ed. 2015,

More information

Denmark s Base Catalyzed Aldol/Allylation

Denmark s Base Catalyzed Aldol/Allylation Denmark s Base Catalyzed Aldol/Allylation Evans Group Seminar ovember 1th, 003 Jimmy Wu Lead eferences: Denmark, S. E. Acc. Chem. es., 000, 33, 43 Denmark, S. E. Chem. Comm. 003, 167 Denmark, S. E. Chem.

More information

C h a p t e r 1. Enantioselective LUMO-Lowering Organocatalysis. The presentation of the Nobel Prize in 2001 to William S. Knowles, Ryoji Noyori,

C h a p t e r 1. Enantioselective LUMO-Lowering Organocatalysis. The presentation of the Nobel Prize in 2001 to William S. Knowles, Ryoji Noyori, 1 C h a p t e r 1 Enantioselective LUM-Lowering rganocatalysis. I. Introduction. The presentation of the obel Prize in 2001 to William S. Knowles, Ryoji oyori, and K. Barry Sharpless recognized the influence

More information

An Introduction to Ionic Liquids. Michael Freemantle. RSC Publishing

An Introduction to Ionic Liquids. Michael Freemantle. RSC Publishing An to Ionic Liquids Michael Freemantle RSC Publishing Chapter 1 1 1.1 Definition of Ionic Liquids 1 1.2 Synonyms 1 1.3 Attraction of Ionic Liquids 2 1.4 Cations and Anions 3 1.5 Shorthand Notation for

More information

"-Amino Acids: Function and Synthesis

-Amino Acids: Function and Synthesis "-Amino Acids: Function and Synthesis # Conformations of "-Peptides # Biological Significance # Asymmetric Synthesis Sean Brown MacMillan Group eting ovember 14, 2001 Lead eferences: Cheng,. P.; Gellman,

More information

Organic Synthesis III 8 x 1hr Lectures: Michaelmas Term Weeks 5-8 Tues; Thrs at 10am Dyson Perrins lecture theatre

Organic Synthesis III 8 x 1hr Lectures: Michaelmas Term Weeks 5-8 Tues; Thrs at 10am Dyson Perrins lecture theatre Organic Synthesis III 8 x 1hr Lectures: Michaelmas Term Weeks 5-8 Tues; Thrs at 10am Dyson Perrins lecture theatre Copies of this handout will be available at http://donohoe.chem.ox.ac.uk/page16/index.html

More information

Back to Sugars: Enzymatic Synthesis

Back to Sugars: Enzymatic Synthesis Back to Sugars: Enzymatic Synthesis Zhensheng Ding ov. 04 orthrup, A. B.; M acm illan, D. W. C. Science 2004, 305, 1752 orthrup, A. B. and MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798-6799 orthrup,

More information

Achiral Aminophosphine Ligands

Achiral Aminophosphine Ligands AMËA COR. 2820 Argentia Road, Suite 8-9, rcury Bioscience Centre, Mississauga, O L5 8G4, Canada Achiral Aminophosphine Ligands M-15-0101 2-(Diphenylphosphino)ethylamine, C 14H 16; F.W: 229.26; [4848-43-5]

More information

Hypervalent (III) iodine chemistry

Hypervalent (III) iodine chemistry Hypervalent (III) iodine chemistry Alcohol and phenol oxydation by 1 Diacetyliodobenzene (DIB) H NH PhI(2.2 eq.) H 2,12h,rt 74% NH chiai, M. et al., Chem. Pharm. Bull. 2004, 1143-1144 2 Summary Generalities

More information

Short Literature Presentation 10/4/2010 Erika A. Crane

Short Literature Presentation 10/4/2010 Erika A. Crane Copper-Catalyzed Enantioselective Synthesis of trans-1- Alkyl-2-substituted Cyclopropanes via Tandem Conjugate Additions-Intramolecular Enolate Trapping artog, T. D.; Rudolph, A.; Macia B.; Minnaard, A.

More information

Halogen Bond Applications in Organic Synthesis. Literature Seminar 2018/7/14 M1 Katsuya Maruyama

Halogen Bond Applications in Organic Synthesis. Literature Seminar 2018/7/14 M1 Katsuya Maruyama Halogen Bond Applications in Organic Synthesis Literature Seminar 2018/7/14 M1 Katsuya Maruyama 1 Contents 1. Introduction 2. Property of Halogen Bond 3. Application to Organic Synthesis 2 1. Introduction

More information

H Organometallic Catalysis in Industry

H Organometallic Catalysis in Industry H Organometallic Catalysis in Industry Some terminology: Catalytic cycles: a circular path meant to show productive reactions, in order, that lead from the catalytically active species and its reaction

More information

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris 1 ew Catalytic Asymmestric eactions Karl Anker Jørgensen Danish ational eserach Foundation: Center for Catalysis Department of Chemistry, Aarhus University Denmark kaj@chem.au.dk When something goes wrong

More information

Use of Cp 2 TiCl in Synthesis

Use of Cp 2 TiCl in Synthesis Use of 2 TiCl in Synthesis eagent Control of adical eactions Jeff Kallemeyn May 21, 2002 eactions of 2 TiCl 1. Pinacol Coupling H H H 2. Epoxide pening H H E H Chemoselectivity Activated aldehydes (aromatic,

More information

Story Behind the Well-Developed Chiral Lewis Acid in Asymmetric Diels-Alder reaction

Story Behind the Well-Developed Chiral Lewis Acid in Asymmetric Diels-Alder reaction Story Behind the Well-Developed Chiral Lewis Acid in Asymmetric Diels-Alder reaction Reporter: Zhang Sulei Supervisors: Prof. Yang Zhen Prof. Chen Jiahua Prof. Tang Yefeng 2015-10-05 1 Contents Background

More information

Chemistry 335 Supplemental Slides: Interlude 1. Reduction: addition of hydrogen to the substrate. Oxidation: addition of oxygen to the substrate

Chemistry 335 Supplemental Slides: Interlude 1. Reduction: addition of hydrogen to the substrate. Oxidation: addition of oxygen to the substrate Interlude 1: Oxidations, Reductions & Other Functional Group Interconversions (FGI) 1. Definition of Oxidation and Reduction For practical purposes in organic chemistry, oxidation and reduction are defined

More information

Chapter 14. Principles of Catalysis

Chapter 14. Principles of Catalysis Organometallics Study Meeting 2011/08/28 Kimura Chapter 14. Principles of Catalysis 14. 1. General Principles 14.1.1. Definition of a Catalyst 14.1.2. Energetics of Catalysis 14.1.3. Reaction Coordinate

More information

Facile preparation of α-amino ketones from oxidative ring-opening of aziridines by pyridine N-oxide

Facile preparation of α-amino ketones from oxidative ring-opening of aziridines by pyridine N-oxide Facile preparation of α-amino ketones from oxidative ring-opening of aziridines by pyridine -oxide rg. Biomol. Chem., 2007, 5, 3428 Luo, Z.-B.; Wu, J.-Y.; ou, X.-L.; Dai, L.-X. Ts toluene Ts 80 o C John

More information

Mechanistic Implications in the Morita Baylis Hillman Alkylation: Isolation and Characterization of an Intermediate

Mechanistic Implications in the Morita Baylis Hillman Alkylation: Isolation and Characterization of an Intermediate Mechanistic Implications in the Morita Baylis Hillman Alkylation: Isolation and Characterization of an Intermediate M. E. Krafft,* T. F. N. Haxell, K. A. Seibert, and K. A. Abboud Department of Chemistry

More information

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July Stereodivergent Catalysis Aragorn Laverny SED Group Meeting July 31 2018 1 Stereodivergent Catalysis In the context of asymmetric synthesis, a stereodivergent process is one that allows access to any given

More information

Organic Chemistry I (Chem340), Spring Final Exam

Organic Chemistry I (Chem340), Spring Final Exam rganic Chemistry I (Chem340), pring 2005 Final Exam This is a closed-book exam. No aid is to be given to or received from another person. Model set and calculator may be used, but cannot be shared. Please

More information

Measuring enzyme (enantio)selectivity

Measuring enzyme (enantio)selectivity Measuring enzyme (enantio)selectivity Types of selectivity - review stereoisomers Stereoselective synthesis (create) vs. resolutions (separate) Enantioselectivity & enantiomeric purity Ways to measure

More information

CHT402 Recent Advances in Homogeneous Catalysis Organocatalysis Workshop

CHT402 Recent Advances in Homogeneous Catalysis Organocatalysis Workshop CT402 Recent Advances in omogeneous Catalysis rganocatalysis Workshop Dr Louis C. Morrill School of Chemistry, Cardiff University Main Building, Rm 1.47B MorrillLC@cardiff.ac.uk For further information

More information

Mechanistic Studies of Proline-Catalyzed Reactions

Mechanistic Studies of Proline-Catalyzed Reactions chanistic Studies of Proline-Catalyzed Reactions N C 2 Jack Liu July 25, 2006 ow It Got Started (L)-proline (47 mol %), 1 N Cl 4, CN, reflux, 22 h 87%, e.r. = 84/16 Eder, U.; Sauer, G.; Wiechert, R. German

More information

Scandium-Catalyzed Asymmetric Reactions

Scandium-Catalyzed Asymmetric Reactions Scandium-Catalyzed Asymmetric eactions Jimmy Wu Evans Group Seminar February 11, 2005 I. Background II. eutral BIL Ligands III. Anionic BIL Ligands IV. Pybox Ligands V. Bip yridine Ligands VI. rganop hosp

More information

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02 Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02 Xiao, W.-J. et al. J. Am. Chem. Soc. 2016, 138, 8360.

More information

Incontro per l orientamento alla tesi sperimentale

Incontro per l orientamento alla tesi sperimentale Corso di Laurea Magistrale in Chimica e Tecnologia del armaco Corso di Laurea Magistrale in armacia Incontro per l orientamento alla tesi sperimentale Prof.ssa Daniela Lanari 22 ovembre 2017, Aula A via

More information

Hyperlearning MCAT Instructor Qualifying Exam Organic Chemistry

Hyperlearning MCAT Instructor Qualifying Exam Organic Chemistry Hyperlearning MCAT Instructor Qualifying Exam Organic Chemistry 30 Questions (5 pages); Time limit = 45 minutes Use of books or notes is not permitted. 1. When analyzed with a polarimeter, which of the

More information

Organocatalytic stereoselective [8+2] and [6+4] cycloadditions

Organocatalytic stereoselective [8+2] and [6+4] cycloadditions rganocatalytic stereoselective [8+2] and [6+4] cycloadditions Joel Walker Current Literature March 4 th, 2017 Mose, R.; Preegel, G.; Larsen, J.; Jakobsen, S.; Iversen, E..; Jørgensen, K. A. Nature Chem.

More information

CHAPTER 2. Terpenes to Ionic Liquids: Synthesis and Characterization of Citronellal-Based Chiral Ionic Liquids

CHAPTER 2. Terpenes to Ionic Liquids: Synthesis and Characterization of Citronellal-Based Chiral Ionic Liquids 62 CAPTER 2 Terpenes to Ionic Liquids: Synthesis and Characterization of Citronellal-Based Chiral Ionic Liquids 63 2.1 Introduction Ionic liquids are a fascinating class of compounds with unique properties,

More information

Chiral Brønsted Acid Catalysis

Chiral Brønsted Acid Catalysis another. 1 One interesting aspect of chiral Brønsted acid catalysis is that the single s orbital of hydrogen Chiral Brønsted Acid Catalysis Reported by Matthew T. Burk December 3, 2007 INTRODUCTION The

More information

Asymmetric Nucleophilic Catalysis

Asymmetric Nucleophilic Catalysis Asymmetric ucleophilic Catalysis Chiral catalyst X 2 Chiral catalyst X = alkyl, X 1 2 1 Vedejs, E.; Daugulis,. J. Am. Chem. Soc. 2003, 125, 4166-4173 Shaw, S. A.; Aleman,.; Vedejs, E. J. Am. Chem. Soc.

More information

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group Literature eport Functionalization of C(sp 3 ) Bonds Using a Transient Directing Group eporter: Mu-Wang Chen Checker: Yue Ji Date: 2016-04-05 Yu, J.-Q. et al. Science 2016, 351, 252-256. Scripps esearch

More information

Stereoselective reactions of enolates: auxiliaries

Stereoselective reactions of enolates: auxiliaries 1 Stereoselective reactions of enolates: auxiliaries Chiral auxiliaries are frequently used to allow diastereoselective enolate reactions Possibly the most extensively studied are the Evan s oxazolidinones

More information

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds Strategies for Catalytic Asymmetric Electrophilic a alogenation of Carbonyl Compounds 1 2 Y Catalyst [X + ] 1 X! 2 Y intermann, L. ; Togni, A. Angew. Chem. Int. Ed. 2000, 39, 4359 4362 amashima, Y.; Sodeoka,

More information

Extraction of bioactive compounds with ionic liquid aqueous solutions

Extraction of bioactive compounds with ionic liquid aqueous solutions universidade de aveiro dqua departamento de química Extraction of bioactive compounds with ionic liquid aqueous solutions Helena Passos Orientadores Prof. Dr. João Coutinho Dr.ª Mara Freire Dissertação/Projeto

More information

B X A X. In this case the star denotes a chiral center.

B X A X. In this case the star denotes a chiral center. Lecture 13 Chirality III October 29, 2013 We can also access chiral molecules through the use of something called chiral auxiliaries, which basically is a chiral attachment that you add to your molecule

More information

Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity

Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity Reporter: Cong Liu Checker: Hong-Qiang Shen Date: 2017/02/27

More information

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. akatani, Y.; Koizumi, Y.; Yamasaki, R.; Saito, S. rg. Lett. 2008, 10, 2067-2070. An Annulation Reaction for the Synthesis

More information

Diels Alder cycloaddition

Diels Alder cycloaddition I p1.1.1 The Diels Alder Cycloaddition Reaction in the Context of Domino Processes J. G. West and E. J. Sorensen The Diels Alder cycloaddition has been a key component in innumerable, creative domino transformations

More information

Stereoselective Allylation of Imines. Joshua Pierce Research Topic Seminar

Stereoselective Allylation of Imines. Joshua Pierce Research Topic Seminar Stereoselective Allylation of Imines Joshua Pierce esearch Topic Seminar 10-30-04 Josh Pierce @ Wipf Group 1 11/3/2004 Topic Overview: Introduction Imines: Why is C=N different? Synthesis of Allylating

More information

Bifunctional Activation and Racemization in the Catalytic Asymmetric aza-baylis-hillman Reaction

Bifunctional Activation and Racemization in the Catalytic Asymmetric aza-baylis-hillman Reaction Supporting Information Bifunctional Activation and Racemization in the Catalytic Asymmetric aza-baylis-hillman Reaction Pascal Buskens, Jürgen Klankermayer, and Walter Leitner* Institute of Technical and

More information

A New Model for Asymmetric Amplification in Amino Acid Catalysis - Supporting information

A New Model for Asymmetric Amplification in Amino Acid Catalysis - Supporting information A New Model for Asymmetric Amplification in Amino Acid Catalysis - Supporting information Martin Klussmann, Hiroshi Iwamura, Suju P. Mathew, David H. Wells, Urvish Pandya, Alan Armstrong and Donna G. Blackmond

More information

Ionic Liquids. Nicolas Bartilla

Ionic Liquids. Nicolas Bartilla Ionic Liquids Nicolas Bartilla 03-23-2011 [4]DECHEMA-Meeting, February 2011, Erlangen Technological Applications What are Ionic Liquids? The term ionic liquids refers to compounds consisting entirely of

More information

Homework for Chapter 17 Chem 2320

Homework for Chapter 17 Chem 2320 Homework for Chapter 17 Chem 2320 I. Cumulated, isolated, and conjugated dienes Name 1. Draw structures which fit the following descriptions. Use correct geometry! a conjugated diene with the formula C

More information

Organocatalytic Umpolung via N- Heterocyclic Carbenes. Qinghe Liu Hu Group Meeting August 20 th 2015

Organocatalytic Umpolung via N- Heterocyclic Carbenes. Qinghe Liu Hu Group Meeting August 20 th 2015 rganocatalytic Umpolung via N- Heterocyclic Carbenes Qinghe Liu Hu Group Meeting August 20 th 2015 Contents Part 1: Introduction Part 2: N-Heterocyclic carbene-catalyzed umpolung: classical umpolung, conjugated

More information

Synthesis of Resorcinylic Macrolides

Synthesis of Resorcinylic Macrolides Synthesis of Resorcinylic Macrolides X H H H H Cl X= Radicicol (1) X= CH2 Cycloproparadicicol (2) Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, ASAP Danishefsky, S. J. rg. Lett. 2004, 6, 413-416 Danishefsky,

More information

Stereoselective Organic Synthesis

Stereoselective Organic Synthesis Stereoselective rganic Synthesis Prabhat Arya Professor and Leader, Chemical Biology Program Dean, Academic Affairs, Institute of Life Sciences (An Associate Institute of University of yderabad Supported

More information

Chiral Amplification. Literature Talk Fabian Schneider Konstanz, Universität Konstanz

Chiral Amplification. Literature Talk Fabian Schneider Konstanz, Universität Konstanz Chiral Amplification Literature Talk Fabian Schneider Konstanz, 18.10.2017 Overview 1) Motivation 2) The nonlinear Effect in asymmetric catalysis - First encounters - Basic principles - Formalization and

More information

2. Acids and Bases. Grossman, CHE Definitions.

2. Acids and Bases. Grossman, CHE Definitions. Grossman, CE 230 2. Acids and Bases. 2.1 Definitions. Brønsted acids are proton donors, and Brønsted bases are proton acceptors. Examples of Brønsted acids: Cl, Br, 2 S 4,, + 2, + 4, 3, C 3 C 2, C 2 CC

More information

[3,3]-Sigmatropic rearrangements

[3,3]-Sigmatropic rearrangements 1 [3,3]-Sigmatropic rearrangements heat R 1 R 3 R 1 R 3 R 1 R 3 A class of pericyclic reactions whose stereochemical outcome is governed by the geometric requirements of the cyclic transition state Reactions

More information

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang!

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang! 1! Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang! 2! utline! 1. Brief Introduction! 2. ucleophilic Dominoes! 3. Electrophilc Dominoes! 4. Radical

More information

Asymmetric Diels Alder Reactions

Asymmetric Diels Alder Reactions Asymmetric Diels Alder eactios Chiral Auxiliaries (-)-8-eylmethol favorable!-stackig 3 C 3 C C 3 AlCl 3 3 C 3 C C 3 s-tras Lewis-acid complex AlCl 3 Cl JACS, 1975, 1610 frot-face approach of diee B 3 C

More information