Characterization of PEO-X Ionic Conductive Polymer for Anodic

Size: px
Start display at page:

Download "Characterization of PEO-X Ionic Conductive Polymer for Anodic"

Transcription

1 Characterization of PEO-X Ionic Conductive Polymer for Anodic Bonding Characterization of PEO-X Ionic Conductive Polymer for Anodic Bonding Xu Yin 1, Cuirong Liu 1*, Yue Nan 1, and Qingsen Meng 2 1 Taiyuan University of Science and Technology, 2 Taiyuan University of Technology Received: 14 April 2014, Accepted: 9 May 2014 Summary Anodic bonding is a common technology in MEMS packaging. However, only the bonding between glass and metal or semiconductor can be implemented at present. In this work, a new type of composite, solid polymer electrolyte (taking PEO as the matrix with a small amount of nano-sized inorganic filler), was prepared as a new anodic bonding material. We studied the interaction and conduction mechanism between PEO and the inorganic filler through DSC and XRD analyses, and also discussed the application feasibility of the solid polymer electrolyte being packaging material in anodic bonding. The results showed that adding inorganic filler can reduce the interface resistance of the macromolecule solid electrolyte, and control the diffusion of alkali metal ions in the solid lithium molecule electrolyte when under a strong electric field. The anodic bonding technique may promote the application of this new macromolecule material in MEMS. Keywords: MEMS, PEO, Anodic bonding, Solid electrolyte 1. Introduction During the manufacturing process of complicated MEMS, packaging is an importance step which directly affects the device s life cycle and application scope 1. MEMS packaging has always been one of the key techniques nagged by MEMS device development and practical application. Exploration of new packaging technique has become a research focus in the field 2. Glass is an ideal anodic bonding material often used in MEMS packaging 3, including Pyrex glass and silica glass, etc. However, bonding with glass requires high temperature and may cause large package-induced stress which would damage the structure in MEMS during the front-end process. Besides, cost reduction is another big issue that need to be addressed. Promotion of anodic bonding technique mainly depends on the application of new material. Smithers Information Ltd., 2014 Compared to glass, macromolecule with large molecular weight possesses low density as well as superior mechanical and heat-insulating properties. The study of replacing glass with material for packaging is of great importance to develop a new rapid anodic bonding technique with lowtemperature and high-quality. 2. Principle of Anodic Bonding with Solid Electrolyte Material Solid electrolyte is also called super ionic conductor. Its crystal structure is generally composed of two sets of crystal lattice, one as solid crystal with skeleton ions and the other as sub-lattice with migration ions. In the migration sub-lattice, the defect concentration is up to 10 2 /cm. That is, the number of migration lattice site *Corresponding Author: Cuirong Liu, Taiyuan University of Science and Technology, Tel: , yinxujia@163.com is more than the number of migration lattice itself. Therefore, all the lattices can move around and further increase the carrier concentration. Besides, the lattice synergic movement may reduce the electric conductance activation energy and thus increase the conductivity. Anodic bonding technique (also called as field diffusion bonding) is based on this property of solid electrolyte. Anodic bonding, in nature, is a solid electrochemical reaction. The bonding process is illustrated in Figure 1. When heated up to the bonding temperature, the alkali metal lattice in the solid electrolyte undergoes dissociation, With an electric field applied between the solid electrolyte and the anode metal, the alkali metal lattice in the solid electrolyte moves quickly from positive pole to negative pole, separates from the negative pole, and forms a polarized alkali metal lattice depletion layer. The depletion layer has a thickness of several microns, located near the interface between the solid electrolyte Polymers & Polymer Composites, Vol. 22, No. 8,

2 Xu Yin, Cuirong Liu, Yue Nan, and Qingsen Meng Figure 1. Diagram of bonding between metal and solid electrolyte found that the conductivity between PEO and alkali metal salt complex was mainly generated in the noncrystalline phase plateau zone To improve the conductivity of the solid macromolecule electrolyte represented by PEO-MX, restructuring and crystallization of the PEO molecular chain shall be prevented, and the relatively-large amorphous region need to be stabilized during the bonding process Preparation of Solid Macromolecule Electrolyte 3.1 Required Raw Material Required materials for preparation of are listed in Table 1. and positive pole where the negative charges accumulate. Meanwhile, image charges are generated in the positive anodized surface and a strong electric field occurs in the solid electrolyte deletion layer. The voltage drop in the solid electrolyte mainly lies in the depletion layer, while the voltage drop in non-depletion layer is much smaller. The electric field in the depletion layer can be as high as 10 6 V/ cm. This electric field produces strong electrostatic attraction in the interface between the anodized metal and the solid electrolyte. Therefore, the anions in the depletion layer move toward the anodized metal surface. As a result, the depletion layer in the solid electrolyte has elastic deformation and viscose flow, and finally impinges on the metal surface and enables irreversible oxidizing reaction between the surfaces of solid electrolyte and metal 4. latter two compositions are called as composite electrolyte 5. The connection performance of solid macromolecule electrolyte primarily depends on the conductivity, the migrated lattice quantity and the diffusion coefficient of metal salt 6. Among the three factors, high lattice conductivity is the key for anodic bonding. As a kind of polymer subject, PEO (short for polyethylene oxide) can dissolve a lot of inorganic lithium and salt, and thus possesses high conductivity at room temperature. Also, PEO has the best complexing effect and has been applied widely 7. With X-ray diffraction analysis, we found that the combination of PEO and alkali metal lattice had a stoicheiometric relationship as (PEO) 4-MX. That is, the ratio of oxygen atom to metal atom is 4. The study also 3.2 Preparation Method The was prepared as follows. Firstly, PEO and β-al 2 powder were mixed with the ratio of 20:1 in an agate jar for ball-milling. The agate balls 2, 4, 6 (6:3:1) with a ball to material ratio of 8:1 were applied with the rotating speed of 300 r/min for 10 h. Then the mixture was dried at 80 C under vacuum for 48 h. Secondly, the sintered material was compressed in a pressing machine to make a disc with the diameter of 25 mm and the thickness of 2 mm. On the other hand, anhydrous LiClO 4 was dissolved into a mixed solution of acetonitrile and acetone, with the concentration of LiClO 4 as 5%. Finally, the LiClO 4 solution was dropped on the PEO/β-Al 2 disc, which was naturally dried and used for future anodic boding. Solid macromolecule electrolyte material is composed of macromolecular polymer bulk with alkali metal salt and organic or inorganic filler. The macromolecular polymer bulk contains electro-donating groups for coordination, and the Table 1. Primary materials used in the experiment Name Molecular Formula Purity PEO H-(-OCH 2 CH 2 -) n -OH analytical pure lithium perchlorate LiClO 4 analytical pure acetonitrile CH 3 CN industrial pure inorganic filler β-al 2 analytical pure 724 Polymers & Polymer Composites, Vol. 22, No. 8, 2014

3 Characterization of PEO-X Ionic Conductive Polymer for Anodic Bonding 4. Results and Discussion 4.1 XRD Analysis Figures 2 and 3 show the XRD patterns of PEO-LiClO 4 and that of the composite solid macromolecule electrolyte prepared with β-al 2 as the additive. The scanning range (2θ) was 10 ~50. As can be seen, both patterns had two obvious diffraction peaks at 19 and 23. The addition of β-al 2 did not change the position of the diffraction peaks, but substantially reduced the peak intensity. It suggests that β-al 2 effectively hindered the crystallization of PEO-LiClO 4 and increased the PEO-LiClO 4 in amorphous region, which is beneficial to lithium ion migration in the solid macromolecule electrolyte during anodic bonding. nanoparticles 13. The large migration number makes it possible to obtain a high bonding density. 4.3 DSC Analysis Figures 4, 5 and 6 show the results of differential scanning calorimetry (DSC) for the composites with different contents of inorganic filler. It is known that the melting point of PEO is low. Therefore, the temperature scanning range was set from 0 C to 80 C, and the rise rate was 5 C/ min. The DSC curve in Figure 4 shows that there was an obvious Figure 2. XRD pattern of PEO-LiClO 4 peak at 66 C, while the peak in Figure 5 was around 77 C which is exactly the point of PEO transiting from crystalline state to amorphous state. Figure 6 shows that with the increase of the β-al 2 content, the crystallization temperature increased too. Therefore, the addition of inorganic filler β-al 2 promoted the glass transition temperature of the. This may explain why β-al 2 has an obvious inhibiting effect on PEO crystallization, and it is helpful to the ion diffusion in anodic bonding at low temperature. 4.2 Measurement of Lithium Ion Migration Number During anodic bonding, the migration number of lithium ion is an importance indicator for the bonding density. A large lithium ion migration number can promote the bonding density of the polymer electrolyte with aluminum. The migration number is usually measured by combining the steady-state current and the alternatingcurrent impedance 12. From Table 2, we can see that the addition of β-al 2 significantly increased the migration number of lithium ion, which made it easier for the lithium ion to transport positive charge in the composite solid macromolecule electrolyte. Under the exterior electric field during anodic bonding, Li + can not only migrate along the non-crystal chain segment in PEO, but also transfer electric charge through the vacancy on the surface of β-al 2 Figure 3. XRD pattern of PEO-LiClO 4 -β-al 2 Table 2. Number of Li + migration Content of β-al 2 Migration (W%) number of Li Polymers & Polymer Composites, Vol. 22, No. 8,

4 Xu Yin, Cuirong Liu, Yue Nan, and Qingsen Meng Figure 4. DSC curve of PEO-LiClO 4 Figure 5. DSC curve of PEO-LiClO 4 - β-al 2 (5% β-al 2 ) 4.4 Super-depth of Field Optical Microscopic Analysis The pure PEO and the composite were observed and compared with KEYENCE VHX-2000 superdepth of field microscope system, as shown in Figure 7 and Figure 8. On the PEO surface, there was sphere crystal structure composed of multiple inter-tangled molecular chains. The movement of polymer chains implements electric conduction through the repeated process of de-complexing, unify, and then complexing. Apparently, the masstransfer efficiency would be decreased if the molecular chain movement is under constraint. As comparison, the microstructure of the solid macromolecule electrolyte changed dramatically after adding the inorganic filler. As shown in Figure 8, the surface was much smoother, without the original ball structure. Therefore, the addition of inorganic filler affected the PEO crystallization. It may reduce the interface resistance of polymer electrolyte membrane and promote the conductivity at room temperature. As a result, it is easier for this composite material to transport charges during anodic bonding. 5. Conclusions Figure 6. DSC curve of PEO-LiClO 4 - β-al 2 (10% β-al 2 ) 1. According to the XRD and DSC results, the addition of inorganic filler restrained the crystallization of PEO, which is beneficial to the ion diffusion in the solid macromolecule electrolyte under strong electric field during anodic bonding; 2. By measuring the lithium-ion transference number, it is indicated that the inorganic filler can increase the migration of lithium ions in the polymer solid electrolyte; 3. As for the microstructure change, the addition of inorganic filler effectively reduced the resistance effect in the solid macromolecule 726 Polymers & Polymer Composites, Vol. 22, No. 8, 2014

5 Characterization of PEO-X Ionic Conductive Polymer for Anodic Bonding Figure 7. Micro-morphology of PE Figure 8. Micro-morphology of PEO-LiClO 4 -β-al 2 electrolyte interface and further promoted the conductivity at room temperature; 4. As a new packaging material, the may replace the Corning glass and be used in the anodic bonding technique. This study will promote the application of this new macromolecule material in MEMS. Acknowledgements Foundation item: supported by the National Natural Science Foundation of China ( ), Shanxi graduate outstanding innovative projects ( ). References 1. Rajarshi Saha, Nathan Fritz, Sue Ann Bidstrup-Allen, and Paul A. Kohl, Packaging-compatible wafer level capping of MEMS devices, Microelectronic Engineering, 104 (2013) Zhu Fulong, Some basic problems based on the mechanics of MEMS packaging process. Huazhong University of Science and Technology, Mrozek P., Glass-to-glass anodic bonding using TiNx interlayers for fully transparent device applications, Sensors and Actuators A: Physical, 174, (2012) Dehua Xiong, Jinshu Cheng, Hong Li, Wei Deng, and Kai Ye, Anodic bonding of glass ceramics to stainless steel coated with intermediate SiO2 layer, Microelectronic Engineering, 87(9) (2010) Masoud E.M., El-Bellihi A.-A., Bayoumy W.A., and Mousa M.A., Organic inorganic composite polymer electrolyte based on PEO LiClO4 and nano-al2o3 filler for lithium polymer batteries: Dielectric and transport properties, Journal of Alloys and Compounds, 575 (2013) Lishi Wang, Wensheng Yang, Jian Wang, and David G. Evans, New nanocomposite polymer electrolyte comprising nanosized ZnAl2O4 with a mesopore network and PEO- LiClO4. Solid State Ionics, 180(4-5) (2009) Masoud E.M., El-Bellihi A.-A., Bayoumy W.A., and Mousa M.A., Effect of LiAlO2 nanoparticle filler concentration on the electrical properties of PEO LiClO4 composite, Materials Research Bulletin, 48(3) (2013) Li Yi, Lu D., and Wong C.P., Electrical Conductive Adhesives with Nanotechnologies. NewYork:springer, Seok K. and Jin P.S., Preparation and Ion-conducting Behaviors of Poly(ethyleneoxide)-composite Electrolytes Containing Lithium Montmorillonite. Solid State Ionics, 178 (2009) Karmakar A. and Ghosh A., Dielectric permittivity and electric modulus of polyethylene oxide (PEO) LiClO4 composite electrolytes,current Applied Physics, Volume 12, Issue 2, March 2012, Pages Feng Qing, The preparation and electrochemical Properties of nano SiO2 composite polymer electrolytej]. rare metal materials and engineering, 2009,38 (1): Wang Lishi, Studies of Preparation and Properties of Nano-composite polymer lithium ion battery electrolyte D] 2009, Beijing University of Chemical Technology. 13. Jiang H.J., Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors. Small, 7 (2011) Polymers & Polymer Composites, Vol. 22, No. 8,

6 Xu Yin, Cuirong Liu, Yue Nan, and Qingsen Meng 728 Polymers & Polymer Composites, Vol. 22, No. 8, 2014

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 2 Atomic Structure

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 2 Atomic Structure The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé Chapter 2 Atomic Structure Objectives of Chapter 2 The goal of this chapter is to describe the underlying physical

More information

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Supporting Information Dual redox catalysts for oxygen reduction and evolution reactions:

More information

Chapter 12. Nanometrology. Oxford University Press All rights reserved.

Chapter 12. Nanometrology. Oxford University Press All rights reserved. Chapter 12 Nanometrology Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands in relation to a meter and sub divisions of meter. Nanometrology

More information

[Supporting information]

[Supporting information] [Supporting information] Proof of ionic transport in interparticles of LiMPO 4 electrodes Kyu T. Lee, Wang H. Kan, Linda F. Nazar *. University of Waterloo, Department of Chemistry, Waterloo, Ontario,

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for SC Advances. This journal is The oyal Society of Chemistry 2014 Supporting Information Novel Functional Material Carboxymethyl Cellulose Lithium (CMC-Li) Enhanced

More information

554 Chapter 10 Liquids and Solids

554 Chapter 10 Liquids and Solids 554 Chapter 10 Liquids and Solids above 7376 kpa, CO 2 is a supercritical fluid, with properties of both gas and liquid. Like a gas, it penetrates deep into the coffee beans; like a liquid, it effectively

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information In situ growth of heterostructured Sn/SnO nanospheres

More information

Chapter 12 - Modern Materials

Chapter 12 - Modern Materials Chapter 12 - Modern Materials 12.1 Semiconductors Inorganic compounds that semiconduct tend to have chemical formulas related to Si and Ge valence electron count of four. Semiconductor conductivity can

More information

Preface. In these systems Most of these studies have been on hlgh molecular weight [e g,

Preface. In these systems Most of these studies have been on hlgh molecular weight [e g, Preface Dunng the last two decades, Sohd Polymer Electrolytes have attracted considerable scientific attention due to their interesting physics as well as the potentials for wlde applications in hlgh energy

More information

Supporting Information. Using Graphene Oxide-based Fluoropolymer

Supporting Information. Using Graphene Oxide-based Fluoropolymer Supporting Information Interface Anchored Effect on Improving Working Stability of Deep Ultraviolet Light-Emitting Diode Using Graphene Oxide-based Fluoropolymer Encapsulant Renli Liang 1,Jiangnan Dai

More information

Advanced Analytical Chemistry Lecture 12. Chem 4631

Advanced Analytical Chemistry Lecture 12. Chem 4631 Advanced Analytical Chemistry Lecture 12 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

The application of nano aluminum powder on solid propellant

The application of nano aluminum powder on solid propellant The application of nano aluminum powder on solid propellant Metal incendiary agent is one of the important components of modern solid propellant, which can improve the explosion heat and density of propellant.

More information

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Physics of disordered materials Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Course plan Familiarity with the basic description of disordered structures

More information

Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping.

Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping. Chapter 12 Modern Materials 12.1 Semiconductors Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping. Doping yields different

More information

Supplementary Figure 1 A schematic representation of the different reaction mechanisms

Supplementary Figure 1 A schematic representation of the different reaction mechanisms Supplementary Figure 1 A schematic representation of the different reaction mechanisms observed in electrode materials for lithium batteries. Black circles: voids in the crystal structure, blue circles:

More information

Hydrogel Electrolytes Surface Modified Eggshell Membrane. Separators in All-Solid-State Supercapacitors with. Thickness Dependent Performances

Hydrogel Electrolytes Surface Modified Eggshell Membrane. Separators in All-Solid-State Supercapacitors with. Thickness Dependent Performances Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 216 Hydrogel Electrolytes Surface Modified Eggshell Membrane Separators in All-Solid-State

More information

Influence of temperature and voltage on electrochemical reduction of graphene oxide

Influence of temperature and voltage on electrochemical reduction of graphene oxide Bull. Mater. Sci., Vol. 37, No. 3, May 2014, pp. 629 634. Indian Academy of Sciences. Influence of temperature and voltage on electrochemical reduction of graphene oxide XIUQIANG LI, DONG ZHANG*, PEIYING

More information

Electrically pulsatile responsive drug delivery platform for treatment of Alzheimer s disease

Electrically pulsatile responsive drug delivery platform for treatment of Alzheimer s disease Electronic Supplementary Material Electrically pulsatile responsive drug delivery platform for treatment of Alzheimer s disease Li Wu 1,2, Jiasi Wang 1,2, Nan Gao 1, Jinsong Ren 1, Andong Zhao 1,2, and

More information

Metal organic framework-based separator for lithium sulfur batteries

Metal organic framework-based separator for lithium sulfur batteries ARTICLE NUMBER: 16094 DOI: 10.1038/NENERGY.2016.94 Metal organic framework-based separator for lithium sulfur batteries 4 5 Songyan Bai 1,2, Xizheng Liu 1, Kai Zhu 1, Shichao Wu 1,2 Haoshen Zhou 1,2,3*

More information

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White Supporting Information Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White Zhijie Bi, a,b Xiaomin Li,* a Yongbo Chen, a,b

More information

Current efficiency of synthesis magnesium hydroxide nanoparticles via. electrodeposition

Current efficiency of synthesis magnesium hydroxide nanoparticles via. electrodeposition 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 015) Current efficiency of synthesis magnesium hydroxide nanoparticles via electrodeposition XinZhong. Deng 1 ;

More information

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING UNIT 1: BREAKDOWN IN SOLIDS 1.) Introduction: The solid dielectric materials are used in all kinds of electrical apparatus and devices to insulate current carrying part from another when they operate at

More information

Chapter - 8. Summary and Conclusion

Chapter - 8. Summary and Conclusion Chapter - 8 Summary and Conclusion The present research explains the synthesis process of two transition metal oxide semiconductors SnO 2 and V 2 O 5 thin films with different morphologies and studies

More information

Chapter 3 Chapter 4 Chapter 5

Chapter 3   Chapter 4 Chapter 5 Preamble In recent years bismuth-based, layer-structured perovskites such as SrBi 2 Nb 2 O 9 (SBN) and SrBi 2 Ta 2 O 9 (SBT) have been investigated extensively, because of their potential use in ferroelectric

More information

Structural, Microstructural and Electrochemical Properties of Dispersed Type Polymer Nanocomposite Films

Structural, Microstructural and Electrochemical Properties of Dispersed Type Polymer Nanocomposite Films Structural, Microstructural and Electrochemical Properties of Dispersed Type Polymer Nanocomposite Films Anil Arya and A. L. Sharma* Centre for Physical Sciences, Central University of Punjab, Bathinda-151001,

More information

CHAPTER 3. EXPERIMENTAL STUDIES ON PVdF(HFP)-PMMA-NaX [X=I -, SCN - ] POLYMER BLEND ELECTROLYTES

CHAPTER 3. EXPERIMENTAL STUDIES ON PVdF(HFP)-PMMA-NaX [X=I -, SCN - ] POLYMER BLEND ELECTROLYTES CHAPTER 3 EXPERIMENTAL STUDIES ON PVdF(HFP)-PMMA-NaX [X=I -, SCN - ] POLYMER BLEND ELECTROLYTES CHAPTER 3 EXPERIMENTAL STUDIES ON PVdF(HFP)-PMMA-NaX [X=I -, SCN - ] POLYMER BLEND ELECTROLYTES 3.1 Introduction

More information

CHEM Principles of Chemistry II Chapter 10 - Liquids and Solids

CHEM Principles of Chemistry II Chapter 10 - Liquids and Solids CHEM 1212 - Principles of Chemistry II Chapter 10 - Liquids and Solids 10.1 Intermolecular Forces recall intramolecular (within the molecule) bonding whereby atoms can form stable units called molecules

More information

Chapter 10: Liquids and Solids

Chapter 10: Liquids and Solids Chapter 10: Liquids and Solids Chapter 10: Liquids and Solids *Liquids and solids show many similarities and are strikingly different from their gaseous state. 10.1 Intermolecular Forces Intermolecular

More information

Preparation and Properties of Chloroprene Rubber (CR)/Clay

Preparation and Properties of Chloroprene Rubber (CR)/Clay Preparation and Properties of Chloroprene Rubber (CR)/Clay Nanocomposites Yao-Yi Cheng*, Ynh-Yue Yen, Peng-Hsiang Kao, Norman Lu and Hsin-TaWang Institute of Organic and Polymeric Materials, National Taipei

More information

IMFA s. intermolecular forces of attraction Chez Chem, LLC All rights reserved.

IMFA s. intermolecular forces of attraction Chez Chem, LLC All rights reserved. IMFA s intermolecular forces of attraction 2014 Chez Chem, LLC All rights reserved. **London Dispersion Forces Also know as Van der Waals forces A momentary non symmetrical electron distribution that can

More information

Studies on dielectric properties of a conducting polymer nanocomposite system

Studies on dielectric properties of a conducting polymer nanocomposite system Indian Journal of Engineering & Materials Sciences Vol. 15, August 2008, pp. 347-351 Studies on dielectric properties of a conducting polymer nanocomposite system Saumya R Mohapatra, Awalendra K Thakur*

More information

CHAPTER 4 CHEMICAL MODIFICATION OF ACTIVATED CARBON CLOTH FOR POTENTIAL USE AS ELECTRODES IN CAPACITIVE DEIONIZATION PROCESS

CHAPTER 4 CHEMICAL MODIFICATION OF ACTIVATED CARBON CLOTH FOR POTENTIAL USE AS ELECTRODES IN CAPACITIVE DEIONIZATION PROCESS CHAPTER 4 CHEMICAL MODIFICATION OF ACTIVATED CARBON CLOTH FOR POTENTIAL USE AS ELECTRODES IN CAPACITIVE DEIONIZATION PROCESS 4.1 INTRODUCTION Capacitive deionization (CDI) is one of the promising energy

More information

Solid State electrochemistry

Solid State electrochemistry Solid State electrochemistry edited by Peter G. Bruce Department of Chemistry, University of St Andrews, Scotland IH CAMBRIDGE ^pf UNIVERSITY PRESS 1 1.1 1.2 1.3 1.4 1.5 1.6 Preface Introduction P. G.

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids PowerPoint Lecture Presentation by J. David Robertson University of Missouri Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Thin Film Bi-based Perovskites for High Energy Density Capacitor Applications

Thin Film Bi-based Perovskites for High Energy Density Capacitor Applications ..SKELETON.. Thin Film Bi-based Perovskites for High Energy Density Capacitor Applications Colin Shear Advisor: Dr. Brady Gibbons 2010 Table of Contents Chapter 1 Introduction... 1 1.1 Motivation and Objective...

More information

Science and Technology, Dalian University of Technology, Dalian , P. R. China b

Science and Technology, Dalian University of Technology, Dalian , P. R. China b Electronic Supplementary Information for Fabrication of Superior-Performance SnO 2 @C Composites for Lithium-Ion Anodes Using Tubular Mesoporous Carbons with Thin Carbon Wall and High Pore Volume Fei Han,

More information

Thermal properties of Engineering Materials

Thermal properties of Engineering Materials Thermal properties of Engineering Materials Engineering materials are important in everyday life because of their versatile structural properties. Other than these properties, they do play an important

More information

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS Chemistry 1411 Joanna Sabey Forces Phase: homogeneous part of the system in contact with other parts of the system but separated from them by a

More information

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes Supporting Information for: High-Performance Flexible Asymmetric Supercapacitors Based on 3D Porous Graphene/MnO 2 Nanorod and Graphene/Ag Hybrid Thin-Film Electrodes Yuanlong Shao, a Hongzhi Wang,* a

More information

Vertically-aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity

Vertically-aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity Supplementary Materials for Vertically-aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity Xiaokun Zhang,,, Jin Xie,, Feifei

More information

Solids / Crystal Structure

Solids / Crystal Structure The first crystal analysis proved that in the typical inorganic salt, NaCl, there is no molecular grouping. The inference that the structure consists of alternate ions of sodium and chlorine was an obvious

More information

Intermolecular Forces and Liquids and Solids Chapter 11

Intermolecular Forces and Liquids and Solids Chapter 11 Intermolecular Forces and Liquids and Solids Chapter 11 A phase is a homogeneous part of the system in contact with other parts of the system but separated from them by a well defined boundary. Phases

More information

Everything starts with atomic structure and bonding

Everything starts with atomic structure and bonding Everything starts with atomic structure and bonding not all energy values can be possessed by electrons; e- have discrete energy values we call energy levels or states. The energy values are quantized

More information

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw Hill Companies, Inc. Permission required for 1 A phase is a homogeneous part of the system in contact with other parts of the

More information

The Effect of Surface Functionalization of Graphene on the Electrical Conductivity of Epoxy-based Conductive Nanocomposites

The Effect of Surface Functionalization of Graphene on the Electrical Conductivity of Epoxy-based Conductive Nanocomposites The Effect of Surface Functionalization of Graphene on the Electrical Conductivity of Epoxy-based Conductive Nanocomposites Behnam Meschi Amoli 1,2,3,4, Josh Trinidad 1,2,3,4, Norman Y. Zhou 1,3,5, Boxin

More information

Supporting Information. Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage

Supporting Information. Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage Supporting Information Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage Wei Tian a, Han Hu b, Yixian Wang a, Peng Li c, Jingyan

More information

Chapter Outline: Ceramics. Chapter 13: Structure and Properties of Ceramics

Chapter Outline: Ceramics. Chapter 13: Structure and Properties of Ceramics Chapter Outline: Ceramics Chapter 13: Structure and Properties of Ceramics Crystal Structures Silicate Ceramics Carbon Imperfections in Ceramics Optional reading: 13.6 13.10 University of Virginia, Dept.

More information

Mechanical Behaviors Study of Epoxy Resins Reinforced with Nano-SiO 2 Particles Jian Zheng, Xiong Chen, Deng Jia, Xin Tong

Mechanical Behaviors Study of Epoxy Resins Reinforced with Nano-SiO 2 Particles Jian Zheng, Xiong Chen, Deng Jia, Xin Tong International Conference on Materials, Environmental and Biological Engineering (MEBE 2015) Mechanical Behaviors Study of Epoxy Resins Reinforced with Nano-SiO 2 Particles Jian Zheng, Xiong Chen, Deng

More information

Surface and Interface Characterization of Polymer Films

Surface and Interface Characterization of Polymer Films Surface and Interface Characterization of Polymer Films Jeff Shallenberger, Evans Analytical Group 104 Windsor Center Dr., East Windsor NJ Copyright 2013 Evans Analytical Group Outline Introduction to

More information

Properties of Compounds

Properties of Compounds Chapter 6. Properties of Compounds Comparing properties of elements and compounds Compounds are formed when elements combine together in fixed proportions. The compound formed will often have properties

More information

ENHANCED THERMAL CONDUCTIVITY OF EPOXY BASED COMPOSITES WITH SELF-ASSEMBLED GRAPHENE-PA HYBRIDS

ENHANCED THERMAL CONDUCTIVITY OF EPOXY BASED COMPOSITES WITH SELF-ASSEMBLED GRAPHENE-PA HYBRIDS ENHANCED THERMAL CONDUCTIVITY OF EPOXY BASED COMPOSITES WITH SELF-ASSEMBLED GRAPHENE-PA HYBRIDS Di. Wu 1, Gang. Li 2 *, XiaoPing. Yang 1 (1 State Key Laboratory of Organic-Inorganic Composites; Beijing

More information

Electrical Conductive Adhesives with Nanotechnologies

Electrical Conductive Adhesives with Nanotechnologies Yi Li Daniel Lu C.P. Wong Electrical Conductive Adhesives with Nanotechnologies Springer 1 Introduction 1 1.1 Electronics Packaging and Interconnect 1 1.2 Interconnection Materials 11 1.2.1 Lead-Free Interconnect

More information

PARALLEL MEASUREMENT OF CONDUCTIVE AND CONVECTIVE THERMAL TRANSPORT OF MICRO/NANOWIRES BASED ON RAMAN MAPPING

PARALLEL MEASUREMENT OF CONDUCTIVE AND CONVECTIVE THERMAL TRANSPORT OF MICRO/NANOWIRES BASED ON RAMAN MAPPING Proceedings of the Asian Conference on Thermal Sciences 217, 1st ACTS March 26-3, 217, Jeju Island, Korea ACTS-4 PARALLEL MEASUREMENT OF CONDUCTIVE AND CONVECTIVE THERMAL TRANSPORT OF MICRO/NANOWIRES BASED

More information

High-Performance Silicon Battery Anodes Enabled by

High-Performance Silicon Battery Anodes Enabled by Supporting Information for: High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies Min Zhou,, Xianglong Li, *, Bin Wang, Yunbo Zhang, Jing Ning, Zhichang Xiao, Xinghao Zhang,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supporting Information Room-temperature rechargeable Na-SO 2 batteries with gel-polymer electrolyte

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Room-Temperature Film Formation of Metal Halide Perovskites

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting information The Assembly of Vanadium (IV)-Substituted Keggin-type

More information

Liquids & Solids: Section 12.3

Liquids & Solids: Section 12.3 Liquids & Solids: Section 12.3 MAIN IDEA: The particles in and have a range of motion and are not easily. Why is it more difficult to pour syrup that is stored in the refrigerator than in the cabinet?

More information

Superior thermal conductivity of poly (ethylene oxide) for solid-state. electrolytes: a molecular dynamics study

Superior thermal conductivity of poly (ethylene oxide) for solid-state. electrolytes: a molecular dynamics study Superior thermal conductivity of poly (ethylene oxide) for solid-state electrolytes: a molecular dynamics study Han Meng 1,2, Xiaoxiang Yu 1,2, Hao Feng 1,2, Zhigang Xue 3, *, Nuo Yang 1,2, * 1 State Key

More information

Supplementary Materials for

Supplementary Materials for Supplementary Materials for Extremely Low Operating Current Resistive Memory Based on Exfoliated 2D Perovskite Single Crystals for Neuromorphic Computing He Tian,, Lianfeng Zhao,, Xuefeng Wang, Yao-Wen

More information

Characterization of PVC/PEMA Based Polymer Blend Electrolytes

Characterization of PVC/PEMA Based Polymer Blend Electrolytes Int. J. Electrochem. Sci., 3 (2008) 282-290 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Characterization of PVC/PEMA Based Polymer Blend Electrolytes S. Rajendran *, M. Ramesh

More information

Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries

Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries Supporting Information Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries Zhiqiang Zhu, Shiwen Wang, Jing Du, Qi Jin, Tianran Zhang,

More information

Lecture No. (1) Introduction of Polymers

Lecture No. (1) Introduction of Polymers Lecture No. (1) Introduction of Polymers Polymer Structure Polymers are found in nature as proteins, cellulose, silk or synthesized like polyethylene, polystyrene and nylon. Some natural polymers can also

More information

Ultrathin V 2 O 5 Nanosheet Cathodes: Realizing Ultrafast Reversible Lithium Storage

Ultrathin V 2 O 5 Nanosheet Cathodes: Realizing Ultrafast Reversible Lithium Storage Supplementary Information for Ultrathin V 2 O 5 Nanosheet Cathodes: Realizing Ultrafast Reversible Lithium Storage Xianhong Rui, ab Ziyang Lu, a Hong Yu, a Dan Yang, a Huey Hoon Hng, a Tuti Mariana Lim,*

More information

Preparation and characterization of hot-pressed solid polymer electrolytes:

Preparation and characterization of hot-pressed solid polymer electrolytes: Indian Journal of Pure & Applied Physics Vol. 54, September 2016, pp. 583-588 Preparation and characterization of hot-pressed solid polymer electrolytes: (1-x)PEO: xnabr Angesh Chandra* Department of Applied

More information

Supporting Information for:

Supporting Information for: Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Supporting Information for: Hydroxyl-Triggered Fluorescence for Location of Inorganic Materials

More information

(Refer Slide Time: 00:58)

(Refer Slide Time: 00:58) Nature and Properties of Materials Professor Bishak Bhattacharya Department of Mechanical Engineering Indian Institute of Technology Kanpur Lecture 18 Effect and Glass Transition Temperature In the last

More information

Highly Sensitive and Stable Humidity Nanosensors based on LiCl Doped

Highly Sensitive and Stable Humidity Nanosensors based on LiCl Doped Supporting Information for: Highly Sensitive and Stable Humidity Nanosensors based on LiCl Doped TiO 2 Electrospun Nanofibers Zhenyu Li 1, Hongnan Zhang 1, Wei Zheng 1, Wei Wang 1, Huimin Huang 1, Ce Wang

More information

Inorganic Ion Exchanger Mg1.5Ti1.25O4 and Its Ion-exchange Ability Jin-He JIANGa*, Su-Qing WANGb and Sheng-Bin ZHANGc

Inorganic Ion Exchanger Mg1.5Ti1.25O4 and Its Ion-exchange Ability Jin-He JIANGa*, Su-Qing WANGb and Sheng-Bin ZHANGc 2nd Annual International Conference on Advanced Material Engineering (AME 2016) Inorganic Ion Exchanger Mg1.5Ti1.25O4 and Its Ion-exchange Ability Jin-He JIANGa*, Su-Qing WANGb and Sheng-Bin ZHANGc Department

More information

Silver Ion Conducting Properties And Differential Thermal Analysis Of Agi Family Super Ionic Conductor

Silver Ion Conducting Properties And Differential Thermal Analysis Of Agi Family Super Ionic Conductor Silver Ion Conducting Properties And Differential Thermal Analysis Of Agi Family Super Ionic Conductor Kris Shrishak 1, Enakshi Das 2,P.SivaSankari 3 1 Department of Electronic and Communication Engineering,

More information

Chap 10 Part 3a.notebook December 12, 2017

Chap 10 Part 3a.notebook December 12, 2017 Metallic Bonding and Semiconductors Chapter 10 Sect 4 Metallic Bonding positive metal ions surrounded by a "sea of electrons" Bonding is strong and nondirectional Iron, Silver, alloys, Brass, Bronze Forces

More information

Lecture 18: Microfluidic MEMS, Applications

Lecture 18: Microfluidic MEMS, Applications MECH 466 Microelectromechanical Systems University of Victoria Dept. of Mechanical Engineering Lecture 18: Microfluidic MEMS, Applications 1 Overview Microfluidic Electrokinetic Flow Basic Microfluidic

More information

Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li-S Cell

Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li-S Cell Supporting Information Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li-S Cell Xabier Judez, Heng Zhang,*, Chunmei Li,*, José A. González-Marcos, Zhibin

More information

Materials for Civil and Construction Engineers CHAPTER 2. Nature of Materials

Materials for Civil and Construction Engineers CHAPTER 2. Nature of Materials Materials for Civil and Construction Engineers CHAPTER 2 Nature of Materials Bonds 1. Primary Bond: forms when atoms interchange or share electrons in order to fill the outer (valence) shells like noble

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary material (ESI) for Nanoscale Electronic Supplementary Information (ESI) Synthesis of Nanostructured Materials by Using Metal-Cyanide Coordination Polymers and Their Lithium Storage

More information

Enhanced Thermal Conductivity for Poly(vinylidene fluoride) Composites with Nano-carbon Fillers

Enhanced Thermal Conductivity for Poly(vinylidene fluoride) Composites with Nano-carbon Fillers Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 SUPPORTING INFORMATION Enhanced Thermal Conductivity for Poly(vinylidene fluoride) Composites

More information

Semiconductor Polymer

Semiconductor Polymer Semiconductor Polymer Organic Semiconductor for Flexible Electronics Introduction: An organic semiconductor is an organic compound that possesses similar properties to inorganic semiconductors with hole

More information

EVALUATION OF A.C. CONDUCTIVITY FOR LEAD SILICATE GLASS FROM DIELECTRIC MEASUREMENTS

EVALUATION OF A.C. CONDUCTIVITY FOR LEAD SILICATE GLASS FROM DIELECTRIC MEASUREMENTS Journal of Electron Devices, Vol. 12, 2012, pp. 750-755 JED [ISSN: 1682-3427 ] EVALUATION OF A.C. CONDUCTIVITY FOR LEAD SILICATE GLASS FROM DIELECTRIC MEASUREMENTS D.K. Mahde, B.T.Chiad, Ghuson H.Mohamed

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Self-supported formation of hierarchical

More information

Supporting Information

Supporting Information Supporting Information Cellulose Fiber-based Hierarchical Porous Bismuth Telluride for High-Performance Flexible and Tailorable Thermoelectrics Qun Jin a,b, Wenbo Shi c,d, Yang Zhao a,c, Jixiang Qiao a,c,

More information

1. Demonstrate that the minimum cation-to-anion radius ratio for a coordination number of 8 is

1. Demonstrate that the minimum cation-to-anion radius ratio for a coordination number of 8 is 1. Demonstrate that the minimum cation-to-anion radius ratio for a coordination number of 8 is 0.732. This problem asks us to show that the minimum cation-to-anion radius ratio for a coordination number

More information

Material History. Is American culture currently being defined

Material History. Is American culture currently being defined Introduction ti to Materials What Are Materials? Substances out of which all things are made Currently MatWeb Material Property Data website lists over 76,000 individually unique materials What materials

More information

Supplementary Figure 1 Supplementary Figure 2

Supplementary Figure 1 Supplementary Figure 2 Supplementary Figure 1 XRD pattern of pure 3D PGC framework. The pure 3D PGC was obtained by immersing NaCl Na 2 S@GC in water to remove the NaCl and Na 2 S. The broad reflection peak in the range of 15

More information

AC impedance and dielectric spectroscopic studies of Mg 2+ ion conducting PVA PEG blended polymer electrolytes

AC impedance and dielectric spectroscopic studies of Mg 2+ ion conducting PVA PEG blended polymer electrolytes Bull. Mater. Sci., Vol. 34, No. 5, August 211, pp. 163 167. c Indian Academy of Sciences. AC impedance and dielectric spectroscopic studies of Mg 2+ ion conducting PVA PEG blended polymer electrolytes

More information

College of Mechanical Engineering, Yangzhou University, Yangzhou , China; 2

College of Mechanical Engineering, Yangzhou University, Yangzhou , China; 2 Proceedings Light-Assisted Room-Temperature NO2 Sensors Based on Black Sheet-Like NiO Xin Geng 1,2,3, Driss Lahem 4, Chao Zhang 1, *, Marie-Georges Olivier 3 and Marc Debliquy 3 1 College of Mechanical

More information

Supplementary information. Reduced graphene oxide derived from used cell graphite, and its green fabrication as eco-friendly supercapacitor

Supplementary information. Reduced graphene oxide derived from used cell graphite, and its green fabrication as eco-friendly supercapacitor Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supplementary information Reduced graphene oxide derived from used cell graphite, and its green

More information

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Metallurgy and Material Science Indian Institute of Technology, Kharagpur

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Metallurgy and Material Science Indian Institute of Technology, Kharagpur Processing of Semiconducting Materials Prof. Pallab Banerji Department of Metallurgy and Material Science Indian Institute of Technology, Kharagpur Lecture - 9 Diffusion and Ion Implantation III In my

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012658 TITLE: Synthesis of Nanosized Lithium Manganate For Lithium-ion Secondary Batteries DISTRIBUTION: Approved for public

More information

Nanosheet-Constructed Porous BiOCl with Dominant {001} Facets for Superior Photosensitized Degradation

Nanosheet-Constructed Porous BiOCl with Dominant {001} Facets for Superior Photosensitized Degradation Electronic Supplementary Information Nanosheet-Constructed Porous BiOCl with Dominant {001} Facets for Superior Photosensitized Degradation Dong-Hong Wang, ab Gui-Qi Gao, b Yue-Wei Zhang, a Li-Sha Zhou,

More information

Relaxor characteristics of ferroelectric BaZr 0.2 Ti 0.8 O 3 ceramics

Relaxor characteristics of ferroelectric BaZr 0.2 Ti 0.8 O 3 ceramics Materials Science-Poland, Vol. 27, No. 3, 2009 Relaxor characteristics of ferroelectric BaZr 0.2 Ti 0.8 O 3 ceramics C. FU 1, 2*, F. PAN 1, W. CAI 1, 2, X. DENG 2, X. LIU 2 1 School of Materials Science

More information

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material Supporting Information Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material Wei Huang,, Shuo Li, Xianyi Cao, Chengyi Hou, Zhen Zhang, Jinkui Feng,

More information

Application of Nano-ZnO on Antistatic Finishing to the Polyester Fabric

Application of Nano-ZnO on Antistatic Finishing to the Polyester Fabric Modern Applied Science January, 2009 Application of Nano-ZnO on Antistatic Finishing to the Polyester Fabric Fan Zhang & Junling Yang School of Material Science and Chemical Engineer Tianjin Polytechnic

More information

Electronic Supplementary Information for the Manuscript

Electronic Supplementary Information for the Manuscript Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Electronic Supplementary Information for the Manuscript Enhancing the visible

More information

Ion Conducting Behaviour of Nano Dispersed Polymer Gel Electrolytes Containing NH 4 PF 6

Ion Conducting Behaviour of Nano Dispersed Polymer Gel Electrolytes Containing NH 4 PF 6 Portugaliae Electrochimica Acta 26/6 (2008) 493-501 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Ion Conducting Behaviour of Nano Dispersed Polymer Gel Electrolytes Containing NH 4 PF 6 Jitender P. Sharma

More information

Chapter 10 Review Packet

Chapter 10 Review Packet Chapter 10 Review Packet Name 1. If water and carbon dioxide molecules did interact, what major intermolecular force will exist between these molecules? a) Hydrogen bonding b) London dispersion c) Dipole-dipole

More information

Materials and Devices in Electrical Engineering

Materials and Devices in Electrical Engineering Examination WS 02/03 Materials and Devices in Electrical Engineering Monday 17 th of March, 9:00 11:00, International Department, SR. 203 Notice 1. It is allowed to use any kind of aids (books, scripts,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information High Electrocatalytic Activity of Self-standing Hollow NiCo 2 S 4 Single Crystalline Nanorod Arrays towards Sulfide Redox Shuttles in Quantum Dot-sensitized Solar Cells

More information

RESEARCH HIGHLIGHTS. Computationally-guided Design of Polymer Electrolytes

RESEARCH HIGHLIGHTS. Computationally-guided Design of Polymer Electrolytes RESEARCH HIGHLIGHTS From the Resnick Sustainability Institute Graduate Research Fellows at the California Institute of Technology Computationally-guided Design of Polymer Electrolytes Global Significance

More information