Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions

Size: px
Start display at page:

Download "Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions"

Transcription

1 Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based on McMurry s Organic Chemistry, 7 th edition

2 Aldehydes and Ketones Aldehydes (RCHO) and ketones (R 2 CO) are characterized by the the carbonyl functional group (C=O) The compounds occur widely in nature as intermediates in metabolism and biosynthesis coenzyme involved in a large number of metabolic reactions a steroid hormone secreted by the adrenal glands to regulate fat, protein, and carbohydrate metabolism 2

3 Why this Chapter? Much of organic chemistry involves the chemistry of carbonyl compounds Aldehydes/ketones are intermediates in synthesis of pharmaceutical agents, biological pathways, numerous industrial processes An understanding of their properties is essential 3

4 19.1 Naming Aldehydes and Ketones Aldehydes are named by replacing the terminal -e of the corresponding alkane name with al The parent chain must contain the CHO group The CHO carbon is numbered as C1 4

5 19.1 Naming Aldehydes and Ketones Aldehydes are named by replacing the terminal -e of the corresponding alkane name with al The parent chain must contain the CHO group The CHO carbon is numbered as C1 5

6 For cyclic aldehydes in which the -CHO group is directly attached to a ring, the suffix -carbaldehyde is used. 6

7 For cyclic aldehydes in which the -CHO group is directly attached to a ring, the suffix -carbaldehyde is used. 7

8 Naming Ketones Replace the terminal -e of the alkane name with one Parent chain is the longest one that contains the ketone group Numbering begins at the end nearer the carbonyl carbon 8

9 Naming Ketones Replace the terminal -e of the alkane name with one Parent chain is the longest one that contains the ketone group Numbering begins at the end nearer the carbonyl carbon 9

10 Ketones with Common Names IUPAC retains well-used but unsystematic names for a few ketones 10

11 Ketones and Aldehydes as Substituents The R C=O as a substituent is an acyl group, used with the suffix -yl from the root of the carboxylic acid CH 3 CO: acetyl; CHO: formyl; C 6 H 5 CO: benzoyl The prefix oxo- is used if other functional groups are present and the doubly bonded oxygen is labeled as a substituent on a parent chain 11

12 19.2 Preparation of Aldehydes and Ketones Preparing Aldehydes Oxidize primary alcohols using pyridinium chlorochromate Alkenes with a vinylic hydrogen can undergo oxidative cleavage when treated with ozone, yielding aldehydes Reduce an ester with diisobutylaluminum hydride (DIBAH) 12

13 Preparing Ketones Oxidize a 2 alcohol Many reagents possible: choose for the specific situation (scale, cost, and acid/base sensitivity) 13

14 Ketones from Ozonolysis Ozonolysis of alkenes yields ketones if one of the unsaturated carbon atoms is disubstituted 14

15 Aryl Ketones by Acylation Friedel Crafts acylation of an aromatic ring with an acid chloride in the presence of AlCl 3 catalyst 15

16 Methyl Ketones by Hydrating Alkynes Hydration of terminal alkynes in the presence of Hg 2+ 16

17 19.3 Oxidation of Aldehydes and Ketones CrO 3 in aqueous acid oxidizes aldehydes to carboxylic acids efficiently Silver oxide, Ag 2 O, in aqueous ammonia (Tollens reagent) oxidizes aldehydes (no acid) 17

18 Hydration of Aldehydes Aldehyde oxidations occur through 1,1-diols ( hydrates ) Reversible addition of water to the carbonyl group Aldehyde hydrate is oxidized to a carboxylic acid by usual reagents for alcohols 18

19 Ketones Oxidize with Difficulty Undergo slow cleavage with hot, alkaline KMnO 4 C C bond next to C=O is broken to give carboxylic acids Reaction is practical for cleaving symmetrical ketones 19

20 19.4 Nucleophilic Addition Reactions of Aldehydes and Ketones Nu - approaches 75 to the plane of C=O and adds to C A tetrahedral alkoxide ion intermediate is produced 20

21 Nucleophiles Nucleophiles can be negatively charged ( : Nu ) or neutral ( : Nu) at the reaction site The overall charge on the nucleophilic species is not considered 21

22 22

23 Relative Reactivity of Aldehydes and Ketones Aldehydes are generally more reactive than ketones in nucleophilic addition reactions The transition state for addition is less crowded and lower in energy for an aldehyde (a) than for a ketone (b) Aldehydes have one large substituent bonded to the C=O: ketones have two 23

24 Electrophilicity of Aldehydes and Ketones Aldehyde C=O is more polarized than ketone C=O As in carbocations, more alkyl groups stabilize + character Ketone has more alkyl groups, stabilizing the C=O carbon inductively 24

25 Reactivity of Aromatic Aldehydes Less reactive in nucleophilic addition reactions than aliphatic aldehydes Electron-donating resonance effect of aromatic ring makes C=O less reactive electrophile than the carbonyl group of an aliphatic aldehyde 25

26 19.5 Nucleophilic Addition of H 2 O: Hydration Aldehydes and ketones react with water to yield 1,1- diols (geminal (gem) diols) Hyrdation is reversible: a gem diol can eliminate water 26

27 Relative Energies Equilibrium generally favors the carbonyl compound over hydrate for steric reasons Acetone in water is 99.9% ketone form Exception: simple aldehydes In water, formaldehyde consists is 99.9% hydrate 27

28 Base-Catalyzed Addition of Water Addition of water is catalyzed by both acid and base The base-catalyzed hydration nucleophile is the hydroxide ion, which is a much stronger nucleophile than water 28

29 Acid-Catalyzed Addition of Water Protonation of C=O makes it more electrophilic 29

30 Addition of H-Y to C=O Reaction of C=O with H-Y, where Y is electronegative, gives an addition product ( adduct ) Formation is readily reversible 30

31 19.6 Nucleophilic Addition of HCN: Cyanohydrin Formation Aldehydes and unhindered ketones react with HCN to yield cyanohydrins, RCH(OH)C N Addition of HCN is reversible and base-catalyzed, generating nucleophilic cyanide ion, CN - Addition of CN to C=O yields a tetrahedral intermediate, which is then protonated Equilibrium favors adduct 31

32 Uses of Cyanohydrins The nitrile group ( C N) can be reduced with LiAlH 4 to yield a primary amine (RCH 2 NH 2 ) Can be hydrolyzed by hot acid to yield a carboxylic acid 32

33 19.7 Nucleophilic Addition of Grignard Reagents and Hydride Reagents: Alcohol Formation Treatment of aldehydes or ketones with Grignard reagents yields an alcohol Nucleophilic addition of the equivalent of a carbon anion, or carbanion. A carbon magnesium bond is strongly polarized, so a Grignard reagent reacts for all practical purposes as R : MgX +. 33

34 Mechanism of Addition of Grignard Reagents Complexation of C=O by Mg 2+, Nucleophilic addition of R :, protonation by dilute acid yields the neutral alcohol Grignard additions are irreversible because a carbanion is not a leaving group 34

35 Hydride Addition Convert C=O to CH-OH LiAlH 4 and NaBH 4 react as donors of hydride ion Protonation after addition yields the alcohol 35

36 19.8 Nucleophilic Addition of Amines: Imine and Enamine Formation RNH 2 adds to C=O to form imines, R 2 C=NR (after loss of HOH) R 2 NH yields enamines, R 2 N CR=CR 2 (after loss of HOH) (ene + amine = unsaturated amine) 36

37 Mechanism of Formation of Imines Primary amine adds to C=O Proton is lost from N and adds to O to yield a neutral amino alcohol (carbinolamine) Protonation of OH converts into water as the leaving group Result is iminium ion, which loses proton Acid is required for loss of OH too much acid blocks RNH 2 37

38 Imine Derivatives Addition of amines with an atom containing a lone pair of electrons on the adjacent atom occurs very readily, giving useful, stable imines For example, hydroxylamine forms oximes and 2,4- dinitrophenylhydrazine readily forms 2,4- dinitrophenylhydrazones These are usually solids and help in characterizing liquid ketones or aldehydes by melting points 38

39 Enamine Formation After addition of R 2 NH, proton is lost from adjacent carbon 39

40 19.9 Nucleophilic Addition of Hydrazine: The Wolff Kishner Reaction Treatment of an aldehyde or ketone with hydrazine, H 2 NNH 2 and KOH converts the compound to an alkane Originally carried out at high temperatures but with dimethyl sulfoxide as solvent takes place near room temperature 40

41 41

42 19.10 Nucleophilic Addition of Alcohols: Acetal Formation Alcohols are weak nucleophiles but acid promotes addition forming the conjugate acid of C=O 42

43 Addition yields a hydroxy ether, called a hemiacetal (reversible); further reaction can occur Protonation of the OH and loss of water leads to an oxonium ion, R 2 C=OR + to which a second alcohol adds to form the acetal 43

44 Uses of Acetals Acetals can serve as protecting groups for aldehydes and ketones It is convenient to use a diol, to form a cyclic acetal (the reaction goes even more readily) 44

45 19.11 Nucleophilic Addition of Phosphorus Ylides: The Wittig Reaction The sequence converts C=O is to C=C A phosphorus ylide adds to an aldehyde or ketone to yield a dipolar intermediate called a betaine 45

46 BETAINE Pronounced bayta-ene, a special class of zwitterions in which the positive site has no hydrogen atoms attached to it. YLIDE A neutral species whose structure may be represented as a 1,2-dipole with a negatively charged carbon or other atom having a lone pair of electrons, bonded to a positively charged heteroatom. The term is usually preceded by the name of the hetero-atom. (a) The phosphorus ylide methylenetriphenylphosphorane (b) the nitrogen ylide (trimethylammonio)methylide 46

47 The intermediate spontaneously decomposes through a four-membered ring to yield alkene and triphenylphosphine oxide, (Ph) 3 P=O Formation of the ylide is shown below 47

48 Mechanism of the Wittig Reaction a betaine A Betaine The betaine 48

49 Uses of the Wittig Reaction Can be used for monosubstituted, disubstituted, and trisubstituted alkenes but not tetrasubstituted alkenes The reaction yields a pure alkene of known structure For comparison, addition of CH 3 MgBr to cyclohexanone and dehydration with, yields a mixture of two alkenes 49

50 19.12 The Cannizaro Reaction The adduct of an aldehyde and OH can transfer hydride ion to another aldehyde C=O resulting in a simultaneous oxidation and reduction (disproportionation) 50

51 19.13 Conjugate Nucleophilic Addition to -Unsaturated Aldehydes and Ketones A nucleophile can add to the C=C double bond of an, unsaturated aldehyde or ketone (conjugate addition, or 1,4 addition) The initial product is a resonance-stabilized enolate ion, which is then protonated 51

52 Conjugate Addition of Amines Primary and secondary amines add to, - unsaturated aldehydes and ketones to yield -amino aldehydes and ketones 52

53 Conjugate Addition of Alkyl Groups: Organocopper Reactions Reaction of an, -unsaturated ketone with a lithium diorganocopper reagent Diorganocopper (Gilman) reagents form by reaction of 1 equivalent of cuprous iodide and 2 equivalents of organolithium 1, 2, 3 alkyl, aryl and alkenyl groups react but not alkynyl groups 53

54 Mechanism of Alkyl Conjugate Addition Conjugate nucleophilic addition of a diorganocopper anion, R 2 Cu, to an enone Transfer of an R group and elimination of a neutral organocopper species, RCu 54

55 19.14 Spectroscopy of Aldehydes and Ketones Infrared Spectroscopy Aldehydes and ketones show a strong C=O peak 1660 to 1770 cm 1 aldehydes show two characteristic C H absorptions in the 2720 to 2820 cm 1 range. 55

56 C=O Peak Position in the IR Spectrum The precise position of the peak reveals the exact nature of the carbonyl group 56

57 NMR Spectra of Aldehydes Aldehyde proton signals are at 10 in 1 H NMR - distinctive spin spin coupling with protons on the neighboring carbon, J 3 Hz 57

58 13 C NMR of C=O C=O signal is at 190 to 215 No other kinds of carbons absorb in this range 58

59 Mass Spectrometry McLafferty Rearrangement Aliphatic aldehydes and ketones that have hydrogens on their gamma ( ) carbon atoms rearrange as shown 59

60 Mass Spectroscopy: -Cleavage Cleavage of the bond between the carbonyl group and the carbon Yields a neutral radical and an oxygen-containing cation 60

Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions

Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based on McMurry s Organic

More information

Aldehydes and Ketones: Nucleophilic Addition Reactions

Aldehydes and Ketones: Nucleophilic Addition Reactions Aldehydes and Ketones: Nucleophilic Addition Reactions Why this Chapter? Much of organic chemistry involves the chemistry of carbonyl compounds Aldehydes/ketones are intermediates in synthesis of pharmaceutical

More information

Aldehydes and Ketones. Nucleophilic Addi3on Reac3ons

Aldehydes and Ketones. Nucleophilic Addi3on Reac3ons Aldehydes and Ketones Nucleophilic Addi3on Reac3ons 1 Aldehydes and Ketones Aldehydes (RCHO) and ketones (R 2 CO) are characterized by the carbonyl func3onal group (C=O) The compounds occur widely in nature

More information

Ch 19 Aldehydes and Ketones

Ch 19 Aldehydes and Ketones Ch 19 Aldehydes and Ketones Aldehydes (RCHO), with the exception of formaldehyde (H 2 CO), are compounds with both an H and an organic group attached to a carbonyl. Ketones (R 2 CO) are compounds with

More information

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

Chapter 9 Aldehydes and Ketones Excluded Sections:

Chapter 9 Aldehydes and Ketones Excluded Sections: Chapter 9 Aldehydes and Ketones Excluded Sections: 9.14-9.19 Aldehydes and ketones are found in many fragrant odors of many fruits, fine perfumes, hormones etc. some examples are listed below. Aldehydes

More information

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes Nomenclature of Aldehydes and Ketones Chapter 16 Aldehydes and Ketones I. Aldehydes replace the -e of the parent alkane with -al The functional group needs no number Nucleophilic Addition to the Carbonyl

More information

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION !! www.clutchprep.com CONCEPT: ALDEHYDE NOMENCLATURE Replace the suffix of the alkane -e with the suffix On the parent chain, the carbonyl is always terminal, and receive a location As substituents, they

More information

Dr. Mohamed El-Newehy

Dr. Mohamed El-Newehy By Dr. Mohamed El-Newehy Chemistry Department, College of Science, King Saud University http://fac.ksu.edu.sa/melnewehy Aldehydes and Ketones 1 Structure of Aldehydes and Ketones - Aldehydes and ketones

More information

Chapter 18: Ketones and Aldehydes. I. Introduction

Chapter 18: Ketones and Aldehydes. I. Introduction 1 Chapter 18: Ketones and Aldehydes I. Introduction We have already encountered numerous examples of this functional group (ketones, aldehydes, carboxylic acids, acid chlorides, etc). The three-dimensional

More information

Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions. Naming Aldehydes. - aldehyde. - ketone

Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions. Naming Aldehydes. - aldehyde. - ketone hapter 19 Aldehydes and Ketones: Nucleophilic Addition eactions - aldehyde - substance that has an organic group () bonded to functionality () - ketone methanol catalyst heat - substance that has two organic

More information

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2 Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based on McMurry s Organic Chemistry, 7 th edition The

More information

Carbonyl Compounds. Introduction

Carbonyl Compounds. Introduction Carbonyl Compounds Introduction 1 Introduction Two broad classes of compounds contain the carbonyl group: [1] Compounds that have only carbon and hydrogen atoms bonded to the carbonyl [2] Compounds that

More information

ORGANIC - BROWN 8E CH ALDEHYDES AND KETONES.

ORGANIC - BROWN 8E CH ALDEHYDES AND KETONES. !! www.clutchprep.com CONCEPT: ALDEHYDE NOMENCLATURE Replace the suffix of the alkane -e with the suffix On the parent chain, the carbonyl is always terminal, and receive a location As substituents, they

More information

Aldehydes & Ketones I

Aldehydes & Ketones I 2302272 Org Chem II Part I Lecture 3 Aldehydes & Ketones I Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 18 in Organic Chemistry, 8 th Edition, L.

More information

Ketones and Aldehydes Reading Study Problems Key Concepts and Skills Lecture Topics: Structure of Ketones and Aldehydes Structure:

Ketones and Aldehydes Reading Study Problems Key Concepts and Skills Lecture Topics: Structure of Ketones and Aldehydes Structure: Ketones and Aldehydes Reading: Wade chapter 18, sections 18-1- 18-21 Study Problems: 18-43, 18-44,18-50, 18-51, 18-52, 18-59, 18-60, 18-62, 18-64, 18-72. Key Concepts and Skills: Interpret the IR, NMR,

More information

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium 18.8 Oxidation Oxidation by silver ion requires an alkaline medium Test for detecting aldehydes Tollens reagent to prevent precipitation of the insoluble silver oxide, a complexing agent is added: ammonia

More information

Chapter 9 Aldehydes and Ketones

Chapter 9 Aldehydes and Ketones Chapter 9 Aldehydes and Ketones 9.1 Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al The aldehyde functional group is always carbon

More information

Aldehydes and Ketones Reactions. Dr. Sapna Gupta

Aldehydes and Ketones Reactions. Dr. Sapna Gupta Aldehydes and Ketones Reactions Dr. Sapna Gupta Reactions of Aldehydes and Ketones Nucleophilic Addition A strong nucleophile attacks the carbonyl carbon, forming an alkoxide ion that is then protonated.

More information

Organic Chemistry, Third Edition. Janice Gorzynski Smith University of Hawai i. Chapter 21. Aldehydes and Ketones Nucleophilic Addition

Organic Chemistry, Third Edition. Janice Gorzynski Smith University of Hawai i. Chapter 21. Aldehydes and Ketones Nucleophilic Addition Organic Chemistry, Third Edition Janice Gorzynski Smith University of Hawai i Chapter 21 Aldehydes and Ketones Nucleophilic Addition Prepared by Rabi Ann Musah State University of New York at Albany Copyright

More information

Additions to the Carbonyl Groups

Additions to the Carbonyl Groups Chapter 18 Additions to the Carbonyl Groups Nucleophilic substitution (S N 2andS N 1) reaction occurs at sp3 hybridized carbons with electronegative leaving groups Why? The carbon is electrophilic! Addition

More information

Carboxylic Acids and Nitriles

Carboxylic Acids and Nitriles Carboxylic Acids and Nitriles Why this Chapter? Carboxylic acids present in many industrial processes and most biological processes They are the starting materials from which other acyl derivatives are

More information

1- Reaction at the carbonyl carbon (Nucleophilic addition reactions).

1- Reaction at the carbonyl carbon (Nucleophilic addition reactions). Reactions of aldehydes and Ketones Aldehydes and Ketones undergo many reactions to give a wide variety of useful derivatives. There are two general kinds of reactions that aldehydes and ketones undergo:

More information

Chapter 17 Aldehydes and Ketones

Chapter 17 Aldehydes and Ketones hapter 17 Aldehydes and Ketones arbonyl Groups polarized (1) Aldehydes and Ketones ' aldehydes ketones : and : are poor leaving groups (2) arboxylic Acid Derivatives l ' ' 2 carboxylic acid substituent

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones hem A225 Notes Page 67 I. Introduction hapter 20: Aldehydes and Ketones Aldehydes and ketones contain a carbonyl group (=) with no other heteroatoms attached. An aldehyde has at least one hydrogen attached;

More information

Aldehydes and Ketones

Aldehydes and Ketones Aldehydes and Ketones Preparation of Aldehydes xidation of Primary Alcohols --- 2 P 1o alcohol ydroboration of a Terminal Alkyne, followed by Tautomerization --- 1. B 3, TF 2. 2 2, K 2 terminal alkyne

More information

Chem 263 March 7, 2006

Chem 263 March 7, 2006 Chem 263 March 7, 2006 Aldehydes and Ketones Aldehydes and ketones contain a carbonyl group, in which the carbon atom is doubly bonded to an oxygen atom. The carbonyl group is highly polarized, with a

More information

Aldehydes and Ketones. Dr. Munther A. M. Ali

Aldehydes and Ketones. Dr. Munther A. M. Ali Aldehydes and Ketones Dr. Munther A. M. Ali ALDYHYDES AND KETONES Aldehydes are compounds of the general formula RCHO Ketones are compounds of the general formula RR'CO Aldehydes A ketone Both aldehydes

More information

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE 6 Dr Ali El-Agamey 1 Oxidation States Easy for inorganic salts: CrO 4 2- reduced to Cr 2 O 3. KMnO 4 reduced to MnO 2. Oxidation: Gain of O,

More information

Basic Organic Chemistry

Basic Organic Chemistry Basic rganic hemistry ourse code: EM 12162 (Pre-requisites : EM 11122) hapter 06 hemistry of Aldehydes & Ketones Dr. Dinesh R. Pandithavidana ffice: B1 222/3 Phone: (+94)777-745-720 (Mobile) Email: dinesh@kln.ac.lk

More information

Chapter 24. Amines. Based on McMurry s Organic Chemistry, 7 th edition

Chapter 24. Amines. Based on McMurry s Organic Chemistry, 7 th edition Chapter 24. Amines Based on McMurry s Organic Chemistry, 7 th edition Amines Organic Nitrogen Compounds Organic derivatives of ammonia, NH 3, Nitrogen atom with a lone pair of electrons, making amines

More information

Chapter 18 Ketones and Aldehydes. Carbonyl Compounds. Chapter 18: Aldehydes and Ketones Slide 18-2

Chapter 18 Ketones and Aldehydes. Carbonyl Compounds. Chapter 18: Aldehydes and Ketones Slide 18-2 hapter 18 Ketones and Aldehydes arbonyl ompounds hapter 18: Aldehydes and Ketones Slide 18-2 1 arbonyl Structure arbon is sp 2 hybridized. = bond is shorter, stronger, and more polar than = bond in alkenes.

More information

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area 1 CHEMISTRY 263 HOME WORK Lecture Topics: Module7. Hydrogenation of Alkenes The Function of the Catalyst - Syn and anti- addition Hydrogenation of Alkynes - Syn- addition of hydrogen: Synthesis of cis-alkenes

More information

Chapter 17: Alcohols and Phenols. Based on McMurry s Organic Chemistry, 7 th edition

Chapter 17: Alcohols and Phenols. Based on McMurry s Organic Chemistry, 7 th edition Chapter 17: Alcohols and Phenols Based on McMurry s Organic Chemistry, 7 th edition Alcohols and Phenols Alcohols contain an OH group connected to a a saturated C (sp 3 ) They are important solvents and

More information

ALCOHOLS AND PHENOLS

ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS Alcohols contain an OH group connected to a a saturated C (sp3) They are important solvents and synthesis intermediates Phenols contain an OH group connected to

More information

Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution

Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution Nomenclature: In carboxylic acid chlorides, anhydrides, esters and amides, the parent is the carboxylic acid. In each case be sure

More information

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones MCAT rganic Chemistry Problem Drill 10: Aldehydes and Ketones Question No. 1 of 10 Question 1. Which of the following is not a physical property of aldehydes and ketones? Question #01 (A) Hydrogen bonding

More information

KOT 222 Organic Chemistry II

KOT 222 Organic Chemistry II KOT 222 Organic Chemistry II Course Objectives: 1) To introduce the chemistry of alcohols and ethers. 2) To study the chemistry of functional groups. 3) To learn the chemistry of aromatic compounds and

More information

CHEMISTRY 263 HOME WORK

CHEMISTRY 263 HOME WORK Lecture Topics: CHEMISTRY 263 HOME WORK Module7: Hydrogenation of Alkenes Hydrogenation - syn and anti- addition - hydrogenation of alkynes - synthesis of cis-alkenes -synthesis of trans-alkenes Text sections:

More information

Chapter 10: Carboxylic Acids and Their Derivatives

Chapter 10: Carboxylic Acids and Their Derivatives Chapter 10: Carboxylic Acids and Their Derivatives The back of the white willow tree (Salix alba) is a source of salicylic acid which is used to make aspirin (acetylsalicylic acid) The functional group

More information

Chem 263 Nov 14, e.g.: Fill the reagents to finish the reactions (only inorganic reagents)

Chem 263 Nov 14, e.g.: Fill the reagents to finish the reactions (only inorganic reagents) hem 263 ov 14, 2013 More examples: e.g.: Fill the reagents to finish the reactions (only inorganic reagents) Br 2 hv Br a 2 r 4 S 2 or swern oxidation Mg Li 0 0 MgBr Li e.g. : Fill the reagents (any reagents

More information

21.1 Introduction Carboxylic Acids Nomenclature of Carboxylic Acids. Acids Structure and Properties of Carboxylic Acids.

21.1 Introduction Carboxylic Acids Nomenclature of Carboxylic Acids. Acids Structure and Properties of Carboxylic Acids. 21.1 Introduction Carboxylic Acids Carboxylic acids are abundant in nature and in pharmaceuticals. 21.1 Introduction Carboxylic Acids The US produces over 2.5 million tons of acetic acid per year, which

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition 16. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 7 th edition Substitution Reactions of Benzene and Its Derivatives Benzene is aromatic: a cyclic conjugated

More information

Chem 263 Notes March 2, 2006

Chem 263 Notes March 2, 2006 Chem 263 Notes March 2, 2006 Average for the midterm is 102.5 / 150 (approx. 68%). Preparation of Aldehydes and Ketones There are several methods to prepare aldehydes and ketones. We will only deal with

More information

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution Paul D. Adams University of Arkansas Substitution Reactions of Benzene and Its Derivatives

More information

Alkyl phenyl ketones are usually named by adding the acyl group as prefix to phenone.

Alkyl phenyl ketones are usually named by adding the acyl group as prefix to phenone. Aldehydes, Ketones and Carboxylic Acids Nomenclature of aldehydes and ketones Aldehydes: Often called by their common names instead of IUPAC names. Ketones: Derived by naming two alkyl or aryl groups bonded

More information

Lecture 3: Aldehydes and ketones

Lecture 3: Aldehydes and ketones Lecture 3: Aldehydes and ketones I want to start by talking about the mechanism of hydroboration/ oxidation, which is a way to get alcohols from alkenes. This gives the anti-markovnikov product, primarily

More information

Chapter 19: Amines. Introduction

Chapter 19: Amines. Introduction Chapter 19: Amines Chap 19 HW: (be able to name amines); 37, 39, 41, 42, 44, 46, 47, 48, 53-55, 57, 58 Introduction Organic derivatives of ammonia. Many are biologically active. Chap 19: Amines Slide 19-2

More information

Reactions of Ketones and Aldehydes Nucleophilic Addition

Reactions of Ketones and Aldehydes Nucleophilic Addition Reactions of Ketones and Aldehydes Nucleophilic Addition The most characteristic reaction of aldehydes and ketones is nucleophilic addition to the carbon oxygen double bond. 38 The nucleophile can be neutral

More information

p Bonds as Electrophiles

p Bonds as Electrophiles Chapter 7 p Bonds as Electrophiles REACTIONS OF CARBONYLS AND RELATED FUNCTIONAL GROUPS Copyright 2018 by Nelson Education Limited 1 7.2.1 Orbital structure of the carbonyl group Because oxygen is more

More information

Reversible Additions to carbonyls: Weak Nucleophiles Relative Reactivity of carbonyls: Hydration of Ketones and Aldehydes

Reversible Additions to carbonyls: Weak Nucleophiles Relative Reactivity of carbonyls: Hydration of Ketones and Aldehydes Reversible Additions to carbonyls: Weak Nucleophiles Weak nucleophiles, such as water, alcohols, and amines, require acid or base catalysis to undergo addition to carbonyl compounds Relative Reactivity

More information

Chapter 20: Carboxylic Acids

Chapter 20: Carboxylic Acids 1 Chapter 20: Carboxylic Acids I. Introduction: Carboxylic acid structure: Classification of carboxylic acids: A carboxylic acid donates protons by the heterocyclic cleavage of the O-H bond, generating

More information

ALDEHYDES AND KETONES

ALDEHYDES AND KETONES ALDEHYDES AND KETONES IN WEEK 1, A STUDENT SHOULD BE ABLE TO: 1. Give the IUPAC name given the structure, and draw the structure given the name, of aldehydes and ketones. Also, draw the structure given

More information

Amines Reading Study Problems Key Concepts and Skills Lecture Topics: Amines: structure and nomenclature

Amines Reading Study Problems Key Concepts and Skills Lecture Topics: Amines: structure and nomenclature Amines Reading: Wade chapter 19, sections 19-1-19-19 Study Problems: 19-37, 19-39, 19-40, 19-41, 19-44, 19-46, 19-47, 19-48, 19-51, 19-54 Key Concepts and Skills: Explain how the basicity of amines varies

More information

Topic 9. Aldehydes & Ketones

Topic 9. Aldehydes & Ketones Chemistry 2213a Fall 2012 Western University Topic 9. Aldehydes & Ketones A. Structure and Nomenclature The carbonyl group is present in aldehydes and ketones and is the most important group in bio-organic

More information

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides:

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides: I. Nitriles Nitriles consist of the CN functional group, and are linear with sp hybridization on C and N. Nitriles are non-basic at nitrogen, since the lone pair exists in an sp orbital (50% s character

More information

Carboxylic Acids O R C + H + O - Chemistry 618B

Carboxylic Acids O R C + H + O - Chemistry 618B arboxylic Acids R H R + H + - R - Nomenclature - IUPA IUPA names: drop the -e from the parent alkane and add the suffix -oic acid If the compound contains a carbon-carbon double bond, change the infix

More information

Allyl radicals are especially stable due to resonance ( and double bond switch places):

Allyl radicals are especially stable due to resonance ( and double bond switch places): Ch 10 Alkyl Halides Nomenclature Rules The parent is the longest alkyl chain or ring. The #1 C for a chain is at the end that is nearest to the first substituent. The #1 C for a ring possesses the first

More information

Ch 20 Carboxylic Acids and Nitriles

Ch 20 Carboxylic Acids and Nitriles Ch 20 Carboxylic Acids and Nitriles Carboxylic Acids (RCO 2 H) are compounds with an OH attached to a carbonyl. Nitriles (RC N) are compounds a carbon-nitrogen triple bond. Naming Carboxylic Acids 1. Replace

More information

CHAPTER 20: MORE ABOUT OXIDATION REDUCTION REACTIONS Oxidation Reduction Reactions of Organic Compounds: An Overview

CHAPTER 20: MORE ABOUT OXIDATION REDUCTION REACTIONS Oxidation Reduction Reactions of Organic Compounds: An Overview CHAPTER 20: MORE ABOUT OXIDATION REDUCTION REACTIONS In an oxidation-reduction reaction (redox reaction), one species loses electrons and one gains electrons. The species that loses electrons is oxidized,

More information

Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water.

Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water. Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water. Alcohols are usually classified as primary, secondary and tertiary. Alcohols with the hydroxyl bound directly

More information

Nomenclature of Aldehydes and Ketones

Nomenclature of Aldehydes and Ketones Aldehydes and Ketones Nomenclature of Aldehydes and Ketones Common aldehydes H H Methanl (formaldehyde) H3C H CH3CH2 ethanl (acetaldehyde) H propanal (propionaldehyde) CH3CH2CH2 butanal (n-butyraldehyde)

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones Chapter 20: Aldehydes and Ketones [Chapter 20 Sections: 20.1-20.7, 20.9-10.10, 20.13] 1. Nomenclature of Aldehydes and Ketones ' ketone aldehyde f both aldehydes and ketones, the parent chain is the longest

More information

Chemistry of Benzene: Electrophilic Aromatic Substitution

Chemistry of Benzene: Electrophilic Aromatic Substitution Chemistry of Benzene: Electrophilic Aromatic Substitution Why this Chapter? Continuation of coverage of aromatic compounds in preceding chapter focus shift to understanding reactions Examine relationship

More information

1/4/2011. Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds

1/4/2011. Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds The Acidity of the Hydrogens of Carbonyl Compounds: Enolate Anions Hydrogens on carbons to carbonyls are unusually acidic

More information

Ketones and Aldehydes

Ketones and Aldehydes Ketones and Aldehydes Adapted from rganic hemistry, L. G. Wade, Jr. = 1 Violet (Irone) salicylaldehyde (meadowsweet) 3 ( 2 ) 4 (Eucalyptus) 3 ( 2 ) 10 (itrus Fruits) Piperonal (eliotrope) 3 3 Raspberries

More information

The Claisen Condensation

The Claisen Condensation Lecture 22 The Claisen Condensation CH 3 CCH 2 CH 3 CH 2 CCH 2 CH 3 April 10, 2018 Hydrolysis of Amides Hydrolysis of amides is irreversible. In acid solution the amine product is protonated to give an

More information

Aldehydes, Ketones and Carboxylic acids

Aldehydes, Ketones and Carboxylic acids Teacher Orientation Aldehydes, Ketones and Carboxylic Acids contains following topics: Nomenclature Preparation Properties Student Orientation Preparation and Properties Of Aldehydes, Ketones and Carboxylic

More information

Chapter 12: Carbonyl Compounds II

Chapter 12: Carbonyl Compounds II Chapter 12: Carbonyl Compounds II Learning bjectives: 1. Recognize and assign names to aldehydes and ketones. 2. Write the mechanism for nucleophilic addition and nucleophilic addition-elimination reactions

More information

Keynotes in Organic Chemistry

Keynotes in Organic Chemistry Keynotes in Organic Chemistry Second Edition ANDREW F. PARSONS Department of Chemistry, University of York, UK Wiley Contents Preface xi 1 Structure and bonding 1 1.1 Ionic versus covalent bonds 1 1.2

More information

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology Organic Chemistry M. R. Naimi-Jamal Faculty of Chemistry Iran University of Science & Technology Chapter 5-2. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry,

More information

Lecture 15. Carbonyl Chemistry C B. March 6, Chemistry 328N

Lecture 15. Carbonyl Chemistry C B. March 6, Chemistry 328N Lecture 15 Carbonyl Chemistry - A C B A C + B March 6, 2018 Some loose ends Substitution Reactions Aryl halides do not undergo nucleophilic substitution by either S N 1 or S N 2 pathways! But.. But.this

More information

Chapter 7: Alcohols, Phenols and Thiols

Chapter 7: Alcohols, Phenols and Thiols Chapter 7: Alcohols, Phenols and Thiols 45 -Alcohols have the general formula R-OH and are characterized by the presence of a hydroxyl group, -OH. -Phenols have a hydroxyl group attached directly to an

More information

CHM 292 Final Exam Answer Key

CHM 292 Final Exam Answer Key CHM 292 Final Exam Answer Key 1. Predict the product(s) of the following reactions (5 points each; 35 points total). May 7, 2013 Acid catalyzed elimination to form the most highly substituted alkene possible

More information

11/30/ Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions

11/30/ Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions Chapter 9 Problems: 9.1-29, 32-34, 36-37, 39-45, 48-56, 58-59, 61-69, 71-72. 9.8 Substituent effects in the electrophilic substitution of an aromatic ring Substituents affect the reactivity of the aromatic

More information

Mechanisms. . CCl2 F + Cl.

Mechanisms. . CCl2 F + Cl. Mechanisms 1) Free radical substitution Alkane à halogenoalkane Initiation: Propagation: Termination: Overall: 2) Ozone depletion UV light breaks the C Cl bond releasing chlorine radical CFCl 3 F à. CCl2

More information

Loudon Chapter 19 Review: Aldehydes and Ketones CHEM 3331, Jacquie Richardson, Fall Page 1

Loudon Chapter 19 Review: Aldehydes and Ketones CHEM 3331, Jacquie Richardson, Fall Page 1 Loudon Chapter 19 eview: Aldehydes and Ketones CEM 3331, Jacquie ichardson, Fall 2010 - Page 1 Beginning with this chapter, we re looking at a very important functional group: the carbonyl. We ve seen

More information

Carbonyls (Ch ketones and aldehydes and carboxylic acids derivatives)

Carbonyls (Ch ketones and aldehydes and carboxylic acids derivatives) arbonyls (h 16-19 ketones and aldehydes and carboxylic acids derivatives) +δ -δ ' - sp 2 - trigonal planar (120 0 ) - strongly polarized double bond eactivity? addition nucleophilic 1 Nucleophilic Addition

More information

Chapter 19. Carbonyl Compounds III Reaction at the α-carbon

Chapter 19. Carbonyl Compounds III Reaction at the α-carbon Chapter 19. Carbonyl Compounds III Reaction at the α-carbon There is a basic hydrogen (α hydrogen) on α carbon, which can be removed by a strong base. 19.1 The Acidity of α-hydrogens A hydrogen bonded

More information

I. Write Structures for the compounds named below: (12 points) H 2 N NH 2. Acetone Hydrazine Cyclohexane carbaldehyde H 3 C

I. Write Structures for the compounds named below: (12 points) H 2 N NH 2. Acetone Hydrazine Cyclohexane carbaldehyde H 3 C I. Write Structures for the compounds named below: (12 points) 3 2 N N 2 Acetone ydrazine yclohexane carbaldehyde N P( 6 5 ) 3 3 An ethyl ylide of Any imine 3-xo-6-phenylhexanal triphenylphosphine II.

More information

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions Chap 11. Carbonyl Alpha-Substitution eactions and Condensation eactions Four fundamental reactions of carbonyl compounds 1) Nucleophilic addition (aldehydes and ketones) ) Nucleophilic acyl substitution

More information

Aldehydes and Ketones 2. Based on Organic Chemistry, J. G. Smith 3rde.

Aldehydes and Ketones 2. Based on Organic Chemistry, J. G. Smith 3rde. Aldehydes and Ketones 2 Based on Organic Chemistry, J. G. Smith 3rde. The Wittig Reaction Wittig reaction, named for German chemist Georg Wittig, who was awarded the Nobel Prize in Chemistry in 1979 for

More information

Class XII - Chemistry Aldehydes, Ketones and Carboxylic Acid Chapter-wise Problems

Class XII - Chemistry Aldehydes, Ketones and Carboxylic Acid Chapter-wise Problems Class XII - Chemistry Aldehydes, Ketones and Carboxylic Acid Chapter-wise Problems I. Multiple Choice Questions (Type-I) 1. Addition of water to alkynes occurs in acidic medium and in the presence of Hg

More information

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16 08. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16 Benzene is a nucleophile p electrons make benzene nucleophile, like alkenes.

More information

Cape Cod Community College

Cape Cod Community College Cape Cod Community College Departmental Syllabus Prepared by the Department of Natural Sciences & Applied Technology Date of Departmental Approval: February 3, 2014 Date Approved by Curriculum and Programs:

More information

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens). Reactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. Normally: Oxidation

More information

Chapter 19 Substitutions at the Carbonyl Group

Chapter 19 Substitutions at the Carbonyl Group Chapter 19 Substitutions at the Carbonyl Group In Chapter 18 Additions to the Carbonyl Groups In Chapter 19 Substitutions at the Carbonyl Group O O - - O - O R Y R C+ Y R Y Nu -Ȳ R N u + Y=goodleavinggroup

More information

Chapter 19 Carboxylic Acids

Chapter 19 Carboxylic Acids Carboxylic acids have the formula RCO2H. Nomenclature Chapter 19 Carboxylic Acids For the parent alkane, drop the terminal e and add the suffix oic acid. The parent alkane is the longest continuous chain

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

Physical Properties. Alcohols can be: CH CH 2 OH CH 2 CH 3 C OH CH 3. Secondary alcohol. Primary alcohol. Tertiary alcohol

Physical Properties. Alcohols can be: CH CH 2 OH CH 2 CH 3 C OH CH 3. Secondary alcohol. Primary alcohol. Tertiary alcohol Chapter 10: Structure and Synthesis of Alcohols 100 Physical Properties Alcohols can be: CH 3 CH 3 CH CH 2 OH * Primary alcohol CH 3 OH CH * CH 2 CH 3 Secondary alcohol CH 3 CH 3 * C OH CH 3 Tertiary alcohol

More information

CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION

CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION Introduction Several functional groups contain the carbonyl group Carbonyl groups can be converted into alcohols by various reactions Structure of the Carbonyl

More information

Ch 18 Ethers and Epoxides

Ch 18 Ethers and Epoxides Ch 18 Ethers and Epoxides Ethers (R-O-R ) are compounds with two organic groups attached to an sp 3 oxygen. Epoxides are cyclic ethers where the sp 3 O is a part of a 3-membered ring. Thiols (R-S-H ) and

More information

Background Information

Background Information ackground nformation ntroduction to Condensation eactions Condensation reactions occur between the α-carbon of one carbonyl-containing functional group and the carbonyl carbon of a second carbonyl-containing

More information

Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds

Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds Introduction Several functional groups contain the carbonyl group Carbonyl groups can be converted into alcohols

More information

12/27/2010. Chapter 15 Reactions of Aromatic Compounds

12/27/2010. Chapter 15 Reactions of Aromatic Compounds Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen atom

More information

Amines and Heterocycles. McMurry: Chapter 24

Amines and Heterocycles. McMurry: Chapter 24 Amines and Heterocycles McMurry: Chapter 24 Introduction to Amines and Heterocycles Amines and heterocycles (cyclic amines) are ammonia derivatives, many of whichare found widely in livingorganisms: 2

More information

C h a p t e r T w e n t y: Aldehydes and Ketones

C h a p t e r T w e n t y: Aldehydes and Ketones C h a p t e r T w e n t y: Aldehydes and Ketones (S)-Warfarin (named for the Wisconsin Alumni Research Foundation), a useful clinical anticoagulant which as a racemate is also a rat poison Note: Problems

More information