Chemical Vapor Deposition of Oxide Ceramics

Size: px
Start display at page:

Download "Chemical Vapor Deposition of Oxide Ceramics"

Transcription

1 Chemical Vapor Deposition of Oxide Ceramics

2

3 DESIGN, SYNTHESIS AND CHARACTERIZATION OF PRECURSORS FOR CHEMICAL VAPOR DEPOSITION OF OXIDE-BASED ELECTRONIC MATERIALS OLIVER JUST*, BETTIE OBI-JOHNSON*, JASON MATTHEWS*, DIANNE LEVERMORE*, TONY JONES**, AND WILLIAM S. REES, JR*. *School of Chemistry and Biochemistry and School of Materials Science and Engineering, and the Molecular Design Institute, Georgia Institute of Technology, Atlanta, GA **InorgTech, 25 James Carter Road, Mildenhall, Suffolk, IP28 7 DE, United Kingdom ABSTRACT Ferroelectric and other high dielectric constant metal oxides currently are sought-after for a variety of applications in the electronics industry. To meet the demand of preparation of these interesting materials in a manner compatible with traditional silicon-based fabrication procedures, chemical vapor deposition routes are desired for film growth. Compounds displaying high vapor phase stability are necessary as precursors for these applications. Additionally, in general, it is preferred to utilize compounds in a liquid state, due to the more rapid re-establishment of equilibrium at a liquid-vapor interface, compared to that present at a solid-vapor interface. This combination of desired molecular properties, in turn, presents a great challenge to the coordination chemist. Several of the metals of interest for these uses reside in groups 2-5. Common design features are emerging for the ligands best suited for attachment to these metals for subsequent utilization in the deposition of metal oxides. In order to achieve coordinative saturation of the relatively high ionic radii exhibited by most of these elements, multidentate, monoanionic ligands are relied upon. In the past, most often, homoleptic ligand sets have been employed, thereby reducing the chance for ligand scrambling to occur during the growth process. Such disproportionation processes have been credited, in previous work, with the observation of a temporal decay in vapor pressure of heteroleptic compounds. In some interesting new developments, it has been found that heteroleptic compounds possess sufficient vapor phase integrity to permit their evaluation as CVD precursors. These, and related, results are presented herein. INTRODUCTION One of the greatest challenges in materials chemistry is to close the loop between evaluation of final device performance and the design of precursors, which enter into processes, utilized in device manufacture. This Holy Grail of "post-mortem" detection of failure devices, and its integration into the "pre-embryonic" design of molecular precursors, has attracted substantial interest from researchers in recent years. As shown in Figure 1, it is incumbent on researchers in the area of precursor development to take a broad view of what are considered as inputs and outputs to the overall area of precursor design. Frequently, it is viewed that the singular input is design and the only output is a CVD precursor. Design includes the components of cost, technical specifications, equipment limits, and process parameters, each of which must be independently considered and weighed against one another in decisions regarding precursor design. The output is not only the compound itself, but also additionally equipment, and process recommendations to accompany all chemistries, which have been developed. In this vein, one may have discovered a compound which is not amenable to delivery by traditional (vapor phase) modes. An example of this is the emergence of liquid delivery systems to accommodate precursors, which are not useable in processes relying exclusively on traditional vapor delivery schemes. Mat. Res. Soc. Symp. Proc. Vol Materials Research Society 3

4 INPUT Cost OUTPUT CVD Precursors Technical, > Specifications / Equipment ' \ Limits ( Process / Parameters y PRECURSOR DEVELOPMENT / v. ^< \ I * Equipmei / Recommendat ^ Process Recommendations Figure 1: Inputs and Outputs for MOCVD precursors. This manuscript follows the two themes of design and characterization in the following sections. DESIGN Statement of the Challenge Many desired dielectric, insulating, and other electronic materials contain elements residing in groups 1-5 of the periodic chart. The heaviest representatives among these elements have the smallest known charge/size ratio among the entire periodic chart. Thus, this problem is among the most difficult for a coordination chemist to tackle. Additionally, there are substantial chemistry knowledge gaps present in these s block and early d block transition elements. Therefore, the wide pyramid base which was present in p block chemistry, and contributed to the early development of alternative precursors in III-V compound semiconductors, is absent in this region. Furthermore, organometallic chemistry (which is known for the early transition elements) is often not directly applicable to the growth of metal oxides, which are necessary for most modern electronic materials. Therefore, substantial basic research effort must be invested to compensate for these fundamental chemistry knowledge gaps among the elements, which are vital to the preparation of the next generation of electronic devices. RECENT RESULTS As shown in Figure 2, magnesium with a fc(/?-diketonate) ligand is four coordinate. The magnesium being divalent, binds two monovalent ligands, each ligand being bidentate, with the net result being a coordination number two less than the optimum number of six for magnesium. As shown in the Figure, the material picks up two additional diethyl ether molecules in axial positions to become octahedral, and, therefore, six coordinate. The diethyl ether ligands are intermolecular in nature, and their weak coordination is capable of becoming disassociated in vapor phase transport.

5 Figure 2: Ball-and-stick representation of Mg(tmhd)2(Et2O)2. In order to compensate for this loss, recently intramolecularly coordinating ligands have been designed. In the specific case of magnesium, these were tridentate monoanionic ligands. A structure of one of these resultant products is depicted in Figure 3, Figure 3: Ball-and-stick representation of bis(5-n-dimethylamino-2,2,7-trimethyl-3-octanato) magnesium. and the thermogravimetric analysis plot is presented in Figure 4.

6 TEMPERATURE C Figure 4: Representation of the thermal behavior of bis(5-n-dimethylamino-2,2,7-trimethyl-3- octanato) magnesium. As can be observed from the TGA, the material goes to 0 wt% at one atmosphere of pressure at approximately 260 C in a single step; therefore there is neither solid nor vapor state decomposition prior to sublimation and during transport of this material, respectively. This example of intramolecular coordination satisfying the high coordination number of low-valent metal cations has been successfully employed in several research groups, notably those of Rees and Marks for the group 2 elements. 1 Overall, there are several different approaches to looking at metal-ligand interaction systems. These include: i) one metal and one ligand; ii) multiple metals and one ligand; iii) one metal and multiple ligands; and iv) multiple metals and multiple ligands. The traditional one metal/one ligand approach has been used for decades in the preparation of compound semiconductors. It is the one, which is most frequently the entry point into a new materials system. Thus, when an initial result appears in chemical vapor deposition of a new material it is inevitably using off-the-shelf precursors, which are well known to be one metal/one ligand compositions. In the chemical sense, these are referred to as homoleptic compounds. The last one mentioned above (multiple metals and multiple ligands) is generally utilized in the sol-gel processing of electronic materials and, to the best of our knowledge, has yet to be met with success in the area of chemical vapor deposition of processing of electronic materials. The notion of having multiple metals and one ligand is also primarily (at this stage) reserved for the use of sol-gel processing. The final remaining one (one metal and multiple different ligands), referred to in a chemist's vocabulary as a heteroleptic compound, is one which has received limited attention, until recently. There are several recent success stories in this area, which are highlighted below. One early example of this heteroleptic approach was the use of a single metal mixed ligand system from Gordon's group at Harvard. In this approach, a combinatorial batch of ligands was prepared and then used for direct combination with the metal. This mixed ligand, single metal system was an ambient condition liquid. Although not highlighted by the authors in their original work, a key advantage of this approach is that the ligand purification step has been circumvented. Therefore, the frequently time-consuming and difficult process of purifying an organic compound to absolute homogeneity prior to being mixed with a metal has been skipped. This avoids the inevitable loss of material that occurs during purification, as well as the concomitant increased cost of the final product. Another recent example in this area is the dimeric heteroleptic zirconium isopropoxide /?- diketonate, which has been prepared at InorgTech, and was used in a liquid injection system. It

7 has a higher vapor pressure than the homoleptic tetrakis-tmhd zirconium complex, as indicated in Figure 5. Temp f*cj Figure 5: Comparative thermal decomposition data for Zr 2 (O I Pr) 6 (thd) 2 and Zr(thd) 4. The deposition rate of this heteroleptic compound is very similar to that of lead to-tmhd as shown in Figure 6. Figure 6: Metal oxides growth rates as a function both of substrate temperature and utilized precursor. The evaporator is reported to remain residue-free after long-term use of this material. 3 The design of this particular material is such that the bridging ligands between the two zirconiums are both alkoxides. Purely from consideration of a traditional coordination chemistry point of view, and looking at the electrostatics present within the various anionic ligands, it is predicted that alkoxides would bridge, and the /?-diketonates would function as terminal ligands in this case. Despite the above highlighted successes in one metal/mixed ligand heteroleptic systems for chemical vapor deposition precursors, there are nevertheless numerous concerns, which remain unsolved with these approaches. Ligand scrambling may lead to a temporal instability in vapor pressure. If such scrambling is present, then congruent evaporation of the resulting temporally changing evaporator contents cannot be compensated for. There may be inconsistent thermal decomposition profiles resulting from the differing bond association energies, which are present amongst the ligand set. In some respects, this may be turned to the advantage of the chemist, because they can then have a selective loss of ligand attachment of metal to the

8 surface and subsequent thermal decomposition of the remaining ligands on the metal in a different regime. Additionally, there are challenges to in-situ feedback control monitors when multiple ligands are present in the flowing reaction co-products. Frequently, these monitors are optimized for single point detection of species. Lastly, heteroleptic compounds may have different kinetic stabilities in the presence of other vapor reactants, which lead to the possibility of premature vapor phase reactions. CHARACTERIZATION In characterization of compounds in the precursor area for chemical vapor deposition, there are two different domains, which frequently are discussed. The first one is directly intended towards application in organometallic vapor phase epitaxy. Separate from that, there is the issue of gaining chemical insights through characterization of compounds, which is entered back into the feed cycle to generate a better design for subsequent generations of precursors. In this particular approach, the motive may be summed up as follows. In order to achieve improvements on existing source compounds, one must understand the beneficial and detrimental components of their decomposition mechanisms. This may be regarded as studying failure cases to examine the mode(s) of failure, thereby eliminating the identified failure mode(s) from subsequent molecules. This is not to be confused with designing the perfect precursor. In the same vein, it is elimination of unproductive growth pathways, which practitioners are after, not the creation of exclusively perfect growth pathways. The characterization of compounds should be focused on the critical properties for organometallic vapor phase epitaxy precursors. There are three such properties. Precursors must have suitable vapor pressure, vapor phase stability, and condensed phase stability. Each of these issues is addressed individually. In the case of suitable vapor pressure, all too frequently it is simply a one atmosphere TGA plot that is relied on for this data. In reality, very few manufacturing processes are operated at one atmosphere, thus it is at reduced pressure that the most important measurement of usefulness can occur. As shown in Figure 7, an automated vapor pressure determination apparatus has been constructed at Georgia Tech. a.) Figure 7: Photographs of the VPDA apparatus a.) outside the oven (turbo pump and cold cathode gauge are not shown), b.) inside the oven.

9 Figure 8 presents a CAD view of the system. To Reference Ba nitron To Pump Figure 8: The CAD view of the VPDA system. Representative data obtained for yttrium, copper and barium tmhd compounds are shown in Figure 9a and for barium and strontium tmhd compounds in Figure 9b. 5 4 S Cu(tmhd)2 Y(tmhd)3 * Ba(tmhd) Figure 9a: Graphical depiction of 1/T versus lnp for Cu(thd) 2, Y(thd) 3 and Ba(thd) 2. [Sr(thd)2]3 [Ba(thd)2]4 Linear([Ba(thd)2]4) Linear([Sr(thd)2]3) Figure 9b: Graphical depiction of 1/T versus lnp for [Ba(thd) 2 ]4 and [Sr(thd) 2 ]3.

10 Once having constructed an instrument specifically designed for accomplishing vapor pressure determination, which addressed the key issue for suitable vapor pressure for organometallic vapor phase epitaxy precursors, the next question was to address vapor phase stability of these materials. A system was designed based on work of Desisto at the Naval Research Laboratories 4, which utilizes in-situ vapor phase UV spectroscopy. Such a system is depicted in Figure 10, and a photograph of the apparatus is shown in Figure 11. Figure 10: Illustration of the MOCVD apparatus with in-situ vapor phase UV monitoring. Figure 11: Photograph of the UV-MOCVD apparatus. This allows the experimenter to evaluate the input UV-VIS vapor phase signal, as well as the output signal, and thereby obtain the kinetics for the overall process. The single constant demanded for acquiring this data resides in the determination of the molar absorbtivity in the vapor phase for all species present. Since one cannot simply look up these values in tables, they must be measured independently, prior to initiation of these experiments. Having dealt with suitable vapor pressure and vapor phase stability as key issues, the third issue to be concerned with in precursor characterization is condensed phase stability. It generally is regarded that changes in the condensed phase are irreversible processes occurring by ligand 10

Importance of in situ Monitoring in MOCVD Process and Future Prospects

Importance of in situ Monitoring in MOCVD Process and Future Prospects G u e s t F o r u m Guest Forum Series of Lectures by Screening Committees of the Second Masao Horiba Awards Importance of in situ Monitoring in MOCVD Process and Future Prospects Hiroshi Funakubo Tokyo

More information

Thin Film Bi-based Perovskites for High Energy Density Capacitor Applications

Thin Film Bi-based Perovskites for High Energy Density Capacitor Applications ..SKELETON.. Thin Film Bi-based Perovskites for High Energy Density Capacitor Applications Colin Shear Advisor: Dr. Brady Gibbons 2010 Table of Contents Chapter 1 Introduction... 1 1.1 Motivation and Objective...

More information

Module 6 : General properties of Transition Metal Organometallic Complexes. Lecture 2 : Synthesis and Stability. Objectives

Module 6 : General properties of Transition Metal Organometallic Complexes. Lecture 2 : Synthesis and Stability. Objectives Module 6 : General properties of Transition Metal Organometallic Complexes Lecture 2 : Synthesis and Stability Objectives In this lecture you will learn the following Understand the role lead by ligands

More information

Solutions for Assignment-6

Solutions for Assignment-6 Solutions for Assignment-6 Q1. What is the aim of thin film deposition? [1] (a) To maintain surface uniformity (b) To reduce the amount (or mass) of light absorbing materials (c) To decrease the weight

More information

Chemical Reaction between Solids x 2 = Kt

Chemical Reaction between Solids x 2 = Kt 2-2.1.2 Chemical Reaction between Solids The simplest system involves the reaction between two solid phases, A and B, to produce a solid solution C, A and B are commonly elements for metallic systems,

More information

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2 Nanostructure Materials Growth Characterization Fabrication More see Waser, chapter 2 Materials growth - deposition deposition gas solid Physical Vapor Deposition Chemical Vapor Deposition Physical Vapor

More information

Fabrication Technology, Part I

Fabrication Technology, Part I EEL5225: Principles of MEMS Transducers (Fall 2004) Fabrication Technology, Part I Agenda: Microfabrication Overview Basic semiconductor devices Materials Key processes Oxidation Thin-film Deposition Reading:

More information

Film Deposition Part 1

Film Deposition Part 1 1 Film Deposition Part 1 Chapter 11 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Spring Semester 2013 Saroj Kumar Patra Semidonductor Manufacturing Technology, Norwegian University of

More information

Lecture 1: Vapour Growth Techniques

Lecture 1: Vapour Growth Techniques PH3EC2 Vapour Growth and Epitaxial Growth Lecturer: Dr. Shinoj V K Lecture 1: Vapour Growth Techniques 1.1 Vapour growth The growth of single crystal materials from the vapour phase. Deposition from the

More information

ALD & ALE Tutorial Speakers and Schedule

ALD & ALE Tutorial Speakers and Schedule ALD & ALE Tutorial Speakers and Schedule Sunday, July 29, 2018 1:00-1:05 Tutorial Welcome 1:05-1:50 1:50-2:35 2:35-3:20 Challenges of ALD Applications in Memory Semiconductor Devices, Choon Hwan Kim (SK

More information

Review Topic 8: Phases of Matter and Mixtures

Review Topic 8: Phases of Matter and Mixtures Name: Score: 24 / 24 points (100%) Review Topic 8: Phases of Matter and Mixtures Multiple Choice Identify the choice that best completes the statement or answers the question. C 1. Soda water is a solution

More information

A- Determination Of Boiling point B- Distillation

A- Determination Of Boiling point B- Distillation EXP. NO. 2 A- Determination Of Boiling point B- Distillation The boiling point of a liquid is the temperature at which its vapor pressure is equal to the surrounding atmospheric pressure. The normal boiling

More information

Big Idea 2: Chemical and physical properties of materials can be explained by the structure and the arrangement of atoms, ions, or molecules and the

Big Idea 2: Chemical and physical properties of materials can be explained by the structure and the arrangement of atoms, ions, or molecules and the Big Idea 2: Chemical and physical properties of materials can be explained by the structure and the arrangement of atoms, ions, or molecules and the forces between them. Enduring Understanding 2.A: Matter

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

Changes of State. Substances in equilibrium change back and forth between states at equal speeds. Main Idea

Changes of State. Substances in equilibrium change back and forth between states at equal speeds. Main Idea Section 4 s Substances in equilibrium change back and forth between states at equal speeds. A liquid boils when it has absorbed enough energy to evaporate. Freezing occurs when a substance loses enough

More information

HADDONFIELD PUBLIC SCHOOLS Curriculum Map for Accelerated Chemistry

HADDONFIELD PUBLIC SCHOOLS Curriculum Map for Accelerated Chemistry Curriculum Map for Accelerated Chemistry 1st Marking Period 5.1.12.A.1, 5.1.12.A.2,, 5.1.12.A.3,, 5.1.12.B.1, 5.1.12.B.2, 5.1.12.B.3, 5.1.12.B.4, 5.1.12.C.1, 5.1.12.C.2, 5.1.12.C.3,, 5.1.12.D.1, 5.1.12.D.2,

More information

Contents. Zusammenfassung Abbreviations and Acronyms Notations for Precursor Molecules

Contents. Zusammenfassung Abbreviations and Acronyms Notations for Precursor Molecules Contents Abstract Zusammenfassung Abbreviations and Acronyms Notations for Precursor Molecules xvi xviii xx xxi Chapter 1 Introduction 1 1.1 General aspect of group-iii nitrides and their application 3

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Chem 102--Exam #2 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When water is measured in a plastic graduated cylinder, a reverse meniscus

More information

VACUUM TECHNOLOGIES NEEDED FOR 3D DEVICE PROCESSING

VACUUM TECHNOLOGIES NEEDED FOR 3D DEVICE PROCESSING VACUUM TECHNOLOGIES NEEDED FOR 3D DEVICE PROCESSING Future ICs will use more 3D device structures such as finfets and gate-all-around (GAA) transistors, and so vacuum deposition processes are needed that

More information

Chemistry. Essential Standards Chemistry

Chemistry. Essential Standards Chemistry Essential Standards Chemistry Chemistry Matter: Properties & Change 1.1 Students will analyze the structure of atoms and ions. 1.2 Student will understand the bonding that occurs in simple compounds in

More information

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Adsorption Processes Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Principles of adsorption Types of adsorption Definitions Brief history Adsorption isotherms Mechanism

More information

Unit 10: Part 1: Polarity and Intermolecular Forces

Unit 10: Part 1: Polarity and Intermolecular Forces Unit 10: Part 1: Polarity and Intermolecular Forces Name: Block: Intermolecular Forces of Attraction and Phase Changes Intramolecular Bonding: attractive forces that occur between atoms WITHIN a molecule;

More information

Vacuum Pumps. Two general classes exist: Gas transfer physical removal of matter. Mechanical, diffusion, turbomolecular

Vacuum Pumps. Two general classes exist: Gas transfer physical removal of matter. Mechanical, diffusion, turbomolecular Vacuum Technology Vacuum Pumps Two general classes exist: Gas transfer physical removal of matter Mechanical, diffusion, turbomolecular Adsorption entrapment of matter Cryo, sublimation, ion Mechanical

More information

Chemistry Review Unit 5 Physical Behavior of Matter

Chemistry Review Unit 5 Physical Behavior of Matter Chemistry Review Phases of Matter, Changes of Phase, Substances, Mixtures, Solutions, Effect of Solute on Solution, Energy, Kinetics of Solids, Liquids and Gases Matter, Phases and Gas Laws 1. Matter is

More information

(A) Composition (B) Decomposition (C) Single replacement (D) Double replacement: Acid-base (E) Combustion

(A) Composition (B) Decomposition (C) Single replacement (D) Double replacement: Acid-base (E) Combustion AP Chemistry - Problem Drill 08: Chemical Reactions No. 1 of 10 1. What type is the following reaction: H 2 CO 3 (aq) + Ca(OH) 2 (aq) CaCO 3 (aq) + 2 H 2 O (l)? (A) Composition (B) Decomposition (C) Single

More information

Measurement of Temperature in the Plastics Industry

Measurement of Temperature in the Plastics Industry Sawi Mess- und Regeltechnik AG CH 8405 Winterthur-Gotzenwil, Switzerland Telephone +41 52 320 50 50, Fax +41 52 320 50 55 www.sawi.ch Measurement of Temperature in the Plastics Industry Johannes Wild,

More information

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 11 Liquids and Intermolecular Forces John D. Bookstaver St. Charles Community College Cottleville, MO Properties of Gases, Liquids, and Solids State Volume Shape of State Density

More information

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 9a BONDING AND SOLUTIONS

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 9a BONDING AND SOLUTIONS 3.091 Introduction to Solid State Chemistry Lecture Notes No. 9a BONDING AND SOLUTIONS 1. INTRODUCTION Condensed phases, whether liquid or solid, may form solutions. Everyone is familiar with liquid solutions.

More information

Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods

Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods Methods for catalyst preparation Methods discussed in this lecture Physical vapour deposition - PLD

More information

Chapter 11. Kinetic Molecular Theory. Attractive Forces

Chapter 11. Kinetic Molecular Theory. Attractive Forces Chapter 11 KMT for Solids and Liquids Intermolecular Forces Viscosity & Surface Tension Phase Changes Vapor Pressure Phase Diagrams Solid Structure Kinetic Molecular Theory Liquids and solids will experience

More information

Liquids & Solids. Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry

Liquids & Solids. Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry Liquids & Solids Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry 1 Liquids 2 Properties of the States of Matter: Liquids High densities compared to gases. Fluid. The material exhibits

More information

INTEGRATED VISIBLE LIGHT SENSOR BASED ON THIN FILM FERROELECTRIC MATERIAL Ba 0,25 Sr 0,75 TiO 3 to MICROCONTROLLER ATMega8535

INTEGRATED VISIBLE LIGHT SENSOR BASED ON THIN FILM FERROELECTRIC MATERIAL Ba 0,25 Sr 0,75 TiO 3 to MICROCONTROLLER ATMega8535 MATERIALS SCIENCE and TECHNOLOGY Edited by Evvy Kartini et.al. INTEGRATED VISIBLE LIGHT SENSOR BASED ON THIN FILM FERROELECTRIC MATERIAL Ba 0,25 Sr 0,75 TiO 3 to MICROCONTROLLER ATMega8535 Heriyanto Syafutra

More information

A faster, more accurate way of characterizing cube beamsplitters using the Agilent Cary 7000 Universal Measurement Spectrophotometer (UMS)

A faster, more accurate way of characterizing cube beamsplitters using the Agilent Cary 7000 Universal Measurement Spectrophotometer (UMS) A faster, more accurate way of characterizing cube beamsplitters using the Agilent Cary 7000 Universal Measurement Spectrophotometer (UMS) Application note Materials Authors Travis Burt, Chris Colley,

More information

Mid-Term Review (HERBERHOLZ - Honors Chemistry) Chapter 2: 1. How many significant digits are in the following numbers?

Mid-Term Review (HERBERHOLZ - Honors Chemistry) Chapter 2: 1. How many significant digits are in the following numbers? Name Hour Mid-Term Review 2017-2018 (HERBERHOLZ - Honors Chemistry) Chapter 2: 1. How many significant digits are in the following numbers? a. 417.0 b. 0.0005 c. 500 000 d. 0.30034 e. 3.970 x 10 5 f. 200.10

More information

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25) 1 TMT4320 Nanomaterials November 10 th, 2015 Thin films by physical/chemical methods (From chapter 24 and 25) 2 Thin films by physical/chemical methods Vapor-phase growth (compared to liquid-phase growth)

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION CHEMICAL VAPOR DEPOSITION OF ZIRCONIUM TIN TITANATE: A DIELECTRIC MATERIAL FOR POTENTIAL MICROELECTRONIC APPLICATIONS Ebony L. Mays 1, 4, Dennis W. Hess 2 1, 3, 4, and William S. Rees, Jr. Departments

More information

Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron.

Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron. Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron. 1. Which number on the graph to the right represents the effect of the

More information

Research and Development of Parylene Thin-Film Deposition and Application for Water-Proofing

Research and Development of Parylene Thin-Film Deposition and Application for Water-Proofing Advanced Materials Research Online: 2012-06-14 ISSN: 1662-8985, Vols. 538-541, pp 23-28 doi:10.4028/www.scientific.net/amr.538-541.23 2012 Trans Tech Publications, Switzerland Research and Development

More information

Intermolecular Forces and Liquids and Solids Chapter 11

Intermolecular Forces and Liquids and Solids Chapter 11 Intermolecular Forces and Liquids and Solids Chapter 11 A phase is a homogeneous part of the system in contact with other parts of the system but separated from them by a well defined boundary. Phases

More information

Students are required to bring these definitions HAND written on separate 3 in X 5 in index cards by chapters, the first week of school

Students are required to bring these definitions HAND written on separate 3 in X 5 in index cards by chapters, the first week of school Students are required to bring these definitions HAND written on separate 3 in X 5 in index cards by chapters, the first week of school 2015-2016 Have a Great Summer!!! Ms. Charles LAB SAFETY/Vocabulary

More information

Mr. Bracken. Intermolecular Forces Notes #1

Mr. Bracken. Intermolecular Forces Notes #1 Mr. Bracken AP Chemistry Name Period Intermolecular Forces Notes #1 States of Matter: A gas expands to fill its container, has neither a fixed volume nor shape, and is easily compressible. A liquid has

More information

Qualitative observation descriptive observation has no numerical measurement

Qualitative observation descriptive observation has no numerical measurement 1 Chem 047: Physical and chemical properties Chemistry 047 Properties of substances, and Physical and Chemical Changes A. Some definitions B. Properties of substances C. The Classification of Matter D.

More information

APC Spring Break Take-Home Exam Instructions

APC Spring Break Take-Home Exam Instructions APC Spring Break Take-Home Exam Instructions Complete all exam questions on separate paper. Show all work to receive credit. Partial credit will be awarded! Staple all papers together. Do NOT include the

More information

Advanced Ceramics for Strategic Applications Prof. H. S. Maiti Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Advanced Ceramics for Strategic Applications Prof. H. S. Maiti Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Advanced Ceramics for Strategic Applications Prof. H. S. Maiti Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture -3 Crystal Structure Having made some introductory

More information

States of matter Part 2

States of matter Part 2 Physical Pharmacy Lecture 2 States of matter Part 2 Assistant Lecturer in Pharmaceutics Overview The Liquid State General properties Liquefaction of gases Vapor pressure of liquids Boiling point The Solid

More information

Chapter 12 Intermolecular Forces and Liquids

Chapter 12 Intermolecular Forces and Liquids Chapter 12 Intermolecular Forces and Liquids Jeffrey Mack California State University, Sacramento Why? Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature

More information

States of Matter Chapter 10 Assignment & Problem Set

States of Matter Chapter 10 Assignment & Problem Set States of Matter Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. States of Matter 2 Study Guide: Things You Must Know Vocabulary (know the definition

More information

Thin Wafer Handling Challenges and Emerging Solutions

Thin Wafer Handling Challenges and Emerging Solutions 1 Thin Wafer Handling Challenges and Emerging Solutions Dr. Shari Farrens, Mr. Pete Bisson, Mr. Sumant Sood and Mr. James Hermanowski SUSS MicroTec, 228 Suss Drive, Waterbury Center, VT 05655, USA 2 Thin

More information

Chapter 10. Lesson Starter. Why did you not smell the odor of the vapor immediately? Explain this event in terms of the motion of molecules.

Chapter 10. Lesson Starter. Why did you not smell the odor of the vapor immediately? Explain this event in terms of the motion of molecules. Preview Lesson Starter Objectives The Kinetic-Molecular Theory of Gases The Kinetic-Molecular Theory and the Nature of Gases Deviations of Real Gases from Ideal Behavior Section 1 The Kinetic-Molecular

More information

PHASE CHANGES. * melting * boiling * sublimation. * freezing * condensation * deposition. vs.

PHASE CHANGES. * melting * boiling * sublimation. * freezing * condensation * deposition. vs. PHASE CHANGES endothermic * melting * boiling * sublimation vs. vs. exothermic * freezing * condensation * deposition H enthalpy: heat content of a system under constant pressure HEATING CURVE: Where is

More information

Ch. 9 Liquids and Solids

Ch. 9 Liquids and Solids Intermolecular Forces I. A note about gases, liquids and gases. A. Gases: very disordered, particles move fast and are far apart. B. Liquid: disordered, particles are close together but can still move.

More information

Complex Compounds Background of Complex Compound Technology

Complex Compounds Background of Complex Compound Technology Complex Compounds For more than 20 years, Rocky Research has been a pioneer in the field of sorption refrigeration utilizing complex compounds. Our technology earned special recognition from NASA in 1999.

More information

You have mastered this topic when you can:

You have mastered this topic when you can: CH 11 T17 IONIC COMPOUNDS IONIC BONDS 1 You have mastered this topic when you can: 1) define or describe these terms: IONIC BOND, CATION, ANION and FORMULA UNIT. 2) predict the formation of an IONIC BOND

More information

Manufacturable AlGaAs/GaAs HBT Implant Isolation Process Using Doubly Charged Helium

Manufacturable AlGaAs/GaAs HBT Implant Isolation Process Using Doubly Charged Helium Manufacturable AlGaAs/GaAs HBT Implant Isolation Process Using Doubly Charged Helium ABSTRACT Rainier Lee, Shiban Tiku, and Wanming Sun Conexant Systems 2427 W. Hillcrest Drive Newbury Park, CA 91320 (805)

More information

Matter changes phase when energy is added or removed

Matter changes phase when energy is added or removed Section 12.4 Phase Changes Explain how the addition and removal of energy can cause a phase change. Interpret a phase diagram. Matter changes phase when energy is added or removed Energy Changes Accompanying

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. a. The gas

More information

nmos IC Design Report Module: EEE 112

nmos IC Design Report Module: EEE 112 nmos IC Design Report Author: 1302509 Zhao Ruimin Module: EEE 112 Lecturer: Date: Dr.Zhao Ce Zhou June/5/2015 Abstract This lab intended to train the experimental skills of the layout designing of the

More information

DESIGN OF PRECURSORS FOR ALD

DESIGN OF PRECURSORS FOR ALD DESIG OF PRECURSORS FOR ALD Roy G. Gordon Cambridge, MA USA Jean-Sébastien Lehn, Huazhi Li, Qing Min Wang and Deo V. Shenai Advanced Thin-Film Technologies Group Rohm and Haas Electronic Materials orth

More information

Liquids, Solids and Phase Changes

Liquids, Solids and Phase Changes Chapter 10 Liquids, Solids and Phase Changes Chapter 10 1 KMT of Liquids and Solids Gas molecules have little or no interactions. Molecules in the Liquid or solid state have significant interactions. Liquids

More information

Module 10 : Reaction mechanism. Lecture 1 : Oxidative addition and Reductive elimination. Objectives. In this lecture you will learn the following

Module 10 : Reaction mechanism. Lecture 1 : Oxidative addition and Reductive elimination. Objectives. In this lecture you will learn the following Module 10 : Reaction mechanism Lecture 1 : Oxidative addition and Reductive elimination Objectives In this lecture you will learn the following The oxidative addition reactions. The reductive elimination

More information

International Journal of Scientific Research and Modern Education (IJSRME) ISSN (Online): (www.rdmodernresearch.com) Volume I, Issue I,

International Journal of Scientific Research and Modern Education (IJSRME) ISSN (Online): (www.rdmodernresearch.com) Volume I, Issue I, OXYGEN CONCENTRATORS A STUDY Mohammed Salique*, Nabila Rumane**, RohanBholla***, Siddharth Bhawnani**** & Anita Kumari***** Chemical Engineering Department, Thadomal Shahani Engineering College, Off Linking

More information

Intermolecular forces Liquids and Solids

Intermolecular forces Liquids and Solids Intermolecular forces Liquids and Solids Chapter objectives Understand the three intermolecular forces in pure liquid in relation to molecular structure/polarity Understand the physical properties of liquids

More information

Faculty of Chemistry, Nicolaus Copernicus University, ul. Gagarina 7, Toruń, Poland

Faculty of Chemistry, Nicolaus Copernicus University, ul. Gagarina 7, Toruń, Poland Materials Science-Poland, Vol. 23, No. 3, 2005 Thermal properties of multinuclear Ti(IV) and Zr(IV) carboxylate derivatives characterized using thermal analysis and variable temperature MS and IR methods

More information

Fundamentals of Heat Transfer (Basic Concepts)

Fundamentals of Heat Transfer (Basic Concepts) Fundamentals of Heat Transfer (Basic Concepts) 1 Topics to be covered History Thermodynamics Heat transfer Thermodynamics versus Heat Transfer Areas and Applications of Heat Transfer Heat Transfer problems

More information

Worksheet 1.1. Chapter 1: Quantitative chemistry glossary

Worksheet 1.1. Chapter 1: Quantitative chemistry glossary Worksheet 1.1 Chapter 1: Quantitative chemistry glossary Amount The number of moles of a substance present in a sample. Aqueous solution A solution with water as the solvent. Atmosphere The unit atmosphere

More information

CHEMISTRY HONORS LEOCE Study Guide

CHEMISTRY HONORS LEOCE Study Guide BENCHMARK: N.1.1-1.2, N.1.6, N.3.1, N.3.3, N.3.4 CHEMISTRY HONORS CHEMISTRY AND SCIENTIFIC MEASUREMENT TEXTBOOK: Glencoe, Chemistry: Matter and Change, Chapters 1-3 ESSENTIAL QUESTION: How is measurement

More information

Earlier Lecture. In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide.

Earlier Lecture. In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide. 41 1 Earlier Lecture In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide. Silicon diodes have negligible i 2 R losses. Cernox RTDs offer high response

More information

Miami Dade College CHM Second Semester General Chemistry

Miami Dade College CHM Second Semester General Chemistry Miami Dade College CHM 1046 - Second Semester General Chemistry Course Description: CHM 1046 is the second semester of a two-semester general chemistry course for science, premedical science and engineering

More information

Liquids and Solids. H fus (Heat of fusion) H vap (Heat of vaporization) H sub (Heat of sublimation)

Liquids and Solids. H fus (Heat of fusion) H vap (Heat of vaporization) H sub (Heat of sublimation) Liquids and Solids Phase Transitions All elements and compounds undergo some sort of phase transition as their temperature is increase from 0 K. The points at which these phase transitions occur depend

More information

States of Matter; Liquids and Solids. Condensation - change of a gas to either the solid or liquid state

States of Matter; Liquids and Solids. Condensation - change of a gas to either the solid or liquid state States of Matter; Liquids and Solids Phase transitions - a change in substance from one state to another Melting - change from a solid to a liquid state Freezing - change of a liquid to the solid state

More information

9.1.1 CHEMICAL EQUATIONS AND STOICHIOMETRY

9.1.1 CHEMICAL EQUATIONS AND STOICHIOMETRY 9.1.1 CHEMICAL EQUATIONS AND STOICHIOMETRY Work directly from Zumdahl (Chapter 3). Work through exercises as required, then summarise the essentials of the section when complete. A chemical equation is

More information

The Characterization of Thermal Interface Materials using Thermal Conductivity for Within Sample and Batch to Batch Variation Analysis

The Characterization of Thermal Interface Materials using Thermal Conductivity for Within Sample and Batch to Batch Variation Analysis The Characterization of Thermal Interface s using Thermal Conductivity for Within Sample and Batch to Batch Variation Analysis Raymond Qiu, Karina Schmidt, Adam Harris and Gareth Chaplin* *Manager, Application

More information

Estimation of vapour pressure and partial pressure of subliming compounds by low-pressure thermogravimetry

Estimation of vapour pressure and partial pressure of subliming compounds by low-pressure thermogravimetry Bull. Mater. Sci., Vol. 34, No. 7, December 2011, pp. 1633 1637. Indian Academy of Sciences. Estimation of vapour pressure and partial pressure of subliming compounds by low-pressure thermogravimetry G

More information

CHAPTER 10. States of Matter

CHAPTER 10. States of Matter CHAPTER 10 States of Matter Kinetic Molecular Theory Kinetikos - Moving Based on the idea that particles of matter are always in motion The motion has consequences Explains the behavior of Gases, Liquids,

More information

CHAPTER 10. Kinetic Molecular Theory. Five Assumptions of the KMT. Atmospheric Pressure

CHAPTER 10. Kinetic Molecular Theory. Five Assumptions of the KMT. Atmospheric Pressure Kinetic Molecular Theory CHAPTER 10 States of Matter Kinetikos - Moving Based on the idea that particles of matter are always in motion The motion has consequences Explains the behavior of Gases, Liquids,

More information

Chapter 02 The Basics of Life: Chemistry

Chapter 02 The Basics of Life: Chemistry Chapter 02 The Basics of Life: Chemistry Multiple Choice Questions 1. An atom that has gained electrons is a A. reactant. B. negative ion. C. positive ion. D. compound ion. 2. An atom with twelve electrons,

More information

Chapter 12 - Modern Materials

Chapter 12 - Modern Materials Chapter 12 - Modern Materials 12.1 Semiconductors Inorganic compounds that semiconduct tend to have chemical formulas related to Si and Ge valence electron count of four. Semiconductor conductivity can

More information

Liquids, Solids, and Phase Changes

Liquids, Solids, and Phase Changes C h a p t e r 10 Liquids, Solids, and Phase Changes KMT of Liquids and Solids 01 Gases have little or no interactions. Liquids and solids have significant interactions. Liquids and solids have well-defined

More information

Physics 1520, Fall 2011 Quiz 3, Form: A

Physics 1520, Fall 2011 Quiz 3, Form: A Physics 1520, Fall 2011 Quiz 3, Form: A Name: Date: Numeric answers must include units. Sketches must be labeled. All short-answer questions must include your reasoning, for full credit. A correct answer

More information

Supporting Information

Supporting Information Supporting Information Yao et al. 10.1073/pnas.1416368111 Fig. S1. In situ LEEM imaging of graphene growth via chemical vapor deposition (CVD) on Pt(111). The growth of graphene on Pt(111) via a CVD process

More information

Atoms, Molecules and Ions. Chapter 2

Atoms, Molecules and Ions. Chapter 2 Atoms, Molecules and Ions Chapter 2 2.1 The Atomic Theory of Matter Democritus [460-370 BCE] Described tiny, indivisible particles Called them atomos Differed from Aristotle 17th century - idea of atoms

More information

Student Name: Teacher: Date: District: NCGaston. Assessment: 9_12 Science Chemistry Exam 3. Description: Chemistry Mock Final Exam

Student Name: Teacher: Date: District: NCGaston. Assessment: 9_12 Science Chemistry Exam 3. Description: Chemistry Mock Final Exam Student Name: Teacher: Date: District: NCGaston Assessment: 9_12 Science Chemistry Exam 3 Description: Chemistry Mock Final Exam 2014-15 Form: 301 1. Shown below is a model of the structure of atom X.

More information

Curriculum Guide Chemistry

Curriculum Guide Chemistry Chapter 1: Introduction to Chemistry Why is chemistry important in using dominion science? Is chemistry necessary in all aspects of life? How can a chemist advance science for the kingdom of God? 1 Lesson

More information

Chapter #16 Liquids and Solids

Chapter #16 Liquids and Solids Chapter #16 Liquids and Solids 16.1 Intermolecular Forces 16.2 The Liquid State 16.3 An Introduction to Structures and Types of Solids 16.4 Structure and Bonding of Metals 16.5 Carbon and Silicon: Network

More information

Semiconductor Nanowires: Motivation

Semiconductor Nanowires: Motivation Semiconductor Nanowires: Motivation Patterning into sub 50 nm range is difficult with optical lithography. Self-organized growth of nanowires enables 2D confinement of carriers with large splitting of

More information

Nanostructures Materials Seminar

Nanostructures Materials Seminar CHE499 Nanostructures Materials Seminar Supported by 5FW Spring 2007 National Science Foundation Anita LaSalle, Program Manager (CISE- EIA 0203481) Aerogels AEROGELS: Strcture (TEM) 3IV TEM: Link-&-Blob

More information

Artificially layered structures

Artificially layered structures http://accessscience.com/popup.ap x?id=053450&name=print Close Window ENCYCLOPEDIA ARTICLE Artificially layered structures Manufactured, reproducibly layered structures having layer thicknesses approaching

More information

3C3 Analogue Circuits

3C3 Analogue Circuits Department of Electronic & Electrical Engineering Trinity College Dublin, 2014 3C3 Analogue Circuits Prof J K Vij jvij@tcd.ie Lecture 1: Introduction/ Semiconductors & Doping 1 Course Outline (subject

More information

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner Supplementary Materials for: High-Performance Semiconducting Polythiophenes for Organic Thin Film Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner 1. Materials and Instruments. All

More information

(Refer Slide Time: 1:42)

(Refer Slide Time: 1:42) Control Engineering Prof. Madan Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 21 Basic Principles of Feedback Control (Contd..) Friends, let me get started

More information

Vapor Pressure is determined primarily from!vaph!vaph depends on the intermolecular forces

Vapor Pressure is determined primarily from!vaph!vaph depends on the intermolecular forces What do you remember from last time? What do you remember from last time? You have two containers. one has a total volume of 2 L and one has a total volume of 1 L Into each you place 500 ml of liquid ether

More information

3 rd Nine Weeks Review

3 rd Nine Weeks Review 3 rd Nine Weeks Review Formula Writing & Naming What is the name of the compound with the chemical formula CrCl 3? A) chromium tetrachloride B) chromium trichloride C) chromium(ii) chloride D) chromium(iii)

More information

What biological molecules have shapes and structures that depend on intermolecular forces?

What biological molecules have shapes and structures that depend on intermolecular forces? Chapter 11 Reading Guide Intermolecular Forces Dr. Baxley Tro 3 rd edition 1 Section 11.1: How do geckos stick to walls? What biological molecules have shapes and structures that depend on intermolecular

More information

Proton-Conducting Nanocomposites and Hybrid Polymers

Proton-Conducting Nanocomposites and Hybrid Polymers Proton-onducting Nanocomposites and Hybrid Polymers Y.D. Premchand 1, M.L. Di Vona 2, and P. Knauth 1 1 Introduction This chapter is about proton-conducting nanocomposites and hybrid polymers. Before beginning

More information

Introduction into defect studies. in ceramic materials(iii) Structure, Defects and Defect Chemistry. Z. Wang. January 18, 2002

Introduction into defect studies. in ceramic materials(iii) Structure, Defects and Defect Chemistry. Z. Wang. January 18, 2002 Introduction into defect studies in ceramic materials(iii) Structure, Defects and Defect Chemistry Z. Wang January 18, 2002 1. Mass, Charge and Site Balance The Schottky reactions for NaCl and MgO, respectively,

More information

College of Science (CSCI) CSCI EETF Assessment Year End Report, June, 2017

College of Science (CSCI) CSCI EETF Assessment Year End Report, June, 2017 College of Science (CSCI) North Science 135 25800 Carlos Bee Boulevard, Hayward CA 94542 2016-2017 CSCI EETF Assessment Year End Report, June, 2017 Program Name(s) EETF Faculty Rep Department Chair Chemistry/Biochemistry

More information

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure.

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure. High performance liquid chromatography (HPLC) is a much more sensitive and useful technique than paper and thin layer chromatography. The instrument used for HPLC is called a high performance liquid chromatograph.

More information

Spanish Fork High School Unit Topics and I Can Statements Honors Chemistry

Spanish Fork High School Unit Topics and I Can Statements Honors Chemistry Spanish Fork High School 2014-15 Unit Topics and I Can Statements Honors Chemistry Module 1 I Can: Module 2 I Can: Distinguish between elements, compounds, and mixtures Summarize the major experimental

More information

Chapter 3 Engineering Science for Microsystems Design and Fabrication

Chapter 3 Engineering Science for Microsystems Design and Fabrication Lectures on MEMS and MICROSYSTEMS DESIGN and MANUFACTURE Chapter 3 Engineering Science for Microsystems Design and Fabrication In this Chapter, we will present overviews of the principles of physical and

More information

This material is based upon work supported by the National Science Foundation under Grant Number DUE

This material is based upon work supported by the National Science Foundation under Grant Number DUE This material is based upon work supported by the National Science Foundation under Grant Number DUE-1140469. Any opinions, findings, and conclusions or recommendations expressed in this material are those

More information