Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions. Naming Aldehydes. - aldehyde. - ketone

Size: px
Start display at page:

Download "Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions. Naming Aldehydes. - aldehyde. - ketone"

Transcription

1 hapter 19 Aldehydes and Ketones: Nucleophilic Addition eactions - aldehyde - substance that has an organic group () bonded to functionality () - ketone methanol catalyst heat - substance that has two organic groups (, ) bonded to functionality ( ) formaldehyde propanol Zn 380 o 3 3 acetone Naming Aldehydes - aldehydes are named by replacing the terminal -e of the corresponding alkane with -al - the parent chain must contain the - group, with the carbon atom being number as carbon ethanal propanal ethyl-4-methylpentanal 1

2 - for complex aldehydes where the - is attached to a ring, the suffix -carbaldehyde is used cyclohexanecarbaldehyde 2-naphthalenecarbaldehyde Naming Ketones - ketones are named by replacing the terminal -e of the corresponding alkane with -one - parent chain is longest chain that contains ketone group hexanone 4-hexen-2-one 2,4-hexanedione - common ketones: acetone acetophenone benzophenone - - group can be referred to as a substituent - the word acyl is used, with a name ending -yl 3 acyl acetyl formyl benzoyl - doubly bonded oxygen can be referred to as substituent - the prefix oxo- is used methyl 3-oxohexanoate 2

3 Preparation of Aldehydes and Ketones Aldehydes 1) oxidation of primary alcohols using pyridinium chlorochromate 2 P 2 l 2 citronellol citronellal (82%) 2) oxidative cleavage of alkenes with vinylic hydrogen Zn, methylcyclohexene 6-oxoheptanal (86%) 3) reduction of carboxylic acid derivatives by diisobutylaluminum hydride (DIBA) - + Y - Y 1. DIBA, toluene, -78 o 3 ( 2 ) ( 2 ) methyl dodecanoate dodecanal (88%) where DIBA = ( 3 ) 2 2 Al 2 ( 3 ) 2 Ketones - methods are analogous to aldehydes 1) oxidation of secondary alcohols (variety of oxidizing agents) ( 3 ) P ( 3) 2 l 2 4-tert-butylcyclohexanol 4-tert-butylcyclohexanone (90%) 2) ozonolysis of alkenes (unsaturated carbon must be disubstituted) Zn/

4 3) Friedel-rafts acylation of an aromatic ring with an acid chloride + 3 l All 3 heat 3 benzene acetyl chloride acetophenone (95%) 4) hydration of terminal alkynes in presence of g 2+ catalyst ( 2 ) 3 3 ( 2 ) 3 3 gs 4 1-hexyne 2-hexanone (78%) 5) nucleophilic attack of carboxylic acid derivatives 3 ( 2 ) 4 l + - ( 3 ) 2 uli + 3 ( 2 ) 4 3 hexanoyl chloride dimethyl copper lithium 2-heptanone (81%) xidation of Aldehydes and Ketones [] no hydrogen ' aldehyde carboxylic acid ketone - aldehydes are readily oxidized to yield carboxylic acids 3 ( 2 ) 4 r 3, 3 + acetone, 0 o 3 ( 2 ) 4 hexanal hexanoic acid (85%) - oxidizing agents: KMn 4, hot N 3, r 3 (most common) 4

5 Tollens eagent - a solution of silver oxide (Ag 2 ) in aqueous ammonia - oxidizes aldehydes in high yield without harming carbon-carbon double bonds or other functional groups in the molecule benzaldehyde Ag 2 N 4, 2, ethanol benzoic acid - oxidations occur through intermediate 1,1-diols, or hydrates 2 r aldehyde hydrate carboxylic acid - formed by reversible nucleophilic addition of water Ketones - ketones are inert to most oxidizing agents, but undergo a slow cleavage reaction when treated with hot alkaline KMn 4 1. KMn 4, 2, Na cyclohexanone hexanedioic acid (79%) - best used for symmetrical ketones, since unsymmetrical ketones give mixtures of products 5

6 Nucleophilic Addition eactions of Aldehydes and Ketones - most general reaction of aldehydes and ketones - nucleophile attacks the electrophilic = carbon atom from approximately 45 o to the plane of the carbonyl group Three General Steps 1) rehybridization of the carbonyl carbon from sp 2 to sp 3 occurs 2) an electron pair from the carbon-oxygen double bond moves toward the electronegative oxygen atom 3) a tetrahedral alkoxide ion intermediate is produced The Nucleophile - can be either negatively charged (:Nu - ) or neutral (:Nu); if neutral, usually carries a hydrogen atom that can be eliminated negatively charged nucleophiles 3 N neutral nucleophiles 3N N2 6

7 elative eactivity of Aldehydes and Ketones - aldehydes are generally more reactive in nucleophilic reactions for both steric and electronic reasons - sterically, the transition state is less crowded in an aldehyde - electronically, aldehydes are more reactive because of the greater polarization of aldehyde carbonyl groups ' ' 1 o carbocation (less stable, more reactive) 2 o carbocation (more stable, less reactive) aldehyde (less stable δ+, more reactive) ketone (more stable δ+, less reactive) 7

8 - additionally, aromatic aldehydes are less reactive in nucleophilic addition reactions than aliphatic aldehydes - electron-donating resonance effect of the aromatic ring makes the carbonyl group less electrophilic than the carbonyl group of an aliphatic aldehyde Addition of 2 : ydration - aldehydes and ketones react with water to yield 1,1-diols, or geminal (gem) diols acetone (99.9%) acetone hydrate (0.1%) - the reaction is reversible, the position of the equilibrium depending upon the structure of the carbonyl compound: - the equilibrium generally favors the less crowded compound for steric reasons - for instance, aqueous solution of formaldehyde consists of 99.9% gem diol and 0.1% aldehyde, whereas an aqueous solution of acetone consists of only 0.1% gem diol and 99.9% ketone + 2 formaldehyde (0.1%) formaldehyde hydrate (99.9 %) - the nucleophilic addition reaction is slow in pure water; however, the reaction is catalyzed by both acid and base + Y ' Y ' favored when: Y = - 3, -, -Br, -l, S - 4 8

9 Base-atalyzed Addition Acid-atalyzed Addition Mechanism Addition of N: yanohydrin Formation - aldehydes and unhindered ketones react with N to yield cyanohydrins (() N) N N benzaldehyde mandelonitrile (88%) - cyanohydrin formation is reversible and base-catalyzed - reaction occurs rapidly when a small amount of base or KN is added to generate the nucleophile 9

10 Mechanism N N N N + N benzaldehyde tetrahedral intermediate madelonitrile (88%) - a rare example of addition of a protic acid (Y) to a carbonyl group Further hemistry 1. LiAl 4, TF, 2 N N N 2-amino-1-phenylethanol benzaldehyde madelonitrile 3 + mandelic acid Addition of Grignard eagents: Alcohol Formation - treatment of a ketone or aldehyde with MgX gives an alcohol by way of nucleophilic addition involving a carbanion = 1) MgX 2) 2 2 () - acid-base complexation of Mg 2+ with the carbonyl oxygen atom makes the carbonyl group a better acceptor - nucleophilic addition of : - then produces a tetrahedral magnesium alkoxide intermediate - protonation yields the alcohol, the nucleophilic attack being irreversible 10

11 Mechanism Addition of ydride eagents: Alcohol Formation - treatment of a ketone or aldehyde with LiAl 4 or NaB 4 yields an alcohol = 1) LiAl 4 2) () - the carbonyl group is reduced upon addition of an hydride ion and work-up with aqueous acid or water 11

12 Addition of Amines: Enamine Formation N N 2 ketone or aldehyde 2 N N imine enamine - both reactions are typical examples of nucleophilic addition reactions in which water is eliminated from a tetrahedral intermediate and a new =Nu bond is formed Mechanism of Imine Formation - imine formation displays a p dependency such that the reaction is slow in the presence of too much acid or too much base - a p of 4.5 represents the most optimized p for reaction to occur p 12

13 Application of Imines - reagents such as hydroxylamine and 2,4-dinitrophenylhydrazine react with ketones and aldehydes to form oximes and 2,4-dinitrophenylhydrazones, respectively + N 2 N + 2 cyclohexanone hydroxylamine cyclohexanone oxime (mp 90 o ) acetone N 2N N 2 N 2 2,4-dinitrophenylhydrazine N 2 N N 3 3 N 2 acetone 2,4-dinitrophenylhydrazone (mp 126 o ) - such products are highly crystalline and can be used to purify and characterize liquid ketones and aldehydes Mechanism of Enamine Formation Addition of ydrazine: Wolff-Kishner eaction - valuable method for converting a ketone or aldehyde into an alkane, 2 = 2 2, known as the Wolff-Kishner reaction NN N K propiophenone propylbenzene (82%) 2 NN 2 K 3 + N cyclopropanecarbaldehyde methylcyclopropane (72%) 13

14 Wolff-Kishner eaction Mechanism Addition of Alcohols: Acetal Formation - ketone or aldehyde reacts reversibly with two equivalents of an alcohol in the presence of acid to yield an acetal, 2 ( ) 2 ' acid catalyst ' ketone/aldehyde acetal - under acidic conditions, the carbonyl is reactive to attack of alcohol δ- δ+ A neutral carbonyl protonated carbonyl - the initial product is a hydroxy ether or hemiacetal, which then leads to E1-like loss of water and formation of an oxonium ion 3 + catalyst 3 + catalyst cyclohexanone hemiacetal cyclohexaone dimethyl acetal - all reactions are reversible such that the reaction can be driven forward or backward depending upon the reaction conditions - forward reaction: removal of 2 - backward reaction: addition of excess acid 14

15 Acid-atalyzed Acetal Formation Acetals as Protecting Groups - acetals can be used as protecting groups for aldehydes and ketones ethyl 4-oxopentanoate catalyst cannot be done directly 1) LiAl 4 2) in practice it is useful to use ethylene glycol as a protecting group Addition of Phosphorus Ylides: The Wittig eaction - ketone or aldehyde can be converted into an alkene using a phosphorus ylide or phosphorane, 2 - -P + ( 6 5 ) 3 2 = 2 - -P + ( 6 5 ) 3 2 = 2 + (Ph) 3 P= - the reaction produces a dipolar intermediate referred to as a betaine, which decomposes to yield an alkene and triphenylphosphine oxide, (Ph) 3 P= - reaction is extremely general, leading to mono-, di-, and trisubstituted alkenes (tetrasubstituted cannot be prepared) 15

16 Preparation of the Phosphorus Ylide triphenylphosphine S P + N 2 BuLi 3 Br P 3 P 2 Br TF bromomethane - methyltriphenylphosphonium bromide methyltriphenylphosphorane Mechanism of the Wittig eaction - Wittig reaction always replaces = with = with no side products, which makes the reaction extremely valuable in synthetic chemistry 1) 3 MgBr 3 2 2) Pl 3 1-methylcyclohexene methylenecyclohexane 9:1 ratio cyclohexanone + - ( 6 5 )P- 2 TF solvent 2 + ( 6 5 )P methylenecyclohexane (84%) 16

17 Application of the Wittig eaction + P(Ph) 3 retinal retinylidenetriphenylphosphorane Wittig reaction β-carotene The annizzaro eaction - involves the nucleophilic addition of - to an aldehyde to give a carboxylic acid and an alcohol 1) - + 2) 3) a tetrahedral intermediate expels hydride ion as a leaving group, which is accepted by a second aldehyde molecule tetrahedral intermediate 1) 2) benzoic acid (oxidized) benzyl alcohol (reduced) - the aldehyde that undergoes the substitution of - by - is oxidized, while the molecule that undergoes the addition of - is reduced; reaction is therefore a disproportionation reaction 17

18 - the annizzaro reaction is very limited and is therefore not particularly useful synthetically, having few applications - the reaction, however, serves as a useful model for reactions in living organisms that involve reduced nicotinamide adenine dinucleotide (NAD) as a reducing agent N 2 N 2 N 2 P P N 2 N N N reduced nicotinamide adenine dinucleotide (NAD) Mechanism of NAD eduction '' 2 N N + ' ketone 2 N N + ' alcohol NAD NAD + onjugate Nucleophilic Addition to α,β- Unsaturated Aldehydes and Ketones - conjugate addition (or 1,4-addition) involves addition of a nucleophile to the = double bond of an α,β-unsaturated aldehyde or ketone 1) :Nu - α β 2) 3 + Nu - electrophilic site of α,β-unsaturated aldehyde or ketone is β carbon which is, effectively, activated by the carbonyl group δ- α δ+ β 18

19 onjugate Addition of Amines - primary and secondary amines add to α,β-unsaturated aldehydes and ketones to give β-amino aldehyes and ketones N(23)2 ethanol N( 2 3 ) 2 3-buten-2-one diethylamine 4-N,N-diethylamino-2-butanone (92%) 2-cyclohexenone + ethanol 3 N 2 methylamine N 3 3-(N-methylamino)cyclohexanone - reaction conditions are mild and conjugate addition predominates onjugate Addition of Alkyl Groups: rganocopper eactions - lithium diorganocopper reagents (: - ) (Gilman reagents) facilitate conjugate additions to aldehydes and not ketones 2) 3 + 1) : - : - - = u - primary, secondary, and tertiary alkyl groups, as well as aryl and alkenyl groups, undergo the addition reaction; alkynyl groups react poorly 19

20 Examples: 1) Li( 2 =) 2 u, ether 2) cyclohexenone 3-vinylcyclohexanone (65%) 1) Li( 6 5 ) 2 u, ether 2) cyclohexenone 3-phenylcyclohexanone (70%) Gilman eagents vs. Grignard eagents 1) 3 MgBr, ether or 3 Li 2) methyl-2-cyclohexen-1-ol (95%) 2-cyclohexenone 1) Li( 3 ) 2 u, ether 2) methylcyclohexanone (97%) - regiochemistry is controlled by the selection of the reagent Postulated Mechanism Li + ( 2 u) - u + u addition product is thought to form through a u-containing intermediate that involves transfer of an group and elimination of a neutral organocopper species, u 20

21 Biological Nucleophilic Addition eactions 1) Pathway to amino acids in bacteria N N reducing N enzyme pyruvic acid imine alanine 2) Defense mechanism of the millipede N enzyme + N (poisonous) mandelonitrile Spectroscopy of Aldehydes and Ketones Infrared Spectroscopy - strong = bond absorption from 1660 to 1770 cm -1 - position of absorption is sensitive to nature of carbonyl group - saturated aldehydes: near 1730 cm -1 - aromatic aldehydes: near 1705 cm -1 - saturated ketones: near 1715 cm -1 - aromatic ketones: near 1685 cm -1 - aldehydes show - absorptions from 2720 to 2820 cm -1 Infrared Spectrum of Benzaldehyde 21

22 Infrared Spectrum of yclohexanone NM Spectroscopy - aldehyde protons () absorb near 10 δ in 1 NM spectrum - hydrogen atoms next to carbonyl are slightly deshielded and absorb near δ - carbonyl group of aldehydes and ketones show 13 NM resonances in the range δ , Spectrum of Acetaldehyde 22

23 Mass Spectrometry - aliphatic aldehydes and ketones that have hydrogens on their gamma (γ) carbon atoms undergo a cleavage known as a McLafferty rearrangement ' γ 2 β 2 α + McLafferty rearrangement ' aldehydes and ketones also undergo a so-called α-cleavage + alpha cleavage ' rearrangement ' + Mass Spectrum of 5-Methyl-2-hexanone Notes 23

24 Notes 24

Aldehydes and Ketones: Nucleophilic Addition Reactions

Aldehydes and Ketones: Nucleophilic Addition Reactions Aldehydes and Ketones: Nucleophilic Addition Reactions Why this Chapter? Much of organic chemistry involves the chemistry of carbonyl compounds Aldehydes/ketones are intermediates in synthesis of pharmaceutical

More information

Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions

Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based on McMurry s Organic

More information

Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions

Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions Chapter 19. Aldehydes and Ketones: Nucleophilic Addition Reactions شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based on McMurry s Organic

More information

Chapter 17 Aldehydes and Ketones

Chapter 17 Aldehydes and Ketones hapter 17 Aldehydes and Ketones arbonyl Groups polarized (1) Aldehydes and Ketones ' aldehydes ketones : and : are poor leaving groups (2) arboxylic Acid Derivatives l ' ' 2 carboxylic acid substituent

More information

Aldehydes and Ketones

Aldehydes and Ketones Aldehydes and Ketones Preparation of Aldehydes xidation of Primary Alcohols --- 2 P 1o alcohol ydroboration of a Terminal Alkyne, followed by Tautomerization --- 1. B 3, TF 2. 2 2, K 2 terminal alkyne

More information

Basic Organic Chemistry

Basic Organic Chemistry Basic rganic hemistry ourse code: EM 12162 (Pre-requisites : EM 11122) hapter 06 hemistry of Aldehydes & Ketones Dr. Dinesh R. Pandithavidana ffice: B1 222/3 Phone: (+94)777-745-720 (Mobile) Email: dinesh@kln.ac.lk

More information

Chapter 18 Ketones and Aldehydes. Carbonyl Compounds. Chapter 18: Aldehydes and Ketones Slide 18-2

Chapter 18 Ketones and Aldehydes. Carbonyl Compounds. Chapter 18: Aldehydes and Ketones Slide 18-2 hapter 18 Ketones and Aldehydes arbonyl ompounds hapter 18: Aldehydes and Ketones Slide 18-2 1 arbonyl Structure arbon is sp 2 hybridized. = bond is shorter, stronger, and more polar than = bond in alkenes.

More information

Chem 263 March 7, 2006

Chem 263 March 7, 2006 Chem 263 March 7, 2006 Aldehydes and Ketones Aldehydes and ketones contain a carbonyl group, in which the carbon atom is doubly bonded to an oxygen atom. The carbonyl group is highly polarized, with a

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones hem A225 Notes Page 67 I. Introduction hapter 20: Aldehydes and Ketones Aldehydes and ketones contain a carbonyl group (=) with no other heteroatoms attached. An aldehyde has at least one hydrogen attached;

More information

Ch 19 Aldehydes and Ketones

Ch 19 Aldehydes and Ketones Ch 19 Aldehydes and Ketones Aldehydes (RCHO), with the exception of formaldehyde (H 2 CO), are compounds with both an H and an organic group attached to a carbonyl. Ketones (R 2 CO) are compounds with

More information

Ketones and Aldehydes

Ketones and Aldehydes Ketones and Aldehydes Adapted from rganic hemistry, L. G. Wade, Jr. = 1 Violet (Irone) salicylaldehyde (meadowsweet) 3 ( 2 ) 4 (Eucalyptus) 3 ( 2 ) 10 (itrus Fruits) Piperonal (eliotrope) 3 3 Raspberries

More information

Chapter 9 Aldehydes and Ketones Excluded Sections:

Chapter 9 Aldehydes and Ketones Excluded Sections: Chapter 9 Aldehydes and Ketones Excluded Sections: 9.14-9.19 Aldehydes and ketones are found in many fragrant odors of many fruits, fine perfumes, hormones etc. some examples are listed below. Aldehydes

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones hapter 20: Aldehydes and Ketones [hapter 20 Sections: 20.1-20.7, 20.9-10.10, 20.13] 1. Nomenclature of Aldehydes and Ketones ketone ' aldehyde 2. eview of the Synthesis of Aldehydes and Ketones Br Br f

More information

Aldehydes and Ketones. Nucleophilic Addi3on Reac3ons

Aldehydes and Ketones. Nucleophilic Addi3on Reac3ons Aldehydes and Ketones Nucleophilic Addi3on Reac3ons 1 Aldehydes and Ketones Aldehydes (RCHO) and ketones (R 2 CO) are characterized by the carbonyl func3onal group (C=O) The compounds occur widely in nature

More information

Aldehydes and Ketones Reactions. Dr. Sapna Gupta

Aldehydes and Ketones Reactions. Dr. Sapna Gupta Aldehydes and Ketones Reactions Dr. Sapna Gupta Reactions of Aldehydes and Ketones Nucleophilic Addition A strong nucleophile attacks the carbonyl carbon, forming an alkoxide ion that is then protonated.

More information

Aldehydes and Ketones

Aldehydes and Ketones 9 Aldehydes and Ketones hapter Summary The carbonyl group, =, is present in both aldehydes (=) and ketones ( 2 =). The IUPA ending for naming aldehydes is -al, and numbering begins with the carbonyl carbon.

More information

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

ALDEHYDES AND KETONES

ALDEHYDES AND KETONES 11 R R R ALDEYDES AND KETNES APTER SUMMARY 111 Structure of Aldehydes and Ketones Aldehydes and ketones both have a carbonyl group (carbonoxygen double bond); aldehydes have at least one carbon bonded

More information

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

Carbonyl Compounds. Introduction

Carbonyl Compounds. Introduction Carbonyl Compounds Introduction 1 Introduction Two broad classes of compounds contain the carbonyl group: [1] Compounds that have only carbon and hydrogen atoms bonded to the carbonyl [2] Compounds that

More information

TABLE 18-1 Some Common Classes of Carbonyl Compounds

TABLE 18-1 Some Common Classes of Carbonyl Compounds TABLE 18-1 Some ommon lasses of arbonyl ompounds lass General Formula lass General Formula ' 99 ' 99 ketones aldehydes carboxylic acids acid chlorides ' esters 999 amides ' 99 ' 99l ' 99N 2 Figure Number:

More information

Carbon-heteroatom single bonds basic C N C X. X= F, Cl, Br, I Alkyl Halide C O. epoxide Chapter 14 H. alcohols acidic H C S C. thiols.

Carbon-heteroatom single bonds basic C N C X. X= F, Cl, Br, I Alkyl Halide C O. epoxide Chapter 14 H. alcohols acidic H C S C. thiols. hapter 13: Alcohols and Phenols 13.1 Structure and Properties of Alcohols Alkanes arbon - arbon Multiple Bonds arbon-heteroatom single bonds basic Alkenes X X= F, l,, I Alkyl alide amines hapter 23 nitro

More information

Chem 263 Notes March 2, 2006

Chem 263 Notes March 2, 2006 Chem 263 Notes March 2, 2006 Average for the midterm is 102.5 / 150 (approx. 68%). Preparation of Aldehydes and Ketones There are several methods to prepare aldehydes and ketones. We will only deal with

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones Chapter 20: Aldehydes and Ketones [Chapter 20 Sections: 20.1-20.7, 20.9-10.10, 20.13] 1. Nomenclature of Aldehydes and Ketones ' ketone aldehyde f both aldehydes and ketones, the parent chain is the longest

More information

I. Write Structures for the compounds named below: (12 points) H 2 N NH 2. Acetone Hydrazine Cyclohexane carbaldehyde H 3 C

I. Write Structures for the compounds named below: (12 points) H 2 N NH 2. Acetone Hydrazine Cyclohexane carbaldehyde H 3 C I. Write Structures for the compounds named below: (12 points) 3 2 N N 2 Acetone ydrazine yclohexane carbaldehyde N P( 6 5 ) 3 3 An ethyl ylide of Any imine 3-xo-6-phenylhexanal triphenylphosphine II.

More information

Chem 263 Nov 14, e.g.: Fill the reagents to finish the reactions (only inorganic reagents)

Chem 263 Nov 14, e.g.: Fill the reagents to finish the reactions (only inorganic reagents) hem 263 ov 14, 2013 More examples: e.g.: Fill the reagents to finish the reactions (only inorganic reagents) Br 2 hv Br a 2 r 4 S 2 or swern oxidation Mg Li 0 0 MgBr Li e.g. : Fill the reagents (any reagents

More information

O C. Aldehyde: O C H 3 CH 2 C H propanal propionaldehyde. O C H 3 CH 2 C CH 2 CH 3 3-pentanone diethylketone

O C. Aldehyde: O C H 3 CH 2 C H propanal propionaldehyde. O C H 3 CH 2 C CH 2 CH 3 3-pentanone diethylketone Aldehydes and Ketones Both contain the functional group Aldehyde: R Ketone R R' Aldehydes omenclature. IUPA: drop the 'e' from the name of the alkane and add 'al'. There are also common names which are

More information

CH 19: Aldehydes and Ketones

CH 19: Aldehydes and Ketones rganic hemistry otes by Jim Maxka 19: Aldehydes and Ketones Topics aming, structure, and properties Formation of = eactions with weak nucleophiles: and Derivatives: imines and enamines. eactions with strong

More information

Chapter 9 Aldehydes and Ketones

Chapter 9 Aldehydes and Ketones Chapter 9 Aldehydes and Ketones 9.1 Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al The aldehyde functional group is always carbon

More information

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes Nomenclature of Aldehydes and Ketones Chapter 16 Aldehydes and Ketones I. Aldehydes replace the -e of the parent alkane with -al The functional group needs no number Nucleophilic Addition to the Carbonyl

More information

acetaldehyde (ethanal)

acetaldehyde (ethanal) hem 263 Nov 2, 2010 Preparation of Ketones and Aldehydes from Alkenes zonolysis 1. 3 2. Zn acetone 1. 3 2. Zn acetone acetaldehyde (ethanal) Mechanism: 3 3 3 + - oncerted reaction 3 3 3 + ozonide (explosive)

More information

Aldehydes & Ketones I

Aldehydes & Ketones I 2302272 Org Chem II Part I Lecture 3 Aldehydes & Ketones I Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 18 in Organic Chemistry, 8 th Edition, L.

More information

Topic 4 Aldehydes and Ketones

Topic 4 Aldehydes and Ketones 4-1 Topic 4 Aldehydes and Ketones 16.1 4-2 Aldehydes and Ketones ' aldehyde ketone The polarized oxygen-carbon -bond renders aldehydes and ketones electrophilic: ' The electrophilicity of the oxygen-carbon

More information

Chapter 20 Carboxylic Acid Derivatives. Nucleophilic Acyl Substitution

Chapter 20 Carboxylic Acid Derivatives. Nucleophilic Acyl Substitution ucleophilic Acyl Substitution hapter 20 arboxylic Acid Derivatives ucleophilic Acyl Substitution Y (1) need to have Y as a u Y u u + Y (2) could not happen with aldehydes or ketones as : and : are poor

More information

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION !! www.clutchprep.com CONCEPT: ALDEHYDE NOMENCLATURE Replace the suffix of the alkane -e with the suffix On the parent chain, the carbonyl is always terminal, and receive a location As substituents, they

More information

Dr. Mohamed El-Newehy

Dr. Mohamed El-Newehy By Dr. Mohamed El-Newehy Chemistry Department, College of Science, King Saud University http://fac.ksu.edu.sa/melnewehy Aldehydes and Ketones 1 Structure of Aldehydes and Ketones - Aldehydes and ketones

More information

Topic 9. Aldehydes & Ketones

Topic 9. Aldehydes & Ketones Chemistry 2213a Fall 2012 Western University Topic 9. Aldehydes & Ketones A. Structure and Nomenclature The carbonyl group is present in aldehydes and ketones and is the most important group in bio-organic

More information

Week 6 notes CHEM

Week 6 notes CHEM Week 6 notes EM1002 2009 Unless otherwise stated, all images in this file have been reproduced from: Blackman, Bottle, Schmid, Mocerino and Wille, hemistry, 2007 (John Wiley) ISBN: 9 78047081 0866 1 Note

More information

Chapter 17: Alcohols and Phenols

Chapter 17: Alcohols and Phenols hapter 17: Alcohols and Phenols sp 3 alcohol phenol (aromatic alcohol) pka~ 16-18 pka~ 10 Alcohols contain an group connected to a saturated carbon (sp 3 ) Phenols contain an group connected to a carbon

More information

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium 18.8 Oxidation Oxidation by silver ion requires an alkaline medium Test for detecting aldehydes Tollens reagent to prevent precipitation of the insoluble silver oxide, a complexing agent is added: ammonia

More information

Chapter 16 Aldehydes and Ketones I: Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I: Nucleophilic Addition to the Carbonyl Group Aldehydes and Ketones I: Nucleophilic Addition to the arbonyl Group 16.1 Introduction Aldehydes and ketones contain an acyl group bonded either to hydrogen or to another carbon. Acyl group δ + δ 120 sp

More information

ORGANIC - BROWN 8E CH ALDEHYDES AND KETONES.

ORGANIC - BROWN 8E CH ALDEHYDES AND KETONES. !! www.clutchprep.com CONCEPT: ALDEHYDE NOMENCLATURE Replace the suffix of the alkane -e with the suffix On the parent chain, the carbonyl is always terminal, and receive a location As substituents, they

More information

Carbonyls (Ch ketones and aldehydes and carboxylic acids derivatives)

Carbonyls (Ch ketones and aldehydes and carboxylic acids derivatives) arbonyls (h 16-19 ketones and aldehydes and carboxylic acids derivatives) +δ -δ ' - sp 2 - trigonal planar (120 0 ) - strongly polarized double bond eactivity? addition nucleophilic 1 Nucleophilic Addition

More information

Chem 263 Nov 7, elimination reaction. There are many reagents that can be used for this reaction. Only three are given in this course:

Chem 263 Nov 7, elimination reaction. There are many reagents that can be used for this reaction. Only three are given in this course: hem 263 Nov 7, 2013 Preparation of Ketones and Aldehydes from Alcohols xidation of Alcohols [] must have at least 1 E elimination reaction [] = oxidation; removal of electrons [] = reduction; addition

More information

Loudon Chapter 19 Review: Aldehydes and Ketones CHEM 3331, Jacquie Richardson, Fall Page 1

Loudon Chapter 19 Review: Aldehydes and Ketones CHEM 3331, Jacquie Richardson, Fall Page 1 Loudon Chapter 19 eview: Aldehydes and Ketones CEM 3331, Jacquie ichardson, Fall 2010 - Page 1 Beginning with this chapter, we re looking at a very important functional group: the carbonyl. We ve seen

More information

Topic 6 Alkyl halide and carbonyl compounds Organic compounds containing a halogen

Topic 6 Alkyl halide and carbonyl compounds Organic compounds containing a halogen Topic 6 Alkyl halide and carbonyl compounds rganic compounds containing a halogen ompounds are named in standard way, eg: 3 1 3 3 2 3 2-iodo-2-methylpropane (tertiary alkyl halide) l 3 4-chlorotoluene

More information

Chapter 17: Carbonyl Compounds II

Chapter 17: Carbonyl Compounds II Chapter 17: Carbonyl Compounds II Learning bjectives: 1. ecognize and assign names to aldehydes and ketones. 2. Write the mechanism for nucleophilic addition and nucleophilic addition-elimination reactions

More information

Topic 6 Alkyl halide and carbonyl compounds Organic compounds containing a halogen

Topic 6 Alkyl halide and carbonyl compounds Organic compounds containing a halogen Topic 6 Alkyl halide and carbonyl compounds rganic compounds containing a halogen ompounds are named in standard way 3 1 3 3 2 3 2-iodo-2-methylpropane (tertiary alkyl halide) l 3 4-chlorotoluene (aryl

More information

HW #5: 16.20, 16.28, 16.30, 16.32, 16.40, 16.44, 16.46, 16.52, 16.60, 16.62, 16.64, 16.68

HW #5: 16.20, 16.28, 16.30, 16.32, 16.40, 16.44, 16.46, 16.52, 16.60, 16.62, 16.64, 16.68 hemistry 131 Lecture 10: Aldehydes and Ketones: Structure, Nomenclature, Physical Properties, and Reactivity hapter 16 in McMurry, Ballantine, et. al. 7 th edition W #5: 16.20, 16.28, 16.30, 16.32, 16.40,

More information

12. Aldehydes & Ketones (text )

12. Aldehydes & Ketones (text ) 2009, Department of Chemistry, The University of Western ntario 12.1 12. Aldehydes & Ketones (text 13.1 13.11) A. Structure and Nomenclature The carbonyl group is present in aldehydes and ketones and is

More information

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE 6 Dr Ali El-Agamey 1 Oxidation States Easy for inorganic salts: CrO 4 2- reduced to Cr 2 O 3. KMnO 4 reduced to MnO 2. Oxidation: Gain of O,

More information

Organic Chemistry, Third Edition. Janice Gorzynski Smith University of Hawai i. Chapter 21. Aldehydes and Ketones Nucleophilic Addition

Organic Chemistry, Third Edition. Janice Gorzynski Smith University of Hawai i. Chapter 21. Aldehydes and Ketones Nucleophilic Addition Organic Chemistry, Third Edition Janice Gorzynski Smith University of Hawai i Chapter 21 Aldehydes and Ketones Nucleophilic Addition Prepared by Rabi Ann Musah State University of New York at Albany Copyright

More information

N_HW1 N_HW1. 1. What is the purpose of the H 2 O in this sequence?

N_HW1 N_HW1. 1. What is the purpose of the H 2 O in this sequence? N_HW1 N_HW1 Multiple Choice Identify the choice that best completes the statement or answers the question. There is only one correct response for each question. 1. What is the purpose of the H 2 O in this

More information

Chapter 18: Carbonyl Compounds II

Chapter 18: Carbonyl Compounds II Chapter 18: Carbonyl Compounds II Learning bjectives: 1. ecognize and assign names to aldehydes and ketones. 2. Write the mechanism for nucleophilic addition and nucleophilic addition-elimination reactions

More information

Additions to the Carbonyl Groups

Additions to the Carbonyl Groups Chapter 18 Additions to the Carbonyl Groups Nucleophilic substitution (S N 2andS N 1) reaction occurs at sp3 hybridized carbons with electronegative leaving groups Why? The carbon is electrophilic! Addition

More information

C h a p t e r T w e n t y: Aldehydes and Ketones

C h a p t e r T w e n t y: Aldehydes and Ketones C h a p t e r T w e n t y: Aldehydes and Ketones (S)-Warfarin (named for the Wisconsin Alumni Research Foundation), a useful clinical anticoagulant which as a racemate is also a rat poison Note: Problems

More information

ζ ε δ γ β α α β γ δ ε ζ

ζ ε δ γ β α α β γ δ ε ζ hem 263 Nov 17, 2016 eactions at the α-arbon The alpha carbon is the carbon adjacent to the carbonyl carbon. Beta is the next one, followed by gamma, delta, epsilon, and so on. 2 ε 2 δ 2 γ 2 2 β α The

More information

Chapter 18: Ketones and Aldehydes. I. Introduction

Chapter 18: Ketones and Aldehydes. I. Introduction 1 Chapter 18: Ketones and Aldehydes I. Introduction We have already encountered numerous examples of this functional group (ketones, aldehydes, carboxylic acids, acid chlorides, etc). The three-dimensional

More information

Carbonyl Chemistry IV + C O C. Lecture 10. Chemistry /30/02

Carbonyl Chemistry IV + C O C. Lecture 10. Chemistry /30/02 arbonyl hemistry IV Ō - + Lecture 10 Addition of Nitrogen Nucleophiles Primary Amines RN 2 Imines Secondary Amines R 2 N Enamines ydrazine derivatives RNN 2 ydrazones ydroxyl Amine N 2 ximes Imine Formation

More information

Lecture 15. More Carbonyl Chemistry. Alcohols React with Aldehydes and Ketones in two steps first O R'OH, H + OR" 2R"OH R + H 2 O OR" 3/8/16

Lecture 15. More Carbonyl Chemistry. Alcohols React with Aldehydes and Ketones in two steps first O R'OH, H + OR 2ROH R + H 2 O OR 3/8/16 Lecture 15 More Carbonyl Chemistry R" R C + R' 2R" R C R" R' + 2 March 8, 2016 Alcohols React with Aldehydes and Ketones in two steps first R', + R R 1 emiacetal reacts further in acid to yield an acetal

More information

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Ninth Edition

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Ninth Edition hemistry 110 Bettelheim, Brown, ampbell & Farrell Ninth Edition Introduction to General, rganic and Biochemistry hapter 17 Aldehydes & Ketones hemistry of the arbonyl Group Aldehydes & Ketones The functional

More information

3) Oxidation of tertiary alcohol yields A) Aldehyde B) No reaction C) Ketone D) Carboxylic acid

3) Oxidation of tertiary alcohol yields A) Aldehyde B) No reaction C) Ketone D) Carboxylic acid ALKYL HALIDES 18- The reaction of Propyl bromide with Na is A) Nucleophilic addition. B) Nucleophilic substitution. C) Electrophilic substitution. D) Electrophilic addition. 25) Which of the following

More information

ALCOHOLS AND PHENOLS

ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS Alcohols contain an OH group connected to a a saturated C (sp3) They are important solvents and synthesis intermediates Phenols contain an OH group connected to

More information

Nomenclature of Aldehydes and Ketones

Nomenclature of Aldehydes and Ketones Aldehydes and Ketones Nomenclature of Aldehydes and Ketones Common aldehydes H H Methanl (formaldehyde) H3C H CH3CH2 ethanl (acetaldehyde) H propanal (propionaldehyde) CH3CH2CH2 butanal (n-butyraldehyde)

More information

1. What is the major organic product obtained from the following sequence of reactions?

1. What is the major organic product obtained from the following sequence of reactions? CH320 N N_HW1 Multiple Choice Identify the choice that best completes the statement or answers the question. There is only one correct response for each question. Carefully record your answers on the Scantron

More information

Alkyl phenyl ketones are usually named by adding the acyl group as prefix to phenone.

Alkyl phenyl ketones are usually named by adding the acyl group as prefix to phenone. Aldehydes, Ketones and Carboxylic Acids Nomenclature of aldehydes and ketones Aldehydes: Often called by their common names instead of IUPAC names. Ketones: Derived by naming two alkyl or aryl groups bonded

More information

1- Reaction at the carbonyl carbon (Nucleophilic addition reactions).

1- Reaction at the carbonyl carbon (Nucleophilic addition reactions). Reactions of aldehydes and Ketones Aldehydes and Ketones undergo many reactions to give a wide variety of useful derivatives. There are two general kinds of reactions that aldehydes and ketones undergo:

More information

Carboxylic Acids and Nitriles

Carboxylic Acids and Nitriles Carboxylic Acids and Nitriles Why this Chapter? Carboxylic acids present in many industrial processes and most biological processes They are the starting materials from which other acyl derivatives are

More information

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions hapter 15 eactions of Aromatic ompounds 1. Electrophilic Aromatic Substitution eactions v verall reaction reated by Professor William Tam & Dr. Phillis hang opyright S 3 2 S 4 S 3 2. A General Mechanism

More information

CH 320/328 N Summer II 2018

CH 320/328 N Summer II 2018 CH 320/328 N Summer II 2018 HW 1 Multiple Choice Identify the choice that best completes the statement or answers the question. There is only one correct response for each question. (5 pts each) 1. Which

More information

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry E1502/203/1/2016 Tutorial letter 203/1/2016 General hemistry 1B E1502 Semester 1 Department of hemistry This tutorial letter contains the answers to the questions in assignment 3. FIRST SEMESTER: KEY T

More information

Lecture 15. Carbonyl Chemistry C B. March 6, Chemistry 328N

Lecture 15. Carbonyl Chemistry C B. March 6, Chemistry 328N Lecture 15 Carbonyl Chemistry - A C B A C + B March 6, 2018 Some loose ends Substitution Reactions Aryl halides do not undergo nucleophilic substitution by either S N 1 or S N 2 pathways! But.. But.this

More information

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction Lecture Notes Chem 51C S. King Chapter 20 Introduction to Carbonyl Chemistry; rganometallic Reagents; xidation & Reduction I. The Reactivity of Carbonyl Compounds The carbonyl group is an extremely important

More information

Chem 263 Nov 3, 2016

Chem 263 Nov 3, 2016 hem 263 Nov 3, 2016 Preparation of Aldehydes from Acid alides? + l l acid chloride aka acyl chloride aldehyde Needed: 2 Actual eagents: 2 /Pd Al This is lithium tri-t-butoxy aluminum hydride, a very sterically

More information

TOPIC 3 - ALDEHYDES AND KETONES (Chapters 12 & 16)

TOPIC 3 - ALDEHYDES AND KETONES (Chapters 12 & 16) TPIC 3 - ALDEYDES AND KETNES (Chapters 12 & 16) Lecture 15 Web12 12.1 Introduction 16.1 Introduction 16.2 Nomenclature of Aldehydes and Ketones 16.3 ysical Properties 12.2 xidation Reduction Reactions

More information

Chapter 7: Alcohols, Phenols and Thiols

Chapter 7: Alcohols, Phenols and Thiols Chapter 7: Alcohols, Phenols and Thiols 45 -Alcohols have the general formula R-OH and are characterized by the presence of a hydroxyl group, -OH. -Phenols have a hydroxyl group attached directly to an

More information

Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water.

Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water. Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water. Alcohols are usually classified as primary, secondary and tertiary. Alcohols with the hydroxyl bound directly

More information

Background Information

Background Information ackground nformation ntroduction to Condensation eactions Condensation reactions occur between the α-carbon of one carbonyl-containing functional group and the carbonyl carbon of a second carbonyl-containing

More information

Aldehydes and Ketones. Dr. Munther A. M. Ali

Aldehydes and Ketones. Dr. Munther A. M. Ali Aldehydes and Ketones Dr. Munther A. M. Ali ALDYHYDES AND KETONES Aldehydes are compounds of the general formula RCHO Ketones are compounds of the general formula RR'CO Aldehydes A ketone Both aldehydes

More information

CHM 292 Final Exam Answer Key

CHM 292 Final Exam Answer Key CHM 292 Final Exam Answer Key 1. Predict the product(s) of the following reactions (5 points each; 35 points total). May 7, 2013 Acid catalyzed elimination to form the most highly substituted alkene possible

More information

Chapter 11 Reactions of Alcohols. Types of Alcohol Reactions

Chapter 11 Reactions of Alcohols. Types of Alcohol Reactions hapter 11 Reactions of Alcohols Types of Alcohol Reactions Dehydration to alkene (Discussed in hap 7) xidation to aldehyde, ketone Substitution to form alkyl halide Reduction to alkane Esterification Tosylation

More information

Name Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry II Examination #2 - March 12, 2001

Name Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry II Examination #2 - March 12, 2001 Name Department of hemistry SUNY/neonta hem 322 - rganic hemistry II Examination #2 - March 12, 2001 INSTRUTINS This examination has two parts. Part I is in multiple choice format and the answers should

More information

Chapter 12: Carbonyl Compounds II

Chapter 12: Carbonyl Compounds II Chapter 12: Carbonyl Compounds II Learning bjectives: 1. Recognize and assign names to aldehydes and ketones. 2. Write the mechanism for nucleophilic addition and nucleophilic addition-elimination reactions

More information

Aldehydes, Ketones and Carboxylic acids

Aldehydes, Ketones and Carboxylic acids Teacher Orientation Aldehydes, Ketones and Carboxylic Acids contains following topics: Nomenclature Preparation Properties Student Orientation Preparation and Properties Of Aldehydes, Ketones and Carboxylic

More information

Class XII - Chemistry Aldehydes, Ketones and Carboxylic Acid Chapter-wise Problems

Class XII - Chemistry Aldehydes, Ketones and Carboxylic Acid Chapter-wise Problems Class XII - Chemistry Aldehydes, Ketones and Carboxylic Acid Chapter-wise Problems I. Multiple Choice Questions (Type-I) 1. Addition of water to alkynes occurs in acidic medium and in the presence of Hg

More information

Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Reactivity of Benzene

Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Reactivity of Benzene hapter 16 hemistry of Benzene: Electrophilic Aromatic Substitution Reactivity of Benzene - stabilization due to aromaticity makes benzene significantly less reactive than isolated alkenes 2 no reaction

More information

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE 5 Dr Ali El-Agamey 1 Energy Diagram of One-Step Exothermic Reaction The vertical axis in this graph represents the potential energy. The transition

More information

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area 1 CHEMISTRY 263 HOME WORK Lecture Topics: Module7. Hydrogenation of Alkenes The Function of the Catalyst - Syn and anti- addition Hydrogenation of Alkynes - Syn- addition of hydrogen: Synthesis of cis-alkenes

More information

Chapter 17. Alcohols and Phenols. Alcohols and Phenols. Naming Alcohols and Phenols

Chapter 17. Alcohols and Phenols. Alcohols and Phenols. Naming Alcohols and Phenols hapter 17 Alcohols and Phenols Alcohols and Phenols - alcohols - compounds that have hydroxyl groups bonded to saturated, sp 3 -hybridized carbon atoms - phenols - compounds that have hydroxyl groups bonded

More information

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D Alcohols I eading: Wade chapter 10, sections 10-1- 10-12 Study Problems: 10-35, 10-37, 10-38, 10-39, 10-40, 10-42, 10-43 Key Concepts and Skills: Show how to convert alkenes, alkyl halides, and and carbonyl

More information

Introduction & Definitions Catalytic Hydrogenations Dissolving Metal Reduction Reduction by Addition of H- and H+ Oxidation of Alcohols Oxidation of

Introduction & Definitions Catalytic Hydrogenations Dissolving Metal Reduction Reduction by Addition of H- and H+ Oxidation of Alcohols Oxidation of CEM 241- UNIT 4 xidation/reduction Reactions Redox chemistry 1 utline Introduction & Definitions Catalytic ydrogenations Dissolving Metal Reduction Reduction by Addition of - and + xidation of Alcohols

More information

Ketones and Aldehydes Reading Study Problems Key Concepts and Skills Lecture Topics: Structure of Ketones and Aldehydes Structure:

Ketones and Aldehydes Reading Study Problems Key Concepts and Skills Lecture Topics: Structure of Ketones and Aldehydes Structure: Ketones and Aldehydes Reading: Wade chapter 18, sections 18-1- 18-21 Study Problems: 18-43, 18-44,18-50, 18-51, 18-52, 18-59, 18-60, 18-62, 18-64, 18-72. Key Concepts and Skills: Interpret the IR, NMR,

More information

(Neither an oxidation or reduction: Addition or loss of H +, H 2 O, HX).

(Neither an oxidation or reduction: Addition or loss of H +, H 2 O, HX). eactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. xidation is a

More information

Chapter 17: Alcohols and Phenols. Based on McMurry s Organic Chemistry, 7 th edition

Chapter 17: Alcohols and Phenols. Based on McMurry s Organic Chemistry, 7 th edition Chapter 17: Alcohols and Phenols Based on McMurry s Organic Chemistry, 7 th edition Alcohols and Phenols Alcohols contain an OH group connected to a a saturated C (sp 3 ) They are important solvents and

More information

Chapter 12. Alcohols from Carbonyl Compounds Oxidation-Reduction & Organometallic Compounds. Structure

Chapter 12. Alcohols from Carbonyl Compounds Oxidation-Reduction & Organometallic Compounds. Structure Chapter 12 Alcohols from Carbonyl Compounds xidation-eduction & rganometallic Compounds Created by Professor William Tam & Dr. Phillis Chang Structure ~ 120 o ~ 120 o C ~ 120 o Carbonyl carbon: sp 2 hybridized

More information

Chapter 11. Introduction to Organic Chemistry

Chapter 11. Introduction to Organic Chemistry hapter 11 Introduction to rganic hemistry Properties of arbon and its compounds 2 Properties of arbon and its compounds 3 Properties of arbon and its compounds 4 Properties of arbon and its compounds 5

More information

Chapter 18 Ketones and Aldehydes

Chapter 18 Ketones and Aldehydes Chapter 18 Ketones and Aldehydes omenclature o Ketones have priority over alcohols Find the longest chain with the carbonyl in it. ame the parent and replace the e with one Say where the carbonyl is. octan-3-one

More information

When H and OH add to the alkyne, an enol is formed, which rearranges to form a carbonyl (C=O) group:

When H and OH add to the alkyne, an enol is formed, which rearranges to form a carbonyl (C=O) group: Next Up: Addition of, : The next two reactions are the Markovnikov and non-markovnikov additions of and to an alkyne But you will not see alcohols form in this reaction! When and add to the alkyne, an

More information

Reversible Additions to carbonyls: Weak Nucleophiles Relative Reactivity of carbonyls: Hydration of Ketones and Aldehydes

Reversible Additions to carbonyls: Weak Nucleophiles Relative Reactivity of carbonyls: Hydration of Ketones and Aldehydes Reversible Additions to carbonyls: Weak Nucleophiles Weak nucleophiles, such as water, alcohols, and amines, require acid or base catalysis to undergo addition to carbonyl compounds Relative Reactivity

More information

BRCC CHM102 Chapter 17 Notes Class Notes Page 1 of 8

BRCC CHM102 Chapter 17 Notes Class Notes Page 1 of 8 BR HM102 hapter 17 Notes lass Notes Page 1 of 8 hapter 17 Aldehydes and Ketones arbonyl group - found in fats, carbohydrates, proteins, nucleic s, and other important biological compounds. * Aldehydes

More information