H H N N H. cyclodiborazane HB NH HB NH HB NH HN HB

Size: px
Start display at page:

Download "H H N N H. cyclodiborazane HB NH HB NH HB NH HN HB"

Transcription

1 Recommended Reading: , (3rd/4th edition) Ch 102 Problem Set 3 Due: Thursday, April 26 efore Class Problem 1 (2 points) A) On-board storage of hydrogen is a major obstacle for the use of hydrogen as a clean-burning transportation fuel. Ammonia-borane is an appealing candidate for chemical hydrogen-storage applications. Amine-borane adducts can be readily synthesized from free amines and boranes. Thermal decomposition of ammonia-borane adducts yields hydrogen and a mixture of aminoborane and borazine products. Draw two resonance structures for aminoborane; given these structures, discuss the propensity to make oligomers borane ammonia ammonia-borane aminoborane - 2 cyclotriborazane + cyclodiborazane - 2 borazine diborazine (OTE: assign point groups for two conformers; one in which the rings are coplanar and one in which the rings are perpendicular) borazanaphthalene p-borazaterphenyl polyborazylene (consider only the conformer with coplanar rings) x

2 ) Give the point group for cyclotriborazane, cyclodiborazane, diborazine, and p-borazaterphenyl (see notes under drawings). For polyborazylene, determine the 1-D space symmetry class (assume planar geometry); highlight unit cell and asymmetric unit. Also, determine the 2-D space group of the fully dehydrogenated ()x product (assume a graphene-like structure); highlight unit cell and asymmetric unit. C) Using the equation below, calculate the hydrogen capacity (wt%) of ammonia-borane. e sure to show how you arrived at your answer for full credit. [cat] X 3 3 3X 2 + () X D) An alternative material for hydrogen storage is based on microporous metal-organic frameworks (MOFs). Metal-organic frameworks consist of metal ions or clusters connected through organic bridging ligands into extended one-, two-, or three-dimensional networks. The high surface area and porous nature of these new materials make them particularly promising candidates for high capacity (wt%) hydrogen storage materials. The crystal structures shown below are portions of metal organic frameworks that have been used for hydrogen storage. Assign point groups to each of the crystal structures and identify the number of different kinds of Mn atoms for each structure. 2

3 Problem 2 (2 points) For all the bolded compounds below, a) Draw the best Lewis dot structure(s). If applicable, draw at least one with hypervalency and one without, clearly labeling which is which. Label formal charges and oxidation states. b) Identify the point group of the molecule. Is the molecule chiral? c) Give the VSEPR structure of every atom in your structure bonded to multiple atoms, and indicate bond angles (e.g ⁰, <120⁰, >90⁰ ). d) Indicate whether the molecule has closed shell or open shell electronic configuration. An important component of the upper atmosphere is ozone, which adsorbs UV light harmful to life on the surface. uman emissions, however, have depleted the ozone layer, forming a hole over Antarctica; when discovered, the hole was so large that satellite instruments were rejecting the measurements as being impossible. One mechanism for the breakdown of ozone involves atmospheric ClO (Seinfeld, J.., Pandis, S.., Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; Wiley: oboken, 2006.). Crutzen, Molina, and Rowland won the obel Prize in 1995 for their work on atmospheric ozone chemistry (obelprize.org. The obel Prize in Chemistry (accessed April 20, 2017). One minor component of our atmosphere is sulfur, which can exist in several oxidation states. The biggest natural component of sulfur is dimethyl sulfide, which is emitted by marine phytoplankton and must be oxidized before it is soluble enough in water to return to the surface. elow is one common mechanism of dimethyl sulfide oxidation, resulting in the formation of methanesulfonic acid (MSA). A major component of human emissions is sulfur dioxide. This chemical is oxidized in the atmosphere and is a significant cause of acid rain (Seinfeld, J.., Pandis, S.., Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; Wiley: oboken, 2006.). 3

4 Interesting sulfur chemistry does not just occur in the atmosphere. The petroleum impurity di-tert-butyl disulfide can be converted to tert-butanesulfonamide, which can act as an ammonia surrogate in the synthesis of chiral amines (Weix, D. J.; Ellman, J.A. Org. Lett., 2003, 5 (8), pp ), (Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res., 2002, 35 (11), pp ). Problem 3 (2 points) A) The synthesis of polynitrogen compounds is of particular interest towards the development of new high-energy materials. itrogen-nitrogen single and double bonds are significantly weaker in energy compared with the triple bond in 2, leading to decomposition of polynitrogen compounds to 2 to be very favorable. The 7O + ion has C2v symmetry and features an 7 chain. Draw at least three Lewis dot structures. Compound (C223)(3C22) displays an 8 chain and two five-membered rings. Draw at least two Lewis dot structures. ) The 5 + cation can be prepared using the reaction below: [2F][SbF6] + 3 à [5][SbF6] + F Provide at least two Lewis dot structures for ions [2F] + and [5] +. ote that [5] + consists of an 5 chain. Provide an example of an abundant and stable neutral molecule isoelectronic to [2F] +. C) The crystal structure of [5][Sb2F11] was reported in 2001 by Christe and coworkers (JACS, 2001, 6308). The [5] + ion reacts with reagents such as O, O2, and r2, as shown below. For each of the following reactions assign the oxidation states of each atom and indicate which is the oxidant and which is the reductant. O + [5][SbF6] à [O][SbF6] r2 + [5][SbF6] à [r2][sbf6] D) One very high energy target molecule is 55, a theoretical salt consisting of the 5 + cation and the cyclic 5 - anion. Similar five-membered cyclic species, such as the cyclopentadienyl anion, are common ligands in organometallic chemistry. While 5 - has only been detected in the gas phase, from high energy electrospray ionization of 4-pentazolyl-phenol, solid state-characterization of the corresponding P23 - anion was reported by Velian and Cummins in 2015 (Science, 2015, 1001). For each of the following cyclic compounds, draw at least two Lewis dot structures, predict if aromatic, and describe distortion from the idealized pentagonal geometry. C55 - C P23 - E) Also related to C55 -, 2S3 2+ and 2Se3 2+ have been structurally characterized. 2S3 2+ is prepared in the following reaction, in which none of the original -S linkages are completely broken: [SS][AsF6] + [S][AsF6] à [2S3][AsF6]2 For each of the cations in the equation above provide at least two Lewis dot structures. 4

5 Problem 4 (2 points) Part A The bonding in LiF and F was discussed in class. For this problem also consider Cl. Electronic structure calculations were performed with Gaussian, and the molecular orbitals of interest are depicted on page 6 vertically for the three species. ased on the atomic orbital contributions to the molecular orbitals, assign by visual inspection each MO diagram to LiF, F, or Cl. (int: take into consideration the energies of the atomic orbitals involved) Clearly label which side corresponds to which atom (ie what are the identities of A and for each case?). riefly explain your assignments. For each horizontal set of three MOs also assign the axial symmetry using the A- bond as the axis. Part The first ionization energies of F and 2 are ev and ev respectively. a) Draw a molecular orbital diagram for each molecule using the concept of axial symmetry (take into account the energy of the valence atomic orbitals). Fill in the appropriate number of electrons and identify the symmetry of each orbital (s or p) and label it as bonding, nonbonding (nb) or antibonding (*). b) Label the highest occupied molecular orbital (OMO) and the lowest unoccupied molecular orbital (LUMO). c) Explain the difference in ionization energy for these isoelectronic species based on the atomic orbital character of the highest occupied molecular orbital. d) Images of several molecular orbitals of F and 2, calculated with Gaussian, are depicted on page 7. ased on the atomic orbital contributions to the molecular orbitals, assign by visual inspection each MO diagram to F or 2. What are the identities of A and for each case? Explain. e) ased on the MO diagrams and atomic orbital contributions, which species do you expect to bind better to 3? Which one would you expect to have a stronger interaction with a molecule displaying a filled orbital of p symmetry of appropriate energy. ote: Gaussian output files for these calculations are available on the course website. Visualization using the software is allowed for this problem. 5

6 For Problem 4, Part A: A A A i) ii) iii) LUMO* OMO* (degenerate set of two molecular orbitals) OMO-1 OMO-2 *LOMO = lowest unoccupied molecular orbital *OMO = highest occupied molecular orbital 6

7 For Problem 4, Part : A A i) ii) LUMO (degenerate set of two molecular orbitals) OMO OMO-1 (degenerate set of two molecular orbitals) OMO-2 OMO-3 Problem 5. (2 points) Read the instruction below and format file names properly Pick a topic of interest from the recommended reading in bold. Prepare two power point slides including relevant descriptive chemistry (background on synthesis, applications, reactivity, properties, trend, etc, as applicable), some concepts presented in class (point group assignment, symmetry elements, etc) and some application of the provided software (for example, highlight symmetry elements / operations). Turn in a printout of the slides with your problem set, and the TAs the slides in pdf format by 12:00 noon on the due date. Please format file names as Firstame_Lastame_PSET# and include your name on the first slide. 7

Problem 1 (2 points) Lone pair on N may donate to an empty p orbital of B on another molecule of aminoborane, leading to oligomers.

Problem 1 (2 points) Lone pair on N may donate to an empty p orbital of B on another molecule of aminoborane, leading to oligomers. Problem 1 (2 points) B N Lone pair on N may donate to an empty p orbital of B on another molecule of aminoborane, leading to oligomers. B N x 3 B N 3 3x 2 + (BN) x MW( 3 B N 3 ) = 30.87 g/mol MW( 2 ) =

More information

Recommended Reading: 20, , 13 (3rd edition); 19, , 13 (4th edition)

Recommended Reading: 20, , 13 (3rd edition); 19, , 13 (4th edition) Recommended Reading: 20, 21.2-21.4, 13 (3rd edition); 19, 20.2-20.4, 13 (4th edition) h 102 Problem Set 5 Due: Thursday, May 17 Before lass Problem 1 (2 points) Part A Hard and soft acids and bases (HSAB)

More information

Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class. Problem 1 (1 points) Part A

Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class. Problem 1 (1 points) Part A Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class Problem 1 (1 points) Part A Kinetics experiments studying the above reaction determined

More information

To visualize the three-dimensional structures of some common molecules. To obtain bond angle, bond length, and hybridization data for molecules.

To visualize the three-dimensional structures of some common molecules. To obtain bond angle, bond length, and hybridization data for molecules. Molecular Geometry PURPOSE A B C To explore some simple molecular structures. To explore the relationship between bond order and bond length. To explore resonance structures. GOALS To compare Lewis structures

More information

Ch 102 Problem Set 2 Due: Thursday, April 19, 2018 Before Class. Problem 1. (1 point)

Ch 102 Problem Set 2 Due: Thursday, April 19, 2018 Before Class. Problem 1. (1 point) Recommended reading: 16.7-16.10 (3rd/4th edition) Ch 102 Problem Set 2 Due: Thursday, April 19, 2018 Before Class Problem 1. (1 point) Metal-containing polymers have been studied for a wide variety of

More information

CHEM J-5 June 2014

CHEM J-5 June 2014 CHEM1101 2014-J-5 June 2014 The molecular orbital energy level diagrams for H 2, H 2 +, H 2 and O 2 are shown below. Fill in the valence electrons for each species in its ground state and label the types

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories MOLECULAR SHAPES 2 Molecular Shapes Lewis Structures show bonding and lone pairs do not denote shape Use Lewis Structures to determine shapes Molecular

More information

Chapter 6 Molecular Structure

Chapter 6 Molecular Structure hapter 6 Molecular Structure 1. Draw the Lewis structure of each of the following ions, showing all nonzero formal charges. Indicate whether each ion is linear or bent. If the ion is bent, what is the

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

Chapter 8 Chemical Bonding

Chapter 8 Chemical Bonding Chapter 8 Chemical Bonding Types of Bonds Ionic Bonding Covalent Bonding Shapes of Molecules 8-1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Table 8.1 Two

More information

RIO TINTO AUSTRALIAN CHEMISTRY OLYMPIAD

RIO TINTO AUSTRALIAN CHEMISTRY OLYMPIAD RI TIT AUSTRALIA CEMISTRY LYMPIAD FIAL EXAMIATI PART B 2000 Please note that this answer book will be photocopied when returned and then split so that answers are sent to the appropriate markers. For this

More information

Chapter 6 Chemistry Review

Chapter 6 Chemistry Review Chapter 6 Chemistry Review Multiple Choice Identify the choice that best completes the statement or answers the question. Put the LETTER of the correct answer in the blank. 1. The electrons involved in

More information

Copyright McGraw-Hill Education. Permission required for reproduction or display : A force that holds atoms together in a molecule or compound

Copyright McGraw-Hill Education. Permission required for reproduction or display : A force that holds atoms together in a molecule or compound : Chemical Bonding 8-1 8.1 Types of Bonds : A force that holds atoms together in a molecule or compound Two types of chemical bonds Ionic Bonds Covalent Bonds 8-2 1 8.1 Types of Bonds 8-3 8.1 Types of

More information

Constructing a MO of NH 3. Nitrogen AO symmetries are

Constructing a MO of NH 3. Nitrogen AO symmetries are Constructing a MO of NH 3 Nitrogen AO symmetries are To develop a MO scheme for NH 3 assume that only the 2s and2p orbitals of nitrogen interact with the hydrogen 1s orbitals (i.e., the nitrogen 1s orbital

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

Practice Test Questions 4 Molecular Orbital Theory: Polyatomic Molecules

Practice Test Questions 4 Molecular Orbital Theory: Polyatomic Molecules Practice Test Questions 4 Molecular rbital Theory: Polyatomic Molecules 1. The images below show the valence molecular orbitals obtained for the carbonate ion via a semiempirical calculation. Both side

More information

3/30/2015. Third energy level. Second energy level. Energy absorbed. First energy level. Atomic nucleus. Energy released (as light)

3/30/2015. Third energy level. Second energy level. Energy absorbed. First energy level. Atomic nucleus. Energy released (as light) Chapter 2 An Introduction Chemistry Lecture 2: Energy Levels and Chemical Bonding Electrons are always moving Outside the nucleus in atomic orbitals Maybe usually Average distance from nucleus (size of

More information

right (A, B, and C Example A corresponds to the structure reported by the Chirik group).

right (A, B, and C Example A corresponds to the structure reported by the Chirik group). Problem 1 (3 points) In 2004, a bimetallic Zr compound exhibiting side-on 2 binding was reported by Chirik and coworkers (ature, 2004, 427, pp. 527-530). The crystal structure of this compound was obtained,

More information

4 Diatomic molecules

4 Diatomic molecules s manual for Burrows et.al. Chemistry 3 Third edition 4 Diatomic molecules Answers to worked examples WE 4.1 The Lewis model (on p. 174 in Chemistry 3 ) Use the Lewis model to describe the bonding in (a)

More information

L L Ch112 Problem Set 3 Due: Thursday, October 22 before class. Problem 1 (3 points)

L L Ch112 Problem Set 3 Due: Thursday, October 22 before class. Problem 1 (3 points) Problem 1 (3 points) Part A. In problem set 2, the π-system of bicyclo[2.2.2]octa-2,5,7-triene was analyzed. 1. Starting from the MO diagram of the π-system of barrelene, show how the energy of each molecular

More information

5 Polyatomic molecules

5 Polyatomic molecules s manual for Burrows et.al. Chemistry 3 Third edition 5 Polyatomic molecules Answers to worked examples WE 5.1 Formal charges in N 2 (on p. 221 in Chemistry 3 ) Use formal charges to decide whether oxygen

More information

Chem Spring, 2017 Assignment 5 - Solutions

Chem Spring, 2017 Assignment 5 - Solutions Page 1 of 10 Chem 370 - Spring, 2017 Assignment 5 - Solutions 5.1 Additional combinations are p z ± d z 2, p x ±d xz, and p y ±d yz. p z ± d z 2 p x ±d xz or p y ±d yz 5.2 a. Li 2 has the configuration

More information

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds ybridization MO theory 1 Molecular Geometry 3-D arrangement of atoms 2 VSEPR Valence-shell

More information

Please read and sign the Honor Code statement below:

Please read and sign the Honor Code statement below: CHEM 3311 Exam #1 Name Dr. Minger June 7, 2010 Please read and sign the Honor Code statement below: I pledge that on my honor, as a University of Colorado at Boulder student, I have neither given nor received

More information

with the larger dimerization energy also exhibits the larger structural changes.

with the larger dimerization energy also exhibits the larger structural changes. A7. Looking at the image and table provided below, it is apparent that the monomer and dimer are structurally almost identical. Although angular and dihedral data were not included, these data are also

More information

Chapter 9. and Bonding Theories

Chapter 9. and Bonding Theories Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Structure and Bonding of Organic Molecules

Structure and Bonding of Organic Molecules Chem 220 Notes Page 1 Structure and Bonding of Organic Molecules I. Types of Chemical Bonds A. Why do atoms forms bonds? Atoms want to have the same number of electrons as the nearest noble gas atom (noble

More information

Of The Following Cannot Accommodate More Than An Octet Of Electrons

Of The Following Cannot Accommodate More Than An Octet Of Electrons Of The Following Cannot Accommodate More Than An Octet Of Electrons This is most common example of exceptions to the octet rule. their empty d orbitals to accommodate additional electrons. A case where

More information

Chemical Bonding. 8.1 Types of Bonds. 8.1 Types of Bonds. : A force that holds atoms together in a molecule or compound

Chemical Bonding. 8.1 Types of Bonds. 8.1 Types of Bonds. : A force that holds atoms together in a molecule or compound : Chemical Bonding 8-1 8.1 Types of Bonds : A force that holds atoms together in a molecule or compound Two types of chemical bonds Ionic Bonds Covalent Bonds 8-2 8.1 Types of Bonds 8-3 1 8.1 Types of

More information

CHEM 344 Molecular Modeling

CHEM 344 Molecular Modeling CHEM 344 Molecular Modeling The Use of Computational Chemistry to Support Experimental Organic Chemistry Part 1: Molecular Orbital Theory, Hybridization, & Formal Charge * all calculation data obtained

More information

Molecular Orbital Theory This means that the coefficients in the MO will not be the same!

Molecular Orbital Theory This means that the coefficients in the MO will not be the same! Diatomic molecules: Heteronuclear molecules In heteronuclear diatomic molecules, the relative contribution of atomic orbitals to each MO is not equal. Some MO s will have more contribution from AO s on

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6-1 Introduction to Chemical Bonding Chemical Bonds Valence electrons are attracted to other atoms, and that determines the kind of chemical bonding that occurs between

More information

Lecture B1 Lewis Dot Structures and Covalent Bonding

Lecture B1 Lewis Dot Structures and Covalent Bonding Lecture B1 Lewis Dot Structures and Covalent Bonding G.N. Lewis & Linus Pauling Two American Chemists G. N. Lewis 1875-1946 Linus Pauling 1901-1994 The Covalent Bond 1. First proposed by G.N. Lewis in

More information

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015 chapter 8 Bonding General Concepts.notebook Chapter 8: Bonding: General Concepts Mar 13 11:15 AM 8.1 Types of Chemical Bonds List and define three types of bonding. Bonds are forces that hold groups of

More information

Chapter 9. and Bonding Theories. Molecular Shapes. What Determines the Shape of a Molecule? 3/8/2013

Chapter 9. and Bonding Theories. Molecular Shapes. What Determines the Shape of a Molecule? 3/8/2013 Chemistry, The Central Science, 10th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 9 Theories John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice-Hall,

More information

Chapter 4 Lecture Outline. Copyright McGraw-Hill Education. Permission required for reproduction or display.

Chapter 4 Lecture Outline. Copyright McGraw-Hill Education. Permission required for reproduction or display. Chapter 4 Lecture Outline 1 Copyright McGraw-ill Education. Permission required for reproduction or display. 4.1 Introduction to Covalent Bonding Covalent bonds result from the sharing of electrons between

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Problem 1 (4 points) D2h. C2v. Part A.

Problem 1 (4 points) D2h. C2v. Part A. Problem 1 (4 points) In 2004, a bimetallic Zr compound exhibiting side-on N2 binding was reported by Chirik and coworkers (Nature, 2004, 427, pp. 527-530). The crystal structure of this compound was obtained,

More information

Chapter 7 Chemical Bonding and Molecular Structure

Chapter 7 Chemical Bonding and Molecular Structure Chapter 7 Chemical Bonding and Molecular Structure Three Types of Chemical Bonding (1) Ionic: formed by electron transfer (2) Covalent: formed by electron sharing (3) Metallic: attraction between metal

More information

CHEM- 457: Inorganic Chemistry

CHEM- 457: Inorganic Chemistry CHEM- 457: Inorganic Chemistry Midterm I March 13 th, 2014 NAME This exam is comprised of six questions and is ten pages in length. Please be sure that you have a complete exam and place your name on each

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds An attractive force that holds two atoms together in a more complex unit Three basic types of bonds Ionic Electrons are transferred from one

More information

What is the energy of a photon with wavelength 232 nm?

What is the energy of a photon with wavelength 232 nm? EMISTRY 110 EXAM 1 February 6, 2012 FRM A 1 ow many single covalent bonds must a sulfur atom form to have a complete octet in its valence shell? A. 3 B. 4. 1 D. 2 E. 0 2. What are the correct numbers of

More information

Final Test CHEM 3121 and 6111 December 10 th, 1997

Final Test CHEM 3121 and 6111 December 10 th, 1997 Name: Final Test CHEM 3121 and 6111 December 10 th, 1997 Numbers in bold indicate the maximum points available for that question. 1) Give the ground state electron configurations for the following atoms

More information

Chemical Bonds, Lewis Structures, Bond Order, and Formal Charge

Chemical Bonds, Lewis Structures, Bond Order, and Formal Charge Chemical Bonds, Lewis Structures, Bond Order, and Formal Charge PRELAB ASSIGNMENT Read the entire laboratory write up. Write an objective, any hazards associated with this lab, and answer the following

More information

Example: Write the Lewis structure of XeF 4. Example: Write the Lewis structure of I 3-. Example: Select the favored resonance structure of the PO 4

Example: Write the Lewis structure of XeF 4. Example: Write the Lewis structure of I 3-. Example: Select the favored resonance structure of the PO 4 Expanded valence shells (extended octets) more than 8e - around a central atom Extended octets are formed only by atoms with vacant d-orbitals in the valence shell (p-elements from the third or later periods)

More information

CHEM1901/ J-5 June 2013

CHEM1901/ J-5 June 2013 CHEM1901/3 2013-J-5 June 2013 Oxygen exists in the troposphere as a diatomic molecule. 4 (a) Using arrows to indicate relative electron spin, fill the left-most valence orbital energy diagram for O 2,

More information

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: For hybridization, if an SP 2 is made, there is one unhybridized p orbital (because p usually has

More information

Modern Atomic Theory Part 1

Modern Atomic Theory Part 1 Modern Atomic Theory Part 1 Reading: Ch 12 sections 6 10 Homework: 12.6 and 12.7 questions 50, 52, 54, 56*, 58*, 60*, 62 12.8 questions 70*, 72 12.9 questions 74, 78, 80, 82*, 86* * = important homework

More information

Chem 105 Monday, 31 Oct 2011

Chem 105 Monday, 31 Oct 2011 Chem 105 Monday, 31 Oct 2011 Ch 7: Ion sizes; Ionization Potential Ch 8: Drawing Lewis Formulas Formal charge Resonance 10/31/2011 1 Sizes of Ions Cations (remember ca + ion) always SMALLER than corresponding

More information

: O: (1) (2) (3) (4) Page 1 of 6 : : : : : : (8) H H

: O: (1) (2) (3) (4) Page 1 of 6 : : : : : : (8) H H Experiment #12 MOLECULAR MODELS An aspect of chemistry, which traditionally proves to be difficult to many students, is the visualization of compounds, ions, and molecules in three dimensional space. In

More information

CHEM 344 Molecular Modeling

CHEM 344 Molecular Modeling CHEM 344 Molecular Modeling The Use of Computational Chemistry to Support Experimental Organic Chemistry Day 1 all calculation data obtained from Gaussian09 using B3LYP/6-31G(d) unless otherwise noted.

More information

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8. Na Mg Al Si P S Cl Ar

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8. Na Mg Al Si P S Cl Ar CHM 111 Chapters 7 and 8 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the

More information

Name AP CHEM / / Chapter 8 Outline Bonding: General Concepts

Name AP CHEM / / Chapter 8 Outline Bonding: General Concepts Name AP CHEM / / Chapter 8 Outline Bonding: General Concepts Types of Chemical Bonds Information about the strength of a bonding interaction is obtained by measuring the bond energy, which is the energy

More information

CHAPTER 9 COVALENT BONDING: ORBITALS 323

CHAPTER 9 COVALENT BONDING: ORBITALS 323 APTER 9 OVALET BODIG: ORBITALS 323 2 3 2 2 2 3 3 2 2 3 2 3 O * * 2 o; most of the carbons are not in the same plane since a majority of carbon atoms exhibit a tetrahedral structure (19.5 bond angles).

More information

Learning Organic Chemistry

Learning Organic Chemistry Objective 1 Represent organic molecules with chemical formulas, expanded formulas, Lewis structures, skeletal structures. Determine shape (VSEPR), bond polarity, and molecule polarity. Identify functional

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

FINAL EXAMINATION 12/17/93.

FINAL EXAMINATION 12/17/93. INORGANIC CHEMISTRY 413/571 FINAL EXAMINATION 12/17/93. DR. J. SHERIDAN Write all answers in the answer book. WRITE NEATLY. This will help me to understand your answers and maybe get you a few more points!

More information

Chapter 13 Conjugated Unsaturated Systems

Chapter 13 Conjugated Unsaturated Systems Chapter 13 Conjugated Unsaturated Systems Introduction Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital can come from another double or triple bond The

More information

Chem 1075 Chapter 12 Chemical Bonding Lecture Outline. Chemical Bond Concept

Chem 1075 Chapter 12 Chemical Bonding Lecture Outline. Chemical Bond Concept Chem 1075 Chapter 12 Chemical Bonding Lecture Outline Slide 2 Chemical Bond Concept Recall that an atom has and electrons. Core electrons are found to the nucleus. Valence electrons are found in the s

More information

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond Bonding: Part Two Three types of bonds: Ionic Bond transfer valence e - Metallic bond mobile valence e - Covalent bond (NaCl) (Fe) shared valence e - (H 2 O) 1 Single Covalent Bond H + H H H H-atoms H

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity (which atoms are physically connected). By noting the number of bonding and nonbonding electron

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases. Chapter Outline

Chapter 2 Polar Covalent Bonds; Acids and Bases. Chapter Outline rganic Chemistry 9th Edition McMurry SLUTINS MANUAL Full clear download at: https://testbankreal.com/download/organic-chemistry-9th-edition-mcmurrysolutions-manual/ rganic Chemistry 9th Edition McMurry

More information

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond Bonding: Part Two Three types of bonds: Ionic Bond transfer valence e - Metallic bond mobile valence e - Covalent bond (NaCl) (Fe) shared valence e - (H 2 O) 1 Single Covalent Bond H + H H H H-atoms H

More information

Valence electrons octet rule. Lewis structure Lewis structures

Valence electrons octet rule. Lewis structure Lewis structures Lewis Dot Diagrams Valence electrons are the electrons in the outermost energy level of an atom. An element with a full octet of valence electrons has a stable configuration. The tendency of bonded atoms

More information

Chemical Bonds. Chapter 6

Chemical Bonds. Chapter 6 Chemical Bonds Chapter 6 1 Ch. 6 Chemical Bonding I. How and Why Atoms Bond A. Vocabulary B. Chemical Bonds - Basics C. Chemical Bonds Types D. Chemical Bonds Covalent E. Drawing Lewis Diagrams F. Bond

More information

Ch 6 Chemical Bonding

Ch 6 Chemical Bonding Ch 6 Chemical Bonding What you should learn in this section (objectives): Define chemical bond Explain why most atoms form chemical bonds Describe ionic and covalent bonding Explain why most chemical bonding

More information

Quiz 5 R = lit-atm/mol-k 1 (25) R = J/mol-K 2 (25) 3 (25) c = X 10 8 m/s 4 (25)

Quiz 5 R = lit-atm/mol-k 1 (25) R = J/mol-K 2 (25) 3 (25) c = X 10 8 m/s 4 (25) ADVANCED INORGANIC CHEMISTRY QUIZ 5 and FINAL December 18, 2012 INSTRUCTIONS: PRINT YOUR NAME > NAME. QUIZ 5 : Work 4 of 1-5 (The lowest problem will be dropped) FINAL: #6 (10 points ) Work 6 of 7 to 14

More information

Chapter 9 Bonding. Dr. Sapna Gupta

Chapter 9 Bonding. Dr. Sapna Gupta Chapter 9 Bonding Dr. Sapna Gupta Lewis Dot Symbol Lewis dot symbols is a notation where valence electrons are shown as dots. Draw the electrons symmetrically around the sides (top, bottom, left and right)

More information

Chapter 16 Covalent Bonding

Chapter 16 Covalent Bonding Chemistry/ PEP Name: Date: Chapter 16 Covalent Bonding Chapter 16: 1 26; 28, 30, 31, 35-37, 40, 43-46, Extra Credit: 50-53, 55, 56, 58, 59, 62-67 Section 16.1 The Nature of Covalent Bonding Practice Problems

More information

Valence Bond Theory Considers the interaction of separate atoms brought together as they form a molecule. Lewis structures Resonance considerations

Valence Bond Theory Considers the interaction of separate atoms brought together as they form a molecule. Lewis structures Resonance considerations CHEM 511 chapter 2 page 1 of 11 Chapter 2 Molecular Structure and Bonding Read the section on Lewis dot structures, we will not cover this in class. If you have problems, seek out a general chemistry text.

More information

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Electronic Structure of Six and Four-Coordinate Complexes Using Crystal Field Theory, we can generate energy level

More information

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons?

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons? REVIEW: VALENCE ELECTRONS 13 CHEMICAL BONDING What are valence electrons? Which groups on the periodic table readily give up electrons? What group readily accepts electrons? CHEMICAL BONDS: What are chemical

More information

Chemistry: The Central Science

Chemistry: The Central Science Chemistry: The Central Science Fourteenth Edition Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds Three basic types of bonds Ionic Electrostatic attraction between ions Covalent Sharing of

More information

2. (i) Infrared (radiation absorbed) by (C H) bond vibration ALLOW bond stretching OR bond bending DO NOT ALLOW molecules vibrating 2

2. (i) Infrared (radiation absorbed) by (C H) bond vibration ALLOW bond stretching OR bond bending DO NOT ALLOW molecules vibrating 2 . (i) Species with an unpaired electron ALLOW atom, molecule or particle with an unpaired electron ALLOW has an unpaired electron ALLOW particle formed by homolytic fission DO NOT ALLOW particle with a

More information

Sodium, Na. Gallium, Ga CHEMISTRY Topic #2: The Chemical Alphabet Fall 2017 Dr. Susan Findlay See Exercises 11.1 to 11.4.

Sodium, Na. Gallium, Ga CHEMISTRY Topic #2: The Chemical Alphabet Fall 2017 Dr. Susan Findlay See Exercises 11.1 to 11.4. Sodium, Na Gallium, Ga CHEMISTRY 1000 Topic #2: The Chemical Alphabet Fall 2017 Dr. Susan Findlay See Exercises 11.1 to 11.4 Forms of Carbon The Chalcogens (Group 16) What is a chalcogen? Any element in

More information

Chemical Bonding I: Basic Concepts

Chemical Bonding I: Basic Concepts Chemical Bonding I: Basic Concepts Chapter 9 Valence electrons are the outer shell electrons of an atom. The valence electrons are the electrons that participate in chemical bonding. Group e - configuration

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10. The Shapes of Molecules 10-1

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10. The Shapes of Molecules 10-1 Chapter 10 The Shapes of Molecules 10-1 The Shapes of Molecules 10.1 Depicting Molecules and Ions with Lewis Structures 10.2 Valence-Shell Electron-Pair Repulsion (VSEPR) Theory and Molecular Shape 10.3

More information

Chemical Bonding AP Chemistry Ms. Grobsky

Chemical Bonding AP Chemistry Ms. Grobsky Chemical Bonding AP Chemistry Ms. Grobsky What Determines the Type of Bonding in Any Substance? Why do Atoms Bond? The key to answering the first question are found in the electronic structure of the atoms

More information

Chapter One MULTIPLE CHOICE QUESTIONS. Topic: General Section: 1.1 Difficulty Level: Easy

Chapter One MULTIPLE CHOICE QUESTIONS. Topic: General Section: 1.1 Difficulty Level: Easy Chapter ne MULTIPLE CICE QUESTIS Topic: General Section: 1.1 1. Credit for the first synthesis of an organic compound from an inorganic precursor is usually given to: A) Berzelius B) Arrhenius C) Kekule

More information

Name CHM 4610/5620 Fall 2017 December 14 FINAL EXAMINATION SOLUTIONS Part I, from the Literature Reports

Name CHM 4610/5620 Fall 2017 December 14 FINAL EXAMINATION SOLUTIONS Part I, from the Literature Reports Name CHM 4610/5620 Fall 2017 December 14 FINAL EXAMINATION SOLUTIONS Part I, from the Literature Reports I II III IV V VI VII VIII IX X Total This exam consists of several problems. Rough point values

More information

Drawing Lewis Structures

Drawing Lewis Structures Chapter 2 - Basic Concepts: molecules Bonding models: Valence-Bond Theory (VB) and Molecular Orbital Theory (MO) Lewis acids and bases When both of the electrons in the covalent bond formed by a Lewis

More information

Name: 1: /33 Grade: /100 2: /33 3: /33 +1 free point. Midterm Exam I. CHEM 181: Introduction to Chemical Principles September 20, 2012 Answer Key

Name: 1: /33 Grade: /100 2: /33 3: /33 +1 free point. Midterm Exam I. CHEM 181: Introduction to Chemical Principles September 20, 2012 Answer Key ame: 1: /33 Grade: /100 2: /33 3: /33 +1 free point Directions: Do all three problems. Midterm Exam I EM 181: Introduction to hemical Principles eptember 20, 2012 Answer Key how all of your work neatly

More information

Organic Chemistry 6 th Edition Paula Yurkanis Bruice. Chapter 1. Electronic Structure and Bonding. Acids and Bases Pearson Education, Inc.

Organic Chemistry 6 th Edition Paula Yurkanis Bruice. Chapter 1. Electronic Structure and Bonding. Acids and Bases Pearson Education, Inc. Organic Chemistry 6 th Edition Paula Yurkanis Bruice Chapter 1 Electronic Structure and Bonding Acids and Bases 2011 Pearson Education, Inc. 1 Organic Chemistry Carbon-containing compounds were once considered

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Two bonds Two

More information

Section 6.2 1/13/2014. Most Chemical Compounds. Molecular (or Covalent) Compound. Covalent Bonding and Molecular Compounds

Section 6.2 1/13/2014. Most Chemical Compounds. Molecular (or Covalent) Compound. Covalent Bonding and Molecular Compounds Section 6.2 Covalent Bonding and Molecular Compounds Most Chemical Compounds Are molecules, a neutral group of atoms that are held together by covalent bonds. It is a single unit capable of existing on

More information

5.03 In-Class Exam 2

5.03 In-Class Exam 2 5.03 In-Class Exam 2 Christopher C. Cummins March 12, 2010 Instructions Clearly write your name at the top of this front page, but otherwise do not write on this front page as it will be used for scoring.

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

CH1010 Exam #2 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster

CH1010 Exam #2 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster CH1010 Exam #2 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster Chapter 3: Atomic Structure, Explaining the Properties of Elements Trends to know (and be

More information

Chapter 8: Covalent Bonding. Chapter 8

Chapter 8: Covalent Bonding. Chapter 8 : Covalent Bonding Bonding Ionic Bonding - attracted to each other, but not fully committed Covalent Bonding - fully committed, and shares everything Two methods to gain or lose valence electrons: Transfer

More information

CHM 115 REVISED KEY for EXAM #4 PRACTICE

CHM 115 REVISED KEY for EXAM #4 PRACTICE Name CHM 115 REVISED KEY for EXAM #4 PRACTICE Correct answer is in RED. (numbers 1-8, 2.5 points each) 1. Which of the following bonds should be the most polar? [UNIT 9, exam mat l] a. N Cl b. N c. d.

More information

Cartoon courtesy of NearingZero.net. Unit 3: Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Unit 3: Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Unit 3: Chemical Bonding and Molecular Structure Bonds Forces that hold groups of atoms together and make them function as a unit. Ionic bonds transfer of electrons

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chapter 12 Introduction to Chemical Bonding Chemical Bonding Valence electrons are the electrons in the outer shell (highest energy level) of an atom. A chemical bond is a mutual

More information

Loudon Chapter 15 Review: Dienes and Aromaticity Jacquie Richardson, CU Boulder Last updated 1/28/2019

Loudon Chapter 15 Review: Dienes and Aromaticity Jacquie Richardson, CU Boulder Last updated 1/28/2019 This chapter looks at the behavior of carbon-carbon double bonds when several of them are in the same molecule. There are several possible ways they can be grouped. Conjugated dienes have a continuous

More information

Chapter 15: Conjugated Systems, Orbital Symmetry, and UV Spectroscopy

Chapter 15: Conjugated Systems, Orbital Symmetry, and UV Spectroscopy Chapter 15: Conjugated Systems, Orbital Symmetry, and UV Spectroscopy Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital can come from another double (e.g.

More information

Bonding in Molecules Covalent Bonding

Bonding in Molecules Covalent Bonding Bonding in Molecules Covalent Bonding The term covalent implies sharing of electrons between atoms. Valence electrons and valence shell orbitals - nly valence electrons are used for bonding: ns, np, nd

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases SAMPLE. Chapter Outline

Chapter 2 Polar Covalent Bonds; Acids and Bases SAMPLE. Chapter Outline Chapter 2 Polar Covalent Bonds; Acids and Bases Chapter utline I. Polar covalent bonds (Sections 2.1 2.3). A. Electronegativity (Section 2.1). 1. Although some bonds are totally ionic and some are totally

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Name: Hr: 8 Basic Concepts of Chemical Bonding

Name: Hr: 8 Basic Concepts of Chemical Bonding 8.1-8.2 8.3-8.5 8.5-8.7 8.8 Name: Hr: 8 Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule State the type of bond (ionic, covalent, or metallic) formed between any

More information

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry 11.1 Periodic Trends in Atomic Properties Discuss the atomic trends Metals are located on the left side of the periodic

More information