p Bonds as Electrophiles

Size: px
Start display at page:

Download "p Bonds as Electrophiles"

Transcription

1 Chapter 7 p Bonds as Electrophiles REACTIONS OF CARBONYLS AND RELATED FUNCTIONAL GROUPS Copyright 2018 by Nelson Education Limited 1

2 7.2.1 Orbital structure of the carbonyl group Because oxygen is more electronegative than carbon, the carbonyl group has a permanent dipole moment. Copyright 2018 by Nelson Education Limited 2

3 Charge separation can be further illustrated by resonance: Electrophile: a group or atom that accepts electrons carbon atom of carbonyl group is electrophilic Nucleophile: a group or atom that donates or shares electrons Copyright 2018 by Nelson Education Limited 3

4 7.2.2 Aldehydes and ketones Aldehyde: carbonyl connected to at least one hydrogen Ketone: carbonyl connected to two carbon groups Copyright 2018 by Nelson Education Limited 4

5 7.2.3 Other functional groups with carbon-heteroatom p bonds Imine: carbon connected to a nitrogen by a double bond Copyright 2018 by Nelson Education Limited 5

6 Thiocarbonyl: carbon connected to a sulfur by a double bond Nitrile: carbon connected to a nitrogen by a triple bond These functional groups have reaction patterns similar to those of aldehydes and ketones. Copyright 2018 by Nelson Education Limited 6

7 Oxocarbenium and iminium ions: Copyright 2018 by Nelson Education Limited 7

8 7.3 Nucleophilic Additions to Electrophilic p Bonds in Carbonyls and Other Groups Copyright 2018 by Nelson Education Limited 8

9 Nucleophiles form new bonds by sharing a pair of electrons with an electrophilic site. A negative charge forms on oxygen. Copyright 2018 by Nelson Education Limited 9

10 If H + is present, it is picked up by oxygen to neutralize charge: If H + not present, it must be added (e.g., protic solvent) to form a stable product. Copyright 2018 by Nelson Education Limited 10

11 7.3.1 Use of resonance forms in nucleophilic reaction mechanisms The electron flows of bond formation and p bond breaking are shown together in one step: Copyright 2018 by Nelson Education Limited 11

12 Resonance forms can be used as a guide to reactivity and electron flow in reactions involving p electrons. The patterns of electron movement in the reaction and in the drawing of resonance forms are the same. Compare to the mechanism on the previous slide. Copyright 2018 by Nelson Education Limited 12

13 7.3.2 Addition of hydride nucleophiles to carbonyl groups Hydride by itself (H ) is a very poor nucleophile in addition to carbonyl groups. It must be carried on a larger reagent. Most common examples: NaBH 4 (sodium borohydride) LiAlH 4 (lithium aluminum hydride) Copyright 2018 by Nelson Education Limited 13

14 Mechanism for hydride addition via BH 4 : Copyright 2018 by Nelson Education Limited 14

15 BH 3 by-product reacts with alkoxide: One BH 4 ion can add H to up to four carbonyl groups. Copyright 2018 by Nelson Education Limited 15

16 Mechanism for hydride addition via AlH 4 : Must use dry (anhydrous), aprotic solvents. Reaction is completed by addition of strong acid or base. Copyright 2018 by Nelson Education Limited 16

17 7.4 Over-the-Arrow Notation Copyright 2018 by Nelson Education Limited 17

18 Over-the-arrow notation: compact reaction notation in which information about reactants/products is written over or under the reaction arrow. Organic reactant on left; organic product on right: Copyright 2018 by Nelson Education Limited 18

19 7.4.1 Writing sequential reactions Consider this reaction sequence: These two reactions almost always appear together. We can more compactly represent this sequence. Copyright 2018 by Nelson Education Limited 19

20 Option 1: Copyright 2018 by Nelson Education Limited 20

21 Option 2: Note that in this representation, two sequential reactions are implied using a single reaction arrow. Copyright 2018 by Nelson Education Limited 21

22 7.4.2 Organic oxidations and reductions Recall: oxidation = loss of electrons (symbol: [O]) reduction = gain of electrons (symbol: [H]) In organic reactions, oxidation changes are usually accompanied by a change in the number of hydrogen atoms. Copyright 2018 by Nelson Education Limited 22

23 Hydride reduction of a carbonyl group: Copyright 2018 by Nelson Education Limited 23

24 Oxidation of an alcohol: Copyright 2018 by Nelson Education Limited 24

25 7.5 Addition of Organometallic Compounds to Electrophilic p Bonds Copyright 2018 by Nelson Education Limited 25

26 Organometallics are a large family of organic compounds in which carbon is bonded to a metal. Organometallics can participate in reactions that form carboncarbon bonds. Copyright 2018 by Nelson Education Limited 26

27 7.5.1 Addition of Grignard reagents Grignard reagent: a compound that contains a carbon atom bonded to a magnesium atom Formation and properties of Grignard reagents Copyright 2018 by Nelson Education Limited 27

28 The carbon bonded to Mg acts as a carbanion (negatively charged carbon atom). Grignard reagents are highly basic and will quickly remove any acidic protons that are present (consuming the reagent in the process). Copyright 2018 by Nelson Education Limited 28

29 Grignard reagents react violently with water: Copyright 2018 by Nelson Education Limited 29

30 7.5.2 Utility of the acid base reactivity of Grignards The acid base reactivity of Grignards converts a carbonhalogen bond into a carbon-hydrogen bond. They are commonly used to introduce isotopic labels into organic materials. Copyright 2018 by Nelson Education Limited 30

31 7.5.3 Formation of carbon-carbon bonds with Grignard reagents Because the carbon of the Grignard carries a partial negative charge, it is strongly nucleophilic. It can react with electrophiles, such as the carbonyl group: It results in the formation of a new carbon-carbon bond. Copyright 2018 by Nelson Education Limited 31

32 Magnesium alkoxide is consumed by adding H 2 O in the presence of an acid (usually HCl or NH 4 Cl). This process is known as hydrolysis. Hydrolysis: a reaction with water that decomposes a functional group into other components Copyright 2018 by Nelson Education Limited 32

33 7.5.4 Addition of organolithium compounds to electrophilic p bonds Like Grignards, organolithiums are very strong bases that react violently with water. Formation of organolithiums: an organolithium compound Copyright 2018 by Nelson Education Limited 33

34 Reaction of organolithiums with carbonyl: This results in formation of an alcohol and a new carbon-carbon bond. Copyright 2018 by Nelson Education Limited 34

35 7.5.5 Addition of acetylides to electrophilic p bonds The hydrogen atoms of alkynes (acetylenes) are easily removed with strong bases. Resulting acetylide is highly nucleophilic: Copyright 2018 by Nelson Education Limited 35

36 7.6 Using Orbitals to Analyze Reactions Copyright 2018 by Nelson Education Limited 36

37 Consider carbonyl group: Overlap between the orbitals of the carbon and the oxygen is not symmetrical in s bond formation: Because s bond is larger near oxygen, electrons are more likely to be found closer to oxygen than carbon. This distribution gives the carbon a positive character. Copyright 2018 by Nelson Education Limited 37

38 Similarly, the p orbital of the oxygen is closer in energy to the p orbital than the p orbital of the carbon is. The electrons in the p bond are more likely to be found near the oxygen. Copyright 2018 by Nelson Education Limited 38

39 The nucleophile reacts with the lowest unoccupied molecular orbital (LUMO) of the electrophile to form a new bond. Nucleophile interacts with the larger lobes of the p* LUMO, located on carbon. Therefore, nucleophile forms a bond with the carbon. Copyright 2018 by Nelson Education Limited 39

40 7.7 Formation of Cyanohydrins from Carbonyls Copyright 2018 by Nelson Education Limited 40

41 In the cyanide ion, the carbon atom bears a formal charge of 1. This atom is nucleophilic, and readily reacts with carbonyl electrophiles. The resulting compound is a cyanohydrin. Net reaction is addition of HCN across the double bond. Copyright 2018 by Nelson Education Limited 41

42 7.7.1 Use of cyanohydrins to make sugars Fischer s synthesis of glucose from arabinose (1890): Copyright 2018 by Nelson Education Limited 42

43 7.7.2 Reversing cyanohydrin formation Exposing a cyanohydrin to basic conditions regenerates the carbonyl group while expelling CN. Copyright 2018 by Nelson Education Limited 43

44 7.8 Leaving Groups Copyright 2018 by Nelson Education Limited 44

45 In the reverse of cyanohydrin formation, CN is a leaving group. Copyright 2018 by Nelson Education Limited 45

46 7.9 Catalysis of Addition Reactions to Electrophilic p Bonds Copyright 2018 by Nelson Education Limited 46

47 A catalyst (often an acid or base) can be used to accelerate a nucleophilic addition to a carbonyl group. Although H 2 O is a poor nucleophile, a base can accelerate its addition to a carbonyl to form a hydrate: Copyright 2018 by Nelson Education Limited 47

48 Similarly, the reaction can be accelerated with an acid catalyst: Copyright 2018 by Nelson Education Limited 48

49 Although the acid and base both catalyze the reaction, they do so in opposite ways: Copyright 2018 by Nelson Education Limited 49

50 7.9.1 Aldehydes and ketones in equilibrium with hydrates Hydrate formation for carbonyls in water is rapid and reversible. Position of equilibrium usually strongly favours ketone (carbonyl) form. Copyright 2018 by Nelson Education Limited 50

51 For some compounds, hydrate form is more stable: Copyright 2018 by Nelson Education Limited 51

52 7.9.2 Hemiacetals and intramolecular reactions of carbonyl compounds An acid can catalyze the addition of alcohol across a carbonyl group to form a hemiacetal. Hemiacetal: an sp 3 -hybridized carbon connected to an OH group and to an OR group Copyright 2018 by Nelson Education Limited 52

53 A hydroxyaldehyde has the functional groups of both an aldehyde and an alcohol: a hydroxaldehyde In the presence of acid, a hydroxyaldehyde can undergo an intramolecular reaction. Copyright 2018 by Nelson Education Limited 53

54 7.9.3 Using catalysts to accelerate reductions An acid or base can be used as a catalyst to accelerate a wide range of organic reactions. Mechanisms of catalysis: Bases: Ø increase the reactivity of a neutral nucleophile by converting to anionic conjugate base Ø donates ( pushes ) electrons more readily Acids: Ø activate a neutral electrophile by converting it to a positively charged material Ø accepts ( pulls ) electrons more readily Copyright 2018 by Nelson Education Limited 54

55 Choosing acid or base catalysis: Electrophile (imine) controls reactivity in this case, so acid catalyst would likely be effective: Copyright 2018 by Nelson Education Limited 55

56 7.10 Stereochemistry of Nucleophilic Addition to p Bonds Copyright 2018 by Nelson Education Limited 56

57 During addition of nucleophiles to carbonyls, nucleophile can attack from either face: If carbonyl is asymmetric, both chiral configurations are produced. Copyright 2018 by Nelson Education Limited 57

58 Presence of other groups can favour addition to one face: major minor Copyright 2018 by Nelson Education Limited 58

59 7.11 Patterns in Nucleophilic Additions to p Bonds Copyright 2018 by Nelson Education Limited 59

60 Acid-catalyzed processes proceed through similar mechanism, but proton transfer steps occur in opposite order: Copyright 2018 by Nelson Education Limited 60

61 Chapter summary Orbital structure and resonance forms of carbonyls can explain their reactivity with nucleophiles. Carbonyl groups react with the following via similar mechanisms: Ø hydride equivalents (such as NaBH4) Ø Grignard reagents Ø organolithiums Ø acetylides Ø cyanides Ø water and alcohols Acids and bases can catalyze carbonyl additions. We can usually predict the stereochemical outcome of a carbonyl addition. Copyright 2018 by Nelson Education Limited 61

Additions to the Carbonyl Groups

Additions to the Carbonyl Groups Chapter 18 Additions to the Carbonyl Groups Nucleophilic substitution (S N 2andS N 1) reaction occurs at sp3 hybridized carbons with electronegative leaving groups Why? The carbon is electrophilic! Addition

More information

Chapter 9 Aldehydes and Ketones Excluded Sections:

Chapter 9 Aldehydes and Ketones Excluded Sections: Chapter 9 Aldehydes and Ketones Excluded Sections: 9.14-9.19 Aldehydes and ketones are found in many fragrant odors of many fruits, fine perfumes, hormones etc. some examples are listed below. Aldehydes

More information

Chapter 18: Ketones and Aldehydes. I. Introduction

Chapter 18: Ketones and Aldehydes. I. Introduction 1 Chapter 18: Ketones and Aldehydes I. Introduction We have already encountered numerous examples of this functional group (ketones, aldehydes, carboxylic acids, acid chlorides, etc). The three-dimensional

More information

CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION

CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION Introduction Several functional groups contain the carbonyl group Carbonyl groups can be converted into alcohols by various reactions Structure of the Carbonyl

More information

Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds

Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds Introduction Several functional groups contain the carbonyl group Carbonyl groups can be converted into alcohols

More information

21.1 Introduction Carboxylic Acids Nomenclature of Carboxylic Acids. Acids Structure and Properties of Carboxylic Acids.

21.1 Introduction Carboxylic Acids Nomenclature of Carboxylic Acids. Acids Structure and Properties of Carboxylic Acids. 21.1 Introduction Carboxylic Acids Carboxylic acids are abundant in nature and in pharmaceuticals. 21.1 Introduction Carboxylic Acids The US produces over 2.5 million tons of acetic acid per year, which

More information

Dr. Mohamed El-Newehy

Dr. Mohamed El-Newehy By Dr. Mohamed El-Newehy Chemistry Department, College of Science, King Saud University http://fac.ksu.edu.sa/melnewehy Aldehydes and Ketones 1 Structure of Aldehydes and Ketones - Aldehydes and ketones

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones hem A225 Notes Page 67 I. Introduction hapter 20: Aldehydes and Ketones Aldehydes and ketones contain a carbonyl group (=) with no other heteroatoms attached. An aldehyde has at least one hydrogen attached;

More information

Chem 263 March 7, 2006

Chem 263 March 7, 2006 Chem 263 March 7, 2006 Aldehydes and Ketones Aldehydes and ketones contain a carbonyl group, in which the carbon atom is doubly bonded to an oxygen atom. The carbonyl group is highly polarized, with a

More information

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction Lecture Notes Chem 51C S. King Chapter 20 Introduction to Carbonyl Chemistry; rganometallic Reagents; xidation & Reduction I. The Reactivity of Carbonyl Compounds The carbonyl group is an extremely important

More information

1- Reaction at the carbonyl carbon (Nucleophilic addition reactions).

1- Reaction at the carbonyl carbon (Nucleophilic addition reactions). Reactions of aldehydes and Ketones Aldehydes and Ketones undergo many reactions to give a wide variety of useful derivatives. There are two general kinds of reactions that aldehydes and ketones undergo:

More information

ORGANIC - BROWN 8E CH ALDEHYDES AND KETONES.

ORGANIC - BROWN 8E CH ALDEHYDES AND KETONES. !! www.clutchprep.com CONCEPT: ALDEHYDE NOMENCLATURE Replace the suffix of the alkane -e with the suffix On the parent chain, the carbonyl is always terminal, and receive a location As substituents, they

More information

Reversible Additions to carbonyls: Weak Nucleophiles Relative Reactivity of carbonyls: Hydration of Ketones and Aldehydes

Reversible Additions to carbonyls: Weak Nucleophiles Relative Reactivity of carbonyls: Hydration of Ketones and Aldehydes Reversible Additions to carbonyls: Weak Nucleophiles Weak nucleophiles, such as water, alcohols, and amines, require acid or base catalysis to undergo addition to carbonyl compounds Relative Reactivity

More information

LECTURE #22 Thurs., Nov.15, 2007

LECTURE #22 Thurs., Nov.15, 2007 Provide a rxn sequence to make these as the major products Answers: 1. i Pr-Cl, AlCl 3 2. conc. fuming? H 2 S 4 3. Cl 2, FeCl 3 or AlCl 3 4. dilute H 2 S 4 note: normally aqueous workup after step 1, but

More information

CHEM 345 Problem Set 07 Key

CHEM 345 Problem Set 07 Key CHEM 345 Problem Set 07 Key 1.) Fill in the appropriate reaction arrow. The starting material is on the left, the product is on the right. Use. Simple Ring Size. 5 and 6 are favored. 3 is not. That s it.

More information

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides:

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides: I. Nitriles Nitriles consist of the CN functional group, and are linear with sp hybridization on C and N. Nitriles are non-basic at nitrogen, since the lone pair exists in an sp orbital (50% s character

More information

Loudon Chapter 19 Review: Aldehydes and Ketones CHEM 3331, Jacquie Richardson, Fall Page 1

Loudon Chapter 19 Review: Aldehydes and Ketones CHEM 3331, Jacquie Richardson, Fall Page 1 Loudon Chapter 19 eview: Aldehydes and Ketones CEM 3331, Jacquie ichardson, Fall 2010 - Page 1 Beginning with this chapter, we re looking at a very important functional group: the carbonyl. We ve seen

More information

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION !! www.clutchprep.com CONCEPT: ALDEHYDE NOMENCLATURE Replace the suffix of the alkane -e with the suffix On the parent chain, the carbonyl is always terminal, and receive a location As substituents, they

More information

Chapter 11, Part 1: Polar substitution reactions involving alkyl halides

Chapter 11, Part 1: Polar substitution reactions involving alkyl halides hapter 11, Part 1: Polar substitution reactions involving alkyl halides Overview: The nature of alkyl halides and other groups with electrophilic sp 3 hybridized leads them to react with nucleophiles and

More information

Aldehydes & Ketones I

Aldehydes & Ketones I 2302272 Org Chem II Part I Lecture 3 Aldehydes & Ketones I Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 18 in Organic Chemistry, 8 th Edition, L.

More information

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes Nomenclature of Aldehydes and Ketones Chapter 16 Aldehydes and Ketones I. Aldehydes replace the -e of the parent alkane with -al The functional group needs no number Nucleophilic Addition to the Carbonyl

More information

Chapter 19 Substitutions at the Carbonyl Group

Chapter 19 Substitutions at the Carbonyl Group Chapter 19 Substitutions at the Carbonyl Group In Chapter 18 Additions to the Carbonyl Groups In Chapter 19 Substitutions at the Carbonyl Group O O - - O - O R Y R C+ Y R Y Nu -Ȳ R N u + Y=goodleavinggroup

More information

Chem 263 Nov 3, 2016

Chem 263 Nov 3, 2016 hem 263 Nov 3, 2016 Preparation of Aldehydes from Acid alides? + l l acid chloride aka acyl chloride aldehyde Needed: 2 Actual eagents: 2 /Pd Al This is lithium tri-t-butoxy aluminum hydride, a very sterically

More information

CHEMISTRY 263 HOME WORK

CHEMISTRY 263 HOME WORK Lecture Topics: CHEMISTRY 263 HOME WORK Module7: Hydrogenation of Alkenes Hydrogenation - syn and anti- addition - hydrogenation of alkynes - synthesis of cis-alkenes -synthesis of trans-alkenes Text sections:

More information

Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water.

Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water. Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water. Alcohols are usually classified as primary, secondary and tertiary. Alcohols with the hydroxyl bound directly

More information

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium 18.8 Oxidation Oxidation by silver ion requires an alkaline medium Test for detecting aldehydes Tollens reagent to prevent precipitation of the insoluble silver oxide, a complexing agent is added: ammonia

More information

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area 1 CHEMISTRY 263 HOME WORK Lecture Topics: Module7. Hydrogenation of Alkenes The Function of the Catalyst - Syn and anti- addition Hydrogenation of Alkynes - Syn- addition of hydrogen: Synthesis of cis-alkenes

More information

Ch 19 Aldehydes and Ketones

Ch 19 Aldehydes and Ketones Ch 19 Aldehydes and Ketones Aldehydes (RCHO), with the exception of formaldehyde (H 2 CO), are compounds with both an H and an organic group attached to a carbonyl. Ketones (R 2 CO) are compounds with

More information

Aldehydes and Ketones: Nucleophilic Addition Reactions

Aldehydes and Ketones: Nucleophilic Addition Reactions Aldehydes and Ketones: Nucleophilic Addition Reactions Why this Chapter? Much of organic chemistry involves the chemistry of carbonyl compounds Aldehydes/ketones are intermediates in synthesis of pharmaceutical

More information

Acid-Base Chemistry & Organic Compounds. Chapter 2

Acid-Base Chemistry & Organic Compounds. Chapter 2 Acid-Base Chemistry & Organic Compounds Chapter 2 Brønsted Lowry Acids & Bases! Brønsted-Lowry Acid: Proton (H + ) Donor! Brønsted-Lowry Base: Proton (H + ) Acceptor! General reaction: HA + B: A - + BH

More information

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D Alcohols I eading: Wade chapter 10, sections 10-1- 10-12 Study Problems: 10-35, 10-37, 10-38, 10-39, 10-40, 10-42, 10-43 Key Concepts and Skills: Show how to convert alkenes, alkyl halides, and and carbonyl

More information

Chapter 12: Carbonyl Compounds II

Chapter 12: Carbonyl Compounds II Chapter 12: Carbonyl Compounds II Learning bjectives: 1. Recognize and assign names to aldehydes and ketones. 2. Write the mechanism for nucleophilic addition and nucleophilic addition-elimination reactions

More information

Nucleophilic Addition Reactions of Carboxylic Acid Derivatives

Nucleophilic Addition Reactions of Carboxylic Acid Derivatives Lecture 5: bjectives: Nucleophilic Addition eactions of Carboxylic Acid Derivatives By the end of this lecture you will be able to: draw the mechanism of a nucleophilic addition-elimination reaction with

More information

ORGANIC - CLUTCH CH. 3 - ACIDS AND BASES.

ORGANIC - CLUTCH CH. 3 - ACIDS AND BASES. !! www.clutchprep.com CONCEPT: OVERVIEW OF CHEMICAL REACTIONS There are 4 types of common chemical reactions that we need to be familiar with in organic chemistry 1. Acid-Base Reactions: Two molecules

More information

Physical Properties. Alcohols can be: CH CH 2 OH CH 2 CH 3 C OH CH 3. Secondary alcohol. Primary alcohol. Tertiary alcohol

Physical Properties. Alcohols can be: CH CH 2 OH CH 2 CH 3 C OH CH 3. Secondary alcohol. Primary alcohol. Tertiary alcohol Chapter 10: Structure and Synthesis of Alcohols 100 Physical Properties Alcohols can be: CH 3 CH 3 CH CH 2 OH * Primary alcohol CH 3 OH CH * CH 2 CH 3 Secondary alcohol CH 3 CH 3 * C OH CH 3 Tertiary alcohol

More information

Suggested solutions for Chapter 6

Suggested solutions for Chapter 6 s for Chapter 6 6 PRBLEM 1 Draw mechanisms for these reactions: NaB 4 Et, 2 1. LiAl 4 C 2. 2 Rehearsal of a simple but important mechanism that works for all aldehydes and ketones. Draw out the B 4 and

More information

Aldehydes and Ketones. Dr. Munther A. M. Ali

Aldehydes and Ketones. Dr. Munther A. M. Ali Aldehydes and Ketones Dr. Munther A. M. Ali ALDYHYDES AND KETONES Aldehydes are compounds of the general formula RCHO Ketones are compounds of the general formula RR'CO Aldehydes A ketone Both aldehydes

More information

Lecture 3: Aldehydes and ketones

Lecture 3: Aldehydes and ketones Lecture 3: Aldehydes and ketones I want to start by talking about the mechanism of hydroboration/ oxidation, which is a way to get alcohols from alkenes. This gives the anti-markovnikov product, primarily

More information

Reducing Agents. Linda M. Sweeting 1998

Reducing Agents. Linda M. Sweeting 1998 Reducing Agents Linda M. Sweeting 1998 Reduction is defined in chemistry as loss of oxygen, gain of hydrogen or gain of electrons; the gain of electrons enables you to calculate an oxidation state. Hydride

More information

Chapter 20: Carboxylic Acids

Chapter 20: Carboxylic Acids 1 Chapter 20: Carboxylic Acids I. Introduction: Carboxylic acid structure: Classification of carboxylic acids: A carboxylic acid donates protons by the heterocyclic cleavage of the O-H bond, generating

More information

CHM 292 Final Exam Answer Key

CHM 292 Final Exam Answer Key CHM 292 Final Exam Answer Key 1. Predict the product(s) of the following reactions (5 points each; 35 points total). May 7, 2013 Acid catalyzed elimination to form the most highly substituted alkene possible

More information

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry A. Loupy, B.Tchoubar Salt Effects in Organic and Organometallic Chemistry 1 Introduction - Classification of Specific Salt Effects 1 1.1 Specific Salt Effects Involving the Salt's Lewis Acid or Base Character

More information

acetaldehyde (ethanal)

acetaldehyde (ethanal) hem 263 Nov 2, 2010 Preparation of Ketones and Aldehydes from Alkenes zonolysis 1. 3 2. Zn acetone 1. 3 2. Zn acetone acetaldehyde (ethanal) Mechanism: 3 3 3 + - oncerted reaction 3 3 3 + ozonide (explosive)

More information

Chem 263 Nov 7, elimination reaction. There are many reagents that can be used for this reaction. Only three are given in this course:

Chem 263 Nov 7, elimination reaction. There are many reagents that can be used for this reaction. Only three are given in this course: hem 263 Nov 7, 2013 Preparation of Ketones and Aldehydes from Alcohols xidation of Alcohols [] must have at least 1 E elimination reaction [] = oxidation; removal of electrons [] = reduction; addition

More information

Chem 263 Notes March 2, 2006

Chem 263 Notes March 2, 2006 Chem 263 Notes March 2, 2006 Average for the midterm is 102.5 / 150 (approx. 68%). Preparation of Aldehydes and Ketones There are several methods to prepare aldehydes and ketones. We will only deal with

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones Chapter 20: Aldehydes and Ketones [Chapter 20 Sections: 20.1-20.7, 20.9-10.10, 20.13] 1. Nomenclature of Aldehydes and Ketones ' ketone aldehyde f both aldehydes and ketones, the parent chain is the longest

More information

Ketones and Aldehydes Reading Study Problems Key Concepts and Skills Lecture Topics: Structure of Ketones and Aldehydes Structure:

Ketones and Aldehydes Reading Study Problems Key Concepts and Skills Lecture Topics: Structure of Ketones and Aldehydes Structure: Ketones and Aldehydes Reading: Wade chapter 18, sections 18-1- 18-21 Study Problems: 18-43, 18-44,18-50, 18-51, 18-52, 18-59, 18-60, 18-62, 18-64, 18-72. Key Concepts and Skills: Interpret the IR, NMR,

More information

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions Chap 11. Carbonyl Alpha-Substitution eactions and Condensation eactions Four fundamental reactions of carbonyl compounds 1) Nucleophilic addition (aldehydes and ketones) ) Nucleophilic acyl substitution

More information

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions

Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based on McMurry s Organic

More information

THE CHEMISTRY OF THE CARBONYL GROUP

THE CHEMISTRY OF THE CARBONYL GROUP TE CEMISTY F TE CABYL GUP Professor Tim Donohoe 8 lectures, T, weeks 1-4, 2007 andout A C C You will be able to download copies of the handouts from this course at http://users.ox.ac.uk/~magd1571/teaching/teaching.htm

More information

Chapter 19. Carbonyl Compounds III Reaction at the α-carbon

Chapter 19. Carbonyl Compounds III Reaction at the α-carbon Chapter 19. Carbonyl Compounds III Reaction at the α-carbon There is a basic hydrogen (α hydrogen) on α carbon, which can be removed by a strong base. 19.1 The Acidity of α-hydrogens A hydrogen bonded

More information

Ch 20 Carboxylic Acids and Nitriles

Ch 20 Carboxylic Acids and Nitriles Ch 20 Carboxylic Acids and Nitriles Carboxylic Acids (RCO 2 H) are compounds with an OH attached to a carbonyl. Nitriles (RC N) are compounds a carbon-nitrogen triple bond. Naming Carboxylic Acids 1. Replace

More information

Chapter 12. Alcohols from Carbonyl Compounds Oxidation-Reduction & Organometallic Compounds. Structure

Chapter 12. Alcohols from Carbonyl Compounds Oxidation-Reduction & Organometallic Compounds. Structure Chapter 12 Alcohols from Carbonyl Compounds xidation-eduction & rganometallic Compounds Created by Professor William Tam & Dr. Phillis Chang Structure ~ 120 o ~ 120 o C ~ 120 o Carbonyl carbon: sp 2 hybridized

More information

Introduction to Organic Chemistry

Introduction to Organic Chemistry Introduction to rganic hemistry 59 Introduction to rganic hemistry andout 3 - chanism u u http://burton.chem.ox.ac.uk/teaching.html rganic hemistry J. layden,. Greeves, S. Warren Stereochemistry at a Glance

More information

Paper 9: ORGANIC CHEMISTRY-III (Reaction Mechanism-2) Module 16: Reduction by Metal hydrides Part-I

Paper 9: ORGANIC CHEMISTRY-III (Reaction Mechanism-2) Module 16: Reduction by Metal hydrides Part-I Subject Chemistry Paper No and Title Module No and Title Module Tag 9: ORGANIC -III (Reaction Mechanism-2) 16: Reduction by Metal hydrides Part-I CHE_P9_M16 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction

More information

Chapter 9. Nucleophilic Substitution and ß-Elimination

Chapter 9. Nucleophilic Substitution and ß-Elimination Chapter 9 Nucleophilic Substitution and ß-Elimination Nucleophilic Substitution Nucleophile: From the Greek meaning nucleus loving. A molecule or ion that donates a pair of electrons to another atom or

More information

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE 5 Dr Ali El-Agamey 1 Energy Diagram of One-Step Exothermic Reaction The vertical axis in this graph represents the potential energy. The transition

More information

Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions

Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based on McMurry s Organic

More information

Chapter 3 An Introduction to Organic Reactions: Acids and Bases

Chapter 3 An Introduction to Organic Reactions: Acids and Bases There are 4 types of Organic Reactions Chapter 3 An Introduction to Organic Reactions: SUBSTITUTION: ADDITION: X Y + A X A + Y Example Example A B + X Y A B X Y ELIMINATION There are 4 Types of Organic

More information

Chapter 10: Carboxylic Acids and Their Derivatives

Chapter 10: Carboxylic Acids and Their Derivatives Chapter 10: Carboxylic Acids and Their Derivatives The back of the white willow tree (Salix alba) is a source of salicylic acid which is used to make aspirin (acetylsalicylic acid) The functional group

More information

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

Aldehydes and Ketones Reactions. Dr. Sapna Gupta

Aldehydes and Ketones Reactions. Dr. Sapna Gupta Aldehydes and Ketones Reactions Dr. Sapna Gupta Reactions of Aldehydes and Ketones Nucleophilic Addition A strong nucleophile attacks the carbonyl carbon, forming an alkoxide ion that is then protonated.

More information

Lecture 15. More Carbonyl Chemistry. Alcohols React with Aldehydes and Ketones in two steps first O R'OH, H + OR" 2R"OH R + H 2 O OR" 3/8/16

Lecture 15. More Carbonyl Chemistry. Alcohols React with Aldehydes and Ketones in two steps first O R'OH, H + OR 2ROH R + H 2 O OR 3/8/16 Lecture 15 More Carbonyl Chemistry R" R C + R' 2R" R C R" R' + 2 March 8, 2016 Alcohols React with Aldehydes and Ketones in two steps first R', + R R 1 emiacetal reacts further in acid to yield an acetal

More information

S N 1 Displacement Reactions

S N 1 Displacement Reactions S N 1 Displacement Reactions Tertiary alkyl halides cannot undergo S N 2 reactions because of the severe steric hindrance blocking a backside approach of the nucleophile. They can, however, react via an

More information

REACTION AND SYNTHESIS REVIEW

REACTION AND SYNTHESIS REVIEW REACTION AND SYNTHESIS REVIEW A STUDENT SHOULD BE ABLE TO PREDICT PRODUCTS, IDENTIFY REACTANTS, GIVE REACTION CONDITIONS, PROPOSE SYNTHESES, AND PROPOSE MECHANISMS (AS LISTED BELOW). REVIEW THE MECHANISM

More information

Topic 9. Aldehydes & Ketones

Topic 9. Aldehydes & Ketones Chemistry 2213a Fall 2012 Western University Topic 9. Aldehydes & Ketones A. Structure and Nomenclature The carbonyl group is present in aldehydes and ketones and is the most important group in bio-organic

More information

MITOCW watch?v=gboyppj9ok4

MITOCW watch?v=gboyppj9ok4 MITOCW watch?v=gboyppj9ok4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones hapter 20: Aldehydes and Ketones [hapter 20 Sections: 20.1-20.7, 20.9-10.10, 20.13] 1. Nomenclature of Aldehydes and Ketones ketone ' aldehyde 2. eview of the Synthesis of Aldehydes and Ketones Br Br f

More information

When H and OH add to the alkyne, an enol is formed, which rearranges to form a carbonyl (C=O) group:

When H and OH add to the alkyne, an enol is formed, which rearranges to form a carbonyl (C=O) group: Next Up: Addition of, : The next two reactions are the Markovnikov and non-markovnikov additions of and to an alkyne But you will not see alcohols form in this reaction! When and add to the alkyne, an

More information

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE 6 Dr Ali El-Agamey 1 Oxidation States Easy for inorganic salts: CrO 4 2- reduced to Cr 2 O 3. KMnO 4 reduced to MnO 2. Oxidation: Gain of O,

More information

ORGANIC - CLUTCH CH ALCOHOLS AND CARBONYL COMPOUNDS.

ORGANIC - CLUTCH CH ALCOHOLS AND CARBONYL COMPOUNDS. !! www.clutchprep.com CONCEPT: INTRO TO REDOX Oxidation reactions involve an increase in the content of a molecule Reduction reactions involve an increase in the content of a molecule EXAMPLE: Label the

More information

Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution

Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution Nomenclature: In carboxylic acid chlorides, anhydrides, esters and amides, the parent is the carboxylic acid. In each case be sure

More information

Chapter 3 Alkenes and Alkynes. Excluded sections 3.15&3.16

Chapter 3 Alkenes and Alkynes. Excluded sections 3.15&3.16 Chapter 3 Alkenes and Alkynes Excluded sections 3.15&3.16 3.1 Definition and Classification Alkene: a hydrocarbon that contains one or more carboncarbon double bonds. ethylene is the simplest alkene. Alkyne:

More information

ORGANIC - BROWN 8E CH.4 - ACIDS AND BASES.

ORGANIC - BROWN 8E CH.4 - ACIDS AND BASES. !! www.clutchprep.com CONCEPT: FREE ENERGY DIAGRAMS Atoms save energy by forming bonds. Free energy diagrams show overall changes in potential energy during reactions. Free energy diagrams give us information

More information

Electrophile = electron loving = any general electron pair acceptor = Lewis acid, (often an acidic proton)

Electrophile = electron loving = any general electron pair acceptor = Lewis acid, (often an acidic proton) 314 Arrow Pushing practice/eauchamp 1 Electrophile = electron loving = any general electron pair acceptor = Lewis acid, (often an acidic proton) ucleophile = nucleus/positive loving = any general electron

More information

Chapter 19 Carboxylic Acids

Chapter 19 Carboxylic Acids Carboxylic acids have the formula RCO2H. Nomenclature Chapter 19 Carboxylic Acids For the parent alkane, drop the terminal e and add the suffix oic acid. The parent alkane is the longest continuous chain

More information

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 I. Isolated, cumulated, and conjugated dienes A diene is any compound with two or C=C's is a diene. Compounds containing more than two

More information

Conjugate Addition Reactions 2:02 PM

Conjugate Addition Reactions 2:02 PM 1 Conjugate Addition vs Direct Addition What is Conjugate Addition? Conjugate addition refers to nucleophilic addition directed to the electrophilic carbon of the C=C (double bond) in a,bunsaturated systems.

More information

CHAPTER 20: MORE ABOUT OXIDATION REDUCTION REACTIONS Oxidation Reduction Reactions of Organic Compounds: An Overview

CHAPTER 20: MORE ABOUT OXIDATION REDUCTION REACTIONS Oxidation Reduction Reactions of Organic Compounds: An Overview CHAPTER 20: MORE ABOUT OXIDATION REDUCTION REACTIONS In an oxidation-reduction reaction (redox reaction), one species loses electrons and one gains electrons. The species that loses electrons is oxidized,

More information

CHAPTER 19: CARBONYL COMPOUNDS III

CHAPTER 19: CARBONYL COMPOUNDS III CHAPTER 19: CARBONYL COMPOUNDS III A hydrogen bonded to a carbon adjacent to a carbonyl carbon is sufficiently acidic to be removed by a strong base. The carbon adjacent to a carbonyl carbon is called

More information

Reactions of Ketones and Aldehydes Nucleophilic Addition

Reactions of Ketones and Aldehydes Nucleophilic Addition Reactions of Ketones and Aldehydes Nucleophilic Addition The most characteristic reaction of aldehydes and ketones is nucleophilic addition to the carbon oxygen double bond. 38 The nucleophile can be neutral

More information

Carbonyl Compounds. Introduction

Carbonyl Compounds. Introduction Carbonyl Compounds Introduction 1 Introduction Two broad classes of compounds contain the carbonyl group: [1] Compounds that have only carbon and hydrogen atoms bonded to the carbonyl [2] Compounds that

More information

4. Single > Double > Triple [bond length]

4. Single > Double > Triple [bond length] 1. Sigma bonds are significantly stronger than pi bonds. This is because sigma bonds allow for electron density to be concentrated to a much larger degree between the two nuclei. The lowest energy state

More information

ALCOHOLS AND PHENOLS

ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS Alcohols contain an OH group connected to a a saturated C (sp3) They are important solvents and synthesis intermediates Phenols contain an OH group connected to

More information

p Bonds as Nucleophiles

p Bonds as Nucleophiles Chapter 8 p Bonds as Nucleophiles REACTIONS OF ALKENES, ALKYNES, DIENES, AND ENOLS Copyright 2018 by Nelson Education Limited 1 8.2.1 Orbital structure of alkenes Geometry: Electrostatic potential: Electron-rich

More information

REALLY, REALLY STRONG BASES. DO NOT FORGET THIS!!!!!

REALLY, REALLY STRONG BASES. DO NOT FORGET THIS!!!!! CHEM 345 Problem Set 4 Key Grignard (RMgX) Problem Set You will be using Grignard reagents throughout this course to make carbon-carbon bonds. To use them effectively, it will require some knowledge from

More information

Organic Chemistry, Third Edition. Janice Gorzynski Smith University of Hawai i. Chapter 21. Aldehydes and Ketones Nucleophilic Addition

Organic Chemistry, Third Edition. Janice Gorzynski Smith University of Hawai i. Chapter 21. Aldehydes and Ketones Nucleophilic Addition Organic Chemistry, Third Edition Janice Gorzynski Smith University of Hawai i Chapter 21 Aldehydes and Ketones Nucleophilic Addition Prepared by Rabi Ann Musah State University of New York at Albany Copyright

More information

10/26/2010. An Example of a Polar Reaction: Addition of H 2 O to Ethylene. to Ethylene

10/26/2010. An Example of a Polar Reaction: Addition of H 2 O to Ethylene. to Ethylene 6.5 An Example of a Polar Reaction: Addition of H 2 O to Ethylene Addition of water to ethylene Typical polar process Acid catalyzed addition reaction (Electophilic addition reaction) Polar Reaction All

More information

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122)

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122) Basic Organic Chemistry Course code : CHEM 12162 (Pre-requisites : CHEM 11122) Chapter 01 Mechanistic Aspects of S N2,S N1, E 2 & E 1 Reactions Dr. Dinesh R. Pandithavidana Office: B1 222/3 Phone: (+94)777-745-720

More information

Carbonyls (Ch ketones and aldehydes and carboxylic acids derivatives)

Carbonyls (Ch ketones and aldehydes and carboxylic acids derivatives) arbonyls (h 16-19 ketones and aldehydes and carboxylic acids derivatives) +δ -δ ' - sp 2 - trigonal planar (120 0 ) - strongly polarized double bond eactivity? addition nucleophilic 1 Nucleophilic Addition

More information

Study of Chemical Reactions

Study of Chemical Reactions Study of Chemical Reactions Introduction to Mechanisms There are four different types of organic reactions: Additions Eliminations Substitutions Rearrangements 149 Addition Reactions Occur when 2 reactants

More information

Writing a Correct Mechanism

Writing a Correct Mechanism Chapter 2 1) Balancing Equations Writing a Correct Mechanism 2) Using Arrows to show Electron Movement 3) Mechanisms in Acidic and Basic Media 4) Electron rich Species: Nucleophile or Base? 5) Trimolecular

More information

Chapter 19: Amines. Introduction

Chapter 19: Amines. Introduction Chapter 19: Amines Chap 19 HW: (be able to name amines); 37, 39, 41, 42, 44, 46, 47, 48, 53-55, 57, 58 Introduction Organic derivatives of ammonia. Many are biologically active. Chap 19: Amines Slide 19-2

More information

CHEM 347 Organic Chemistry II (for Majors) Instructor: Paul J. Bracher. Quiz # 4. Due in Monsanto Hall 103 by: Friday, April 4 th, 2014, 7:00 p.m.

CHEM 347 Organic Chemistry II (for Majors) Instructor: Paul J. Bracher. Quiz # 4. Due in Monsanto Hall 103 by: Friday, April 4 th, 2014, 7:00 p.m. CHEM 347 Quiz # 4 Spring 2014 Page 1 of 9 CHEM 347 Organic Chemistry II (for Majors) Instructor: Paul J. Bracher Quiz # 4 Due in Monsanto Hall 103 by: Friday, April 4 th, 2014, 7:00 p.m. Student Name (Printed)

More information

Chapter 3 Acids and Bases"

Chapter 3 Acids and Bases Chapter 3 Acids and Bases BrØnsted-Lowry Acids and Bases A BrØnsted-Lowry acid is a proton donor. A BrØnsted-Lowry base is a proton acceptor. H + = proton Acids and Bases Reactions of BrØnsted-Lowry Acids

More information

Mechanism: We therefore describe the mechanism as a S N 2 mechanism.

Mechanism: We therefore describe the mechanism as a S N 2 mechanism. OH Mechanism: This is known as a bimolecular reaction as there are 2 molecules involved in the slow step. We therefore describe the mechanism as a S N 2 mechanism. We see an inversion in this process around

More information

Chapter 3. Acids and Bases

Chapter 3. Acids and Bases Chapter 3 Acids and Bases 3.1 Acids and Bases Brønsted-Lowry definition Acids donate a proton Bases accept a proton Recall from General Chemistry this classic example 3-2 3.1 Conjugate Acids and Bases

More information

ORGANIC - BROWN 8E CH CARBOXYLIC ACIDS.

ORGANIC - BROWN 8E CH CARBOXYLIC ACIDS. RGANIC - BRWN 8E CH. 17 - CARBXYLIC ACIDS!! www.clutchprep.com RGANIC - BRWN 8E CH. 17 - CARBXYLIC ACIDS CNCEPT: CARBXYLIC ACID NMENCLATURE IUPAC: Replace alkane -e with Substituents are located using

More information

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones MCAT rganic Chemistry Problem Drill 10: Aldehydes and Ketones Question No. 1 of 10 Question 1. Which of the following is not a physical property of aldehydes and ketones? Question #01 (A) Hydrogen bonding

More information