Titration An experimental method used to determine the concentration of an unknown solution

Size: px
Start display at page:

Download "Titration An experimental method used to determine the concentration of an unknown solution"

Transcription

1 Titration An experimental method used to determine the concentration of an unknown solution Acid-Base Titration Curve Make a plot of titrant delivered vs ph of solution Shape is characteristic of reagents used in titration Strong acid titrated with strong base OR Weak acid titrated with a strong base OR Weak base titrated with strong acid Titration of Strong Acid with Strong Base ex: ml 0.10 M HCl titrated with 0.10 M NaOH. Neutralization reaction: HCl(aq) + NaOH(aq) NaCl(aq) + H2O(l) We are what we repeatedly do. Excellence, then, is not an act, but a habit. Aristotle Page 1 of 14

2 Four Stages on titration curve: Stage 0 (prior to addition of base): Stage I (prior to equivalence point): Stage II (at equivalence point): Stage III (after equivalence point): The general steps to titration problems are 1. Classify the acid (or base) as strong or weak 2. Determine the amount of acid (or base) initially present 3. Determine the amount of base (or acid) added Assume the neutralization reaction proceeds to completion 4. Determine the stage of your titration on the titration curve (what region 0, I, II, or III) 5. Decide the type of calculation to perform based on what is in solution strong acid strong base weak acid weak base buffer 6. Do the calculation (allow for new solution volume when calculating concentrations) 7. Sanity check Ask yourself if the answer makes physical sense We are what we repeatedly do. Excellence, then, is not an act, but a habit. Aristotle Page 2 of 14

3 Strong Acid-Strong Base Example Consider a ml volume of 0.10 M HCl that is titrated with 0.10 M NaOH. Write the neutralization reaction and characterize the resulting salt as acidic, neutral or basic Calculate the ph of the solution after addition of 0.00 ml of 0.10 M NaOH (start of titration) Calculate the ph of the solution after addition of ml of 0.10 M NaOH 1.00 Calculate the ph of the solution after addition of ml of 0.10 M NaOH 1.48 Calculate the ph of the solution after addition of ml of 0.10 M NaOH We are what we repeatedly do. Excellence, then, is not an act, but a habit. Aristotle Page 3 of 14

4 Titration of a Weak Acid with a Strong Base Example: ml 0.10 M propanoic acid (KA = ) titrated with 0.10 M NaOH Neutralization reaction: Four Stages on titration curve: Stage 0 (prior to addition of base): Stage I (prior to equivalence point): Stage II (at equivalence point): Stage III (after equivalence point): We are what we repeatedly do. Excellence, then, is not an act, but a habit. Aristotle Page 4 of 14

5 Weak Acid-Strong Base Example Consider the titration of ml 0.10 M propanoic acid (KA = ) is titrated with 0.10 M NaOH. Represent propanoic acid as HA and its conjugate base as A Calculate the ph of the solution after the addition of 0.00 ml of 0.10 M NaOH (start of titration) Calculate the ph of the solution after the addition of ml of 0.10 M NaOH 2.95 Calculate the ph of the solution after the addition of ml of 0.10 M NaOH 4.89 Calculate the ph of the solution after the addition of ml of 0.10 M NaOH We are what we repeatedly do. Excellence, then, is not an act, but a habit. Aristotle Page 5 of 14

6 Calculate the ph of the solution after addition of ml of 0.10 M NaOH In titration of HCN by KOH (KA = ) What type of salt is present at the equivalence point? What is the ph half-way to the equivalence? Concept Check 25 ml of 0.20 M NaOH was added to 50. ml of 0.12 M HNO2. At this stage of the titration the solution will be and the calculation involves. a. acidic; a buffer problem b. basic; a buffer problem c. acidic; a hydrolysis/ weak acid problem d. basic; a hydrolysis/ weak base problem e. neutral; no problem Concept Check 40.0 ml of 0.10 M NH3 was added to 50.0 ml of M HCl. At this stage of the titration the solution will be and the calculation involves. a. acidic; buffer problem b. basic; a buffer problem c. acidic; a hydrolysis/ weak acid problem d. basic; a hydrolysis/ weak base problem e. acidic; a strong acid problem We are what we repeatedly do. Excellence, then, is not an act, but a habit. Aristotle Page 6 of 14

7 Titration of a Weak Base with a Strong Acid Example: ml M NH3 (KB = ) titrated with M HCl Neutralization reaction: Four Stages on titration curve: Stage 0 (prior to addition of acid): Stage I (prior to equivalence point): Stage II (at equivalence point): Stage III (after equivalence point): We are what we repeatedly do. Excellence, then, is not an act, but a habit. Aristotle Page 7 of 14

8 Strong Acid-Weak Base Example Consider the titration of ml 0.10 M piperidine (KB = ) is titrated with 0.10 M HCl. Represent piperidine as B and its conjugate acid as BH + Calculate the ph of the solution after the addition of 0.00 ml of 0.10 M NaOH (start of titration) Calculate the ph of the solution after the addition of ml of 0.10 M HCl Calculate the ph of the solution after the addition of ml of 0.10 M HCl 9.11 Calculate the ph of the solution after addition of ml of 0.10 M HCl We are what we repeatedly do. Excellence, then, is not an act, but a habit. Aristotle Page 8 of 14

9 In titration of NH3 by strong acid HCl What type of salt is present at the equivalence point? acidic Consider the titration of 15 ml of M HF with M Ca(OH)2. KA of HF is What volume of Ca(OH)2 is needed to reach equivalence point? What is the ph at the equivalence point? 45 ml ph = 8.02 Titration of polyprotic acids We are what we repeatedly do. Excellence, then, is not an act, but a habit. Aristotle Page 9 of 14

10 Equivalence Point Indicator End Point Determined by stoichiometry just enough titrant added to neutralize the titrate Organic weak acid or base appearance depends on solution ph ex: Phenolphthalein is colorless in acidic solution and pink when ph > 8 Determined by indicator occurs when indicator changes color choose indicator so that end point and equivalence point coincide Acid-Base Indicators a weak organic acid or base whose color differs from that of its conjugate example: methyl-red (2-(N,N-Dimethyl-4-aminophenyl)azobenzenecarboxylic acid) H 3 C CH 3 N N COOH H 3 C N N COO- CH 3 + H + The color of an indicator changes over a narrow ph range, when ph pka,in ± 2 ph units We are what we repeatedly do. Excellence, then, is not an act, but a habit. Aristotle Page 10 of 14

11 Consider a titration of a weak base by a strong acid where the ph at equivalence is 5.2 Choose an appropriate indicator What experimental complication would occur if Crystal violet was chosen as an indicator Methyl red color would be blue at start and never change What experimental complication would occur if phenolphthalein was chosen as an indicator color change would occur before equivalence point (too little titrant added) We are what we repeatedly do. Excellence, then, is not an act, but a habit. Aristotle Page 11 of 14

12 Extra Practice Problems Consider the titration of 40.0 ml of M a weak acid (Ka = ) with M Ca(OH)2. How many milliliters of base are required to reach the equivalence point? Calculate the ph After addition of 0.0 ml of base 50.0 ml Calculate the ph After addition of 10.0 ml of base 2.04 Calculate the ph half-way to the equivalence point 2.85 Calculate the ph At the equivalence point 3.46 Calculate the ph after addition of 80.0 ml of base We are what we repeatedly do. Excellence, then, is not an act, but a habit. Aristotle Page 12 of 14

13 Consider the titration of 40.0 ml of M NH3 (Kb = ) with 0.10 M HCl. Is the ph of the equivalence point acidic basic or neutral? Calculate the ph after addition of 0.0 ml of M HCl acidic Calculate the ph after addition of 10.0 ml of M HCl Calculate the ph half-way to the equivalence point 9.95 Calculate the ph at the equivalence point 9.26 Calculate the ph after addition of 80.0 ml of M HCl We are what we repeatedly do. Excellence, then, is not an act, but a habit. Aristotle Page 13 of 14

14 Extra Challenge Problem A 24.0 ml volume of M H2SO4 is titrated with M NaOH. Calculate the ph of the solution after addition of the following volume of base: Calculate the ph of the solution after addition of 0.00 ml of M NaOH Calculate the ph of the solution after addition of ml of M NaOH Calculate the ph of the solution after addition of ml of M NaOH Calculate the ph of the solution after addition of 46.0 ml of M NaOH We are what we repeatedly do. Excellence, then, is not an act, but a habit. Aristotle Page 14 of 14

Ch 18 Acids and Bases Big Idea: Acids and Bases can be defined in terms of hydrogen ions and hydroxide ions or in terms of electron pairs.

Ch 18 Acids and Bases Big Idea: Acids and Bases can be defined in terms of hydrogen ions and hydroxide ions or in terms of electron pairs. Ch 18 Acids and Bases Big Idea: Acids and Bases can be defined in terms of hydrogen ions and hydroxide ions or in terms of electron pairs. Ch 18 - Acids and Bases I CAN: 1) Compare properties of acids

More information

= ) = )

= ) = ) Basics of calculating ph 1. Find the ph of 0.07 M HCl. 2. Find the ph of 0.2 M propanoic acid (K a = 10-4.87 ) 3. Find the ph of 0.4 M (CH 3 ) 3 N (K b = 10-4.20 ) 4. Find the ph of 0.3 M CH 3 COO - Na

More information

Lecture #11-Buffers and Titrations The Common Ion Effect

Lecture #11-Buffers and Titrations The Common Ion Effect Lecture #11-Buffers and Titrations The Common Ion Effect The Common Ion Effect Shift in position of an equilibrium caused by the addition of an ion taking part in the reaction HA(aq) + H2O(l) A - (aq)

More information

Understanding the shapes of acid-base titration curves AP Chemistry

Understanding the shapes of acid-base titration curves AP Chemistry Understanding the shapes of acidbase titration curves AP Chemistry Neutralization Reactions go to Completion Every acidbase reaction produces another acid and another base. A neutralization reaction is

More information

Questions #4-5 The following two questions refer to the following system: A 1.0L solution contains 0.25M HF and 0.60M NaF (Ka for HF = 7.2 x 10-4 ).

Questions #4-5 The following two questions refer to the following system: A 1.0L solution contains 0.25M HF and 0.60M NaF (Ka for HF = 7.2 x 10-4 ). Multiple Choice 1) A solution contains 0.250 M HA (K a = 1.0 x 10-6 ) and 0.45 M NaA. What is the ph after 0.10 mole of HCl is added to 1.00L of this solution? a. 3.17 b. 3.23 c. 6.00 d. 10.77 e. 10.83

More information

Grade A buffer: is a solution that resists changes in its ph upon small additions of acid or base.sq1

Grade A buffer: is a solution that resists changes in its ph upon small additions of acid or base.sq1 Chapter 15 Lesson Plan Grade 12 402. The presence of a common ion decreases the dissociation. BQ1 Calculate the ph of 0.10M CH 3 COOH. Ka = 1.8 10-5. [H + ] = = ( )( ) = 1.34 10-3 M ph = 2.87 Calculate

More information

16.3 Weak Acids Weak Bases Titration

16.3 Weak Acids Weak Bases Titration 16.3 Weak Acids Weak Bases Titration Titration of Weak Acid with Strong Base Titration of Base Acid with Strong Acid Dr. Fred Omega Garces Chemistry 201 Miramar College 1 Weak Acids Weak Bases Titration

More information

Chem 116 POGIL Worksheet - Week 11 - Solutions Titration. millimol NaOH added = millimol HCl initially present

Chem 116 POGIL Worksheet - Week 11 - Solutions Titration. millimol NaOH added = millimol HCl initially present Chem 116 POGIL Worksheet - Week 11 - Solutions Titration Key Questions 1. A 25.0-mL sample of 0.100 M HCl(aq) is titrated with 0.125 M NaOH(aq). How many milliliters of the titrant will be need to reach

More information

ACIDS AND BASES CONTINUED

ACIDS AND BASES CONTINUED ACIDS AND BASES CONTINUED WHAT HAPPENS WHEN AN ACID DISSOLVED IN WATER? Water acts as a Brønsted Lowry base and abstracts a proton (H+) from the acid. As a result, the conjugate base of the acid and a

More information

I II III IV. Volume HCl added. 1. An equation representing the reaction of a weak acid with water is

I II III IV. Volume HCl added. 1. An equation representing the reaction of a weak acid with water is 1. An equation representing the reaction of a weak acid with water is A. HCl + H 2 O H 3 O + + Cl B. NH 3 + H 2 O NH 4 + + OH C. HCO 3 H 2 O H 2 CO 3 + OH D. HCOOH + H 2 O H 3 O + + HCOO 2. The equilibrium

More information

Problem 1. What is the ph of a 291mL sample of 2.993M benzoic acid (C 6 H 5 COOH) (K a =6.4x10-5 )?

Problem 1. What is the ph of a 291mL sample of 2.993M benzoic acid (C 6 H 5 COOH) (K a =6.4x10-5 )? Problem 1 What is the ph of a 291mL sample of 2.993M benzoic acid (C 6 H 5 COOH) (K a =6.4x10-5 )? Problem 2 A 489mL sample of 0.5542M HNO 3 is mixed with 427mL sample of NaOH (which has a ph of 14.06).

More information

Name: Date: Period: #: TITRATION NOTES

Name: Date: Period: #: TITRATION NOTES TITRATION NOTES I. Titration and Curves - Titration: lab technique in which one solution is used to analyze another (analyte/titrant) - point: point in a titration where just enough standard solution has

More information

Acids and Bases Written Response

Acids and Bases Written Response Acids and Bases Written Response January 1999 4. Consider the salt sodium oxalate, Na2C2O4. a) Write the dissociation equation for sodium oxalate. (1 mark) b) A 1.0M solution of sodium oxalate turns pink

More information

Practice Examination #8B

Practice Examination #8B Practice Examination #8B Name: Date: 1. Equal volumes of 0.5 M HCl and 0.5 M NaOH are mixed. The total volume of the resulting mixture is 2 liters. The ph of the resulting solution is 1. A. 1 B. 2 C. 7

More information

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33 Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33 Review acid-base theory and titrations. For all titrations, at the equivalence point, the two reactants have completely reacted with

More information

Chapter 15. Acid-Base Equilibria

Chapter 15. Acid-Base Equilibria Chapter 15 Acid-Base Equilibria Section 15.1 Solutions of Acids or Bases Containing a Common Ion Common Ion Effect Shift in equilibrium position that occurs because of the addition of an ion already involved

More information

HALFWAY to EQUIVALENCE POINT: ph = pk a of the acid being titrated.

HALFWAY to EQUIVALENCE POINT: ph = pk a of the acid being titrated. CHEMISTRY 109 Help Sheet #33 Titrations Chapter 15 (Part II); Section 15.2 ** Cover topics appropriate for your lecture** Prepared by Dr. Tony Jacob http://www.chem.wisc.edu/areas/clc (Resource page) Nuggets:

More information

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) Acid Base Conjugate acid Conjugate

More information

Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations

Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations Sec 1 The Common-Ion Effect: The dissociation of a weak electrolyte decreases when a strong electrolyte that has an ion in common with

More information

Indicator Color in acid (ph < 7) Color at ph = 7 Color in base (ph > 7) Phenolphthalein Bromothymol Blue Red Litmus Blue Litmus

Indicator Color in acid (ph < 7) Color at ph = 7 Color in base (ph > 7) Phenolphthalein Bromothymol Blue Red Litmus Blue Litmus Unit 9: Acids and Bases Notes Introduction and Review 1. Define Acid: 2. Name the following acids: HCl H2SO4 H2SO3 H2S 3. Bases usually contain 4. Name the following bases: NaOH Ca(OH)2 Cu(OH)2 NH4OH Properties

More information

Advanced Placement Chemistry Chapters Syllabus

Advanced Placement Chemistry Chapters Syllabus As you work through the chapter, you should be able to: Advanced Placement Chemistry Chapters 14 16 Syllabus Chapter 14 Acids and Bases 1. Describe acid and bases using the Bronsted-Lowry, Arrhenius, and

More information

-a base contains an OH group and ionizes in solutions to produce OH - ions: Neutralization: Hydrogen ions (H + ) in solution form

-a base contains an OH group and ionizes in solutions to produce OH - ions: Neutralization: Hydrogen ions (H + ) in solution form NOTES Acids, Bases & Salts Arrhenius Theory of Acids & Bases: an acid contains hydrogen and ionizes in solutions to produce H+ ions: a base contains an OH group and ionizes in solutions to produce OH ions:

More information

Chem Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation

Chem Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation Chem 106 3--011 Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation 3//011 1 The net ionic equation for the reaction of KOH(aq) and

More information

Chem 116 POGIL Worksheet - Week 11 Titration

Chem 116 POGIL Worksheet - Week 11 Titration Chem 116 POGIL Worksheet - Week 11 Titration Why? Titration is the addition of a standard solution of precisely known concentration (the titrant) to a precisely measured volume of a solution with unknown

More information

Unit 9: Acid and Base Multiple Choice Practice

Unit 9: Acid and Base Multiple Choice Practice Unit 9: Acid and Base Multiple Choice Practice Name June 14, 2017 1. Consider the following acidbase equilibrium: HCO3 H2O H2CO3 OH In the reaction above, the BrönstedLowry acids are: A. H2O and OH B.

More information

Titration a solution of known concentration, called a standard solution

Titration a solution of known concentration, called a standard solution Acid-Base Titrations Titration is a form of analysis in which we measure the volume of material of known concentration sufficient to react with the substance being analyzed. Titration a solution of known

More information

Acids, Bases and Salts

Acids, Bases and Salts (Hebden Unit 4 page 109 182) 182) We will cover the following topics: 1. Definition of Acids and Bases 2. Bronsted-Lowry Acids and Bases 2 1 Arrhenius Definition of Acids and Bases An acid is a substance

More information

ACID-BASE EQUILIBRIA. Chapter 14 Big Idea Six

ACID-BASE EQUILIBRIA. Chapter 14 Big Idea Six ACID-BASE EQUILIBRIA Chapter 14 Big Idea Six Acid-Base Equilibria Common Ion Effect in Acids and Bases Buffer SoluDons for Controlling ph Buffer Capacity ph-titradon Curves Acid-Base TitraDon Indicators

More information

Chapter Menu Chapter Menu

Chapter Menu Chapter Menu Chapter Menu Chapter Menu Section 18.1 Section 18.3 Section 18.4 Introduction to Acids and Bases Hydrogen Ions and ph Neutralization Section 18.1 Intro to Acids and Bases Objectives: Compare the Arrhenius,

More information

Acids, Bases, & Neutralization Chapter 20 & 21 Assignment & Problem Set

Acids, Bases, & Neutralization Chapter 20 & 21 Assignment & Problem Set Acids, Bases, & Neutralization Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Acids, Bases, & Neutralization 2 Study Guide: Things You Must Know

More information

Acids and Bases Written Response

Acids and Bases Written Response Acids and Bases Written Response January 1999 4. Consider the salt sodium oxalate, Na2C2O4. a) Write the dissociation equation for sodium oxalate. (1 mark) b) A 1.0M solution of sodium oxalate turns pink

More information

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A)

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) What is a dominant equilibrium? How do we define major species? Reactions between acids and bases 1. Strong Acids + Strong Base The reaction

More information

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A)

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Often, there are many equilibria going on in an aqueous solution. So, we must determine the dominant equilibrium (i.e. the equilibrium reaction

More information

Acids, Bases, and Salts Review for Sections

Acids, Bases, and Salts Review for Sections 1. Consider the following: Review for Sections 4.1 4.9 I H 2 CO 3 + F HCO 3 + HF 2 II HCO 3 + HC 2 O 4 H 2 CO 3 + C 2 O 4 2 III HCO 3 + H 2 C 6 H 6 O 7 H 2 CO 3 + HC 6 H 5 O 7 The HCO 3 is a base in A.

More information

CHEMISTRY - MCQUARRIE 4E CH.21 - BUFFERS & THE TITRATION OF ACIDS & BASES

CHEMISTRY - MCQUARRIE 4E CH.21 - BUFFERS & THE TITRATION OF ACIDS & BASES !! www.clutchprep.com CONCEPT: CLASSIFICATION AND IDENTIFICATION OF BUFFERS Solutions which contain a acid and its base are called buffer solutions because they resist drastic changes in ph. They resist

More information

Acid Base Review Package

Acid Base Review Package Acid Base Review Package 1. In which of the following eqb systems is HCO 3 acting as a BronstedLowry base? 2 a. HCO 3 H+ + CO 3 b. HCO 3 + HS 2 H 2 S + CO 3 c. HCO 3 + H 2 S H 2 CO 3 + HS d. HCO 3 + H

More information

Grace King High School Chemistry Test Review

Grace King High School Chemistry Test Review CHAPTER 19 Acids, Bases & Salts 1. ACIDS Grace King High School Chemistry Test Review UNITS 7 SOLUTIONS &ACIDS & BASES Arrhenius definition of Acid: Contain Hydrogen and produce Hydrogen ion (aka proton),

More information

CHAPTER 8: ACID/BASE EQUILIBRIUM

CHAPTER 8: ACID/BASE EQUILIBRIUM CHAPTER 8: ACID/BASE EQUILIBRIUM Already mentioned acid-base reactions in Chapter 6 when discussing reaction types. One way to define acids and bases is using the Brønsted-Lowry definitions. A Brønsted-Lowry

More information

Topic 9: Acids & Bases

Topic 9: Acids & Bases Topic 9: Acids & Bases Regents Chemistry Mr. Mancuso Electrolytes Substances that conduct electricity when Include Ability to conduct electricity is due to the presence of Dissociation: ~ 1 ~ Acids and

More information

ACID-BASE REACTIONS. Titrations Acid-Base Titrations

ACID-BASE REACTIONS. Titrations Acid-Base Titrations Page III-b-1 / Chapter Fourteen Part II Lecture Notes ACID-BASE REACTIONS Chapter (Part II A Weak Acid + Strong Base Titration Titrations In this technique a known concentration of base (or acid is slowly

More information

Student Exploration: Titration

Student Exploration: Titration Name: Date: Student Exploration: Titration Vocabulary: acid, analyte, base, dissociate, equivalence point, indicator, litmus paper, molarity, neutralize, ph, strong acid, strong base, titrant, titration,

More information

CHAPTER Acid & Base

CHAPTER Acid & Base CHAPTER 19 19.1 Acid & Base Common Reactions with Acids Dilute: small amount of solute 1-M Concentrated: large amount of solute Indicator: changes color to show the presence of acids or bases : eat or

More information

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY Acids And Bases A. Characteristics of Acids and Bases 1. Acids and bases are both ionic compounds that are dissolved in water. Since acids and bases both form ionic solutions, their solutions conduct electricity

More information

REPORT FORM ACID BASE EQUILIBRIA. Name

REPORT FORM ACID BASE EQUILIBRIA. Name REPORT FORM ACID BASE EQUILIBRIA Name Section A Write chemical equations to explain the results of the conductance experiments demonstrated by your instructor. Only write equations for conductive solutions.

More information

*In every acid-base reaction, equilibrium favors transfer of a proton from the stronger acid to the stronger base.

*In every acid-base reaction, equilibrium favors transfer of a proton from the stronger acid to the stronger base. 16.2 Bronsted-Lowry Acids and Bases An acid is a substance that can transfer a proton to another substance. A base is a substance that can accept a proton. A proton is a hydrogen ion, H +. Proton transfer

More information

AP Chapter 15 & 16: Acid-Base Equilibria Name

AP Chapter 15 & 16: Acid-Base Equilibria Name AP Chapter 15 & 16: Acid-Base Equilibria Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 15 & 16: Acid-Base Equilibria 2 Warm-Ups (Show

More information

D. Ammonia can accept a proton. (Total 1 mark)

D. Ammonia can accept a proton. (Total 1 mark) 1. Which statement explains why ammonia can act as a Lewis base? A. Ammonia can donate a lone pair of electrons. B. Ammonia can accept a lone pair of electrons. C. Ammonia can donate a proton. D. Ammonia

More information

C) SO 4 H H. C) The N-atom is the Lewis base because it accepted a pair of electrons to form the

C) SO 4 H H. C) The N-atom is the Lewis base because it accepted a pair of electrons to form the AP Chemistry Test (Chapters 14 and 15) 1) Which one would hydrolyze water the most? A) Ca 2+ B) NO 3 - C) SO 4 2- H H D) CN - 2) Which one is true about the compound? H B-N H A) The N-atom is the Lewis

More information

Chem1120pretest2Summeri2015

Chem1120pretest2Summeri2015 Chem1120pretest2Summeri2015 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When the system A + B C + D is at equilibrium, a. the forward reaction has

More information

Worksheet 4.1 Conjugate Acid-Base Pairs

Worksheet 4.1 Conjugate Acid-Base Pairs Worksheet 4.1 Conjugate AcidBase Pairs 1. List five properties of acids that are in your textbook. Acids conduct electricity, taste sour, neutralize bases, change the color of indicators, and react with

More information

Exam 2 Sections Covered: 14.6, 14.8, 14.9, 14.10, 14.11, Useful Info to be provided on exam: K K [A ] [HA] [A ] [B] [BH ] [H ]=

Exam 2 Sections Covered: 14.6, 14.8, 14.9, 14.10, 14.11, Useful Info to be provided on exam: K K [A ] [HA] [A ] [B] [BH ] [H ]= Chem 101B Study Questions Name: Chapters 14,15,16 Review Tuesday 3/21/2017 Due on Exam Thursday 3/23/2017 (Exam 3 Date) This is a homework assignment. Please show your work for full credit. If you do work

More information

A 95 g/mol B 102 /mol C 117 g/mol D 126 g/mol E 152 g/mol

A 95 g/mol B 102 /mol C 117 g/mol D 126 g/mol E 152 g/mol Titrations In a titration a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical reaction between the two solutions is complete.

More information

1. Properties of acids: 1. Contain the ion Bases: 1. Contain the ion. 4. Found on Table 4. Found on table

1. Properties of acids: 1. Contain the ion Bases: 1. Contain the ion. 4. Found on Table 4. Found on table For each word, provide a short but specific definition from YOUR OWN BRAIN! No boring textbook definitions. Write something to help you remember the word. Explain the word as if you were explaining it

More information

Problem 1 C 6 H 5 [ COOH C 6 H[H 5 COO + ] - + H [ I C - x + x + x E x x x

Problem 1 C 6 H 5 [ COOH C 6 H[H 5 COO + ] - + H [ I C - x + x + x E x x x Problem 1 What is the ph of a 291mL sample of 2.993M benzoic acid (C 6 H 5 COOH) (K a =6.4x10 5 )? Write out acid dissociation reaction: C 6 H 5 COOH C 6 H 5 COO H Make an ICE chart since this is a weak

More information

Chapter 15. Acid-Base Equilibria

Chapter 15. Acid-Base Equilibria Chapter 15 Acid-Base Equilibria The Common Ion Effect The common-ion effect is the shift in an ionic equilibrium caused by the addition of a solute that provides an ion already involved in the equilibrium

More information

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS THE COMMON ION EFFECT The common ion effect occurs when the addition of an ion already present in the system causes the equilibrium to shift away

More information

Chapter 14 Acid- Base Equilibria Study Guide

Chapter 14 Acid- Base Equilibria Study Guide Chapter 14 Acid- Base Equilibria Study Guide This chapter will illustrate the chemistry of acid- base reactions and equilibria, and provide you with tools for quantifying the concentrations of acids and

More information

Name: Per: Date: Unit 11 - Acids, Bases and Salts Chemistry Accelerated Chemistry I Define each of the following: 1. Acidic hydrogens.

Name: Per: Date: Unit 11 - Acids, Bases and Salts Chemistry Accelerated Chemistry I Define each of the following: 1. Acidic hydrogens. Name: Per: Date: Unit 11 - Acids, Bases and Salts Chemistry Accelerated Chemistry I Define each of the following: 1. Acidic hydrogens 2. Binary acids 3. Oxyacids 4. Carboxylic acid 5. Amines Name the following

More information

Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates

Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates For Practice 15.1 In each reaction, identify the Brønsted Lowry acid, the Brønsted Lowry base, the conjugate acid, and the conjugate

More information

Pharmaceutical Analytical Chemistry (PHCM223-SS16) Lecture 5 ACID- BASE EQUILIBRIUM-V ph indicators

Pharmaceutical Analytical Chemistry (PHCM223-SS16) Lecture 5 ACID- BASE EQUILIBRIUM-V ph indicators Pharmaceutical Analytical Chemistry (PHCM223-SS16) Lecture 5 ACID- BASE EQUILIBRIUM-V ph indicators Dr. Rasha Hanafi PHCM223,SS16 Lecture 5, Dr. Rasha Hanafi 1 LEARNING OUTCOMES By the end of this session

More information

Review: Acid-Base Chemistry. Title

Review: Acid-Base Chemistry. Title Review: Acid-Base Chemistry Title Basics General properties of acids & bases Balance neutralization equations SA + SB water + salt Arrhenius vs. Bronsted-Lowry BL plays doubles tennis match with H+) Identify

More information

2/4/2016. Chapter 15. Chemistry: Atoms First Julia Burdge & Jason Overby. Acid-Base Equilibria and Solubility Equilibria The Common Ion Effect

2/4/2016. Chapter 15. Chemistry: Atoms First Julia Burdge & Jason Overby. Acid-Base Equilibria and Solubility Equilibria The Common Ion Effect Chemistry: Atoms First Julia Burdge & Jason Overby 17 Acid-Base Equilibria and Solubility Equilibria Chapter 15 Acid-Base Equilibria and Solubility Equilibria Kent L. McCorkle Cosumnes River College Sacramento,

More information

4.3 ANSWERS TO EXAM QUESTIONS

4.3 ANSWERS TO EXAM QUESTIONS 4. ANSWERS TO EXAM QUESTIONS. (a) (i) A proton donor () (ii) Fully ionised or fully dissociated () (iii) 0 0 4 () mol dm 6 () 4 (b) (i) 50 0 /5 000 () = 0 06 mol dm () () (ii) Mol OH added = 50 0 50/000

More information

1.8K: Define a buffer as relatively large amounts of a weak acid or base and its conjugate in equilibrium that maintain a relatively constant ph when

1.8K: Define a buffer as relatively large amounts of a weak acid or base and its conjugate in equilibrium that maintain a relatively constant ph when 1.8K: Define a buffer as relatively large amounts of a weak acid or base and its conjugate in equilibrium that maintain a relatively constant ph when small amounts of acid or base are added. 1 Chem 20

More information

Unit 2 Acids and Bases

Unit 2 Acids and Bases Unit 2 Acids and Bases 1 Topics Properties / Operational Definitions Acid-Base Theories ph & poh calculations Equilibria (Kw, K a, K b ) Indicators Titrations STSE: Acids Around Us 2 Operational Definitions

More information

Chem 30A. Ch 14. Acids and Bases

Chem 30A. Ch 14. Acids and Bases Chem 30A Ch 14. Acids and Bases Acids and Bases Acids and Bases Acids Sour taste Dissolve many metals Turn litmus paper red. Egs. Ace9c acid (vinegar), citric acid (lemons) Bases Bi>er taste, slippery

More information

ACIDS AND BASES. HCl(g) = hydrogen chloride HCl(aq) = hydrochloric acid HCl(g) H + (aq) + Cl (aq) ARRHENIUS THEORY

ACIDS AND BASES. HCl(g) = hydrogen chloride HCl(aq) = hydrochloric acid HCl(g) H + (aq) + Cl (aq) ARRHENIUS THEORY ACIDS AND BASES A. CHARACTERISTICS OF ACIDS AND BASES 1. Acids and bases are both ionic compounds that are dissolved in water. Since acids and bases both form ionic solutions, their solutions conduct electricity

More information

Chapter 16: Applications of Aqueous Equilibrium Part 2. Acid-Base Titrations

Chapter 16: Applications of Aqueous Equilibrium Part 2. Acid-Base Titrations Chapter 16: Applications of Aqueous Equilibrium Part 2 Acid-Base Titrations When you add an acid and a base together, a neutralization rxn occurs. In the lab, we do neutralization rxns all the time as

More information

1. What do a chemical indicator and a buffer solution typically both contain?

1. What do a chemical indicator and a buffer solution typically both contain? Acids, Bases & Redox 2 - Practice Problems for Assignment 9 1. What do a chemical indicator and a buffer solution typically both contain? (a) A strong acid and its conjugate acid (b) A strong acid and

More information

Ch 15, Applications of Aq Equilibria

Ch 15, Applications of Aq Equilibria Ch 15, Applications of Aq Equilibria We will focus on 3 areas: 1) buffers (incl. Henderson-Hasselbalch Transformation) 2) titrations 3) solubility equilibria 1 I. Neutralization Reactions A. Strong acid-strong

More information

8.1 Explaining the Properties of Acids & Bases. SCH4U - Chemistry, Gr. 12, University Prep

8.1 Explaining the Properties of Acids & Bases. SCH4U - Chemistry, Gr. 12, University Prep 8.1 Explaining the Properties of Acids & Bases SCH4U - Chemistry, Gr. 12, University Prep Equilibrium & Acids & Bases 2 So far, we have looked at equilibrium of general chemical systems: We learned about

More information

Chemistry 12 Provincial Exam Workbook Unit 04: Acid Base Equilibria. Multiple Choice Questions

Chemistry 12 Provincial Exam Workbook Unit 04: Acid Base Equilibria. Multiple Choice Questions R. Janssen, MSEC Chemistry 1 Provincial Workbook (Unit 0), P. 1 / 69 Chemistry 1 Provincial Exam Workbook Unit 0: Acid Base Equilibria Multiple Choice Questions 1. Calculate the volume of 0.00 M HNO needed

More information

is considered acid 1, identify the other three terms as acid 2, base 1, and base 2 to indicate the conjugate acid-base pairs.

is considered acid 1, identify the other three terms as acid 2, base 1, and base 2 to indicate the conjugate acid-base pairs. 18.1 Introduction to Acids and Bases 1. Name the following compounds as acids: a. H2SO4 d. HClO4 b. H2SO3 e. HCN c. H2S 2. Which (if any) of the acids mentioned in item 1 are binary acids? 3. Write formulas

More information

Acid-Base Titrations

Acid-Base Titrations Acid-Base Titrations The Titration One of the most important lab procedures involving acids and bases is the titration. A titration is an analytical procedure that allows for the measurement of the amount

More information

Chemistry I Notes Unit 10: Acids and Bases

Chemistry I Notes Unit 10: Acids and Bases Chemistry I Notes Unit 10: Acids and Bases Acids 1. Sour taste. 2. Acids change the color of acid- base indicators (turn blue litmus red). 3. Some acids react with active metals and release hydrogen gas,

More information

Acid Base Review. Page 1

Acid Base Review. Page 1 1. Which substance, when dissolved in water, forms a solution that conducts an electric current? A) C2H5OH B) C6H12O6 C) C12H22O11 D) CH3COOH 2. A substance is classified as an electrolyte because A) it

More information

Acid Base Equilibria

Acid Base Equilibria Acid Base Equilibria Acid Ionization, also known as acid dissociation, is the process in where an acid reacts with water to produce a hydrogen ion and the conjugate base ion. HC 2 H 3 O 2(aq) H + (aq)

More information

Chapter 17 Answers. Practice Examples [H3O ] 0.018M, 1a. HF = M. 1b. 30 drops. 2a.

Chapter 17 Answers. Practice Examples [H3O ] 0.018M, 1a. HF = M. 1b. 30 drops. 2a. Chapter 17 Answers Practice Examples 1a. + [HO ] 0.018M, 1b. 0 drops [HF] = 0.8 M. [H O + ] = 0.10 M, HF = 0.97 M. a. + HO 1.10 M, CHO = 0.150 M. b. 15g NaCHO a. The hydronium ion and the acetate ion react

More information

A) Fe B) Al C) P D) OH - 5) Which salt would form an acidic solution when it dissolves in water?

A) Fe B) Al C) P D) OH - 5) Which salt would form an acidic solution when it dissolves in water? AP Chemistry Test (Chapters 14 and 15) 1) Which one would hydrolyze water the most? A) NH 4 + B) Cl C) Na + D) ClO 3 2) Which one is most likely to be a Lewis acid? A) Fe B) Al C) P D) OH 3) What is the

More information

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA Acids- taste sour Bases(alkali)- taste bitter and feel slippery Arrhenius concept- acids produce hydrogen ions in aqueous solution while

More information

Judith Herzfeld 1996,1998. These exercises are provided here for classroom and study use only. All other uses are copyright protected.

Judith Herzfeld 1996,1998. These exercises are provided here for classroom and study use only. All other uses are copyright protected. Judith Herzfeld 1996,1998 These exercises are provided here for classroom and study use only. All other uses are copyright protected. 3.3-010 According to Bronsted-Lowry Theory, which of the following

More information

The Common Ion Effect

The Common Ion Effect Chapter 17 ACID BASE EQUILIBRIA (Part I) Dr. Al Saadi 1 17.1 The Common Ion Effect A phenomenon known as the common ion effect states that: When a compound containing an ion in common with an already dissolved

More information

Acids and Bases. Acid. Acid Base 2016 OTHS. Acid Properties. A compound that produces H + ions when dissolved in water. Examples!

Acids and Bases. Acid. Acid Base 2016 OTHS. Acid Properties. A compound that produces H + ions when dissolved in water. Examples! Acids and Bases Acid A compound that produces H + ions when dissolved in water. Examples! Vinegar Acetic acid Lemon Juice Citric acid Sour Candy Malic acid (and others) Milk Lactic acid HCl(aq) Acid Properties

More information

Do Now May 1, Obj: Observe and describe neutralization reactions. Copy: Balance the neutralization reaction. KCl(aq) + H 2 O(l)

Do Now May 1, Obj: Observe and describe neutralization reactions. Copy: Balance the neutralization reaction. KCl(aq) + H 2 O(l) Do Now May 1, 2017 Obj: Observe and describe neutralization reactions. Copy: Balance the neutralization reaction. HCl + KOH KCl(aq) + H 2 O(l) If I had 100 ml of a 0.01 M HCl solution, what is the ph of

More information

Ch 7 Practice Problems

Ch 7 Practice Problems Ch 7 Practice Problems 1. For the equilibrium that exists in an aqueous solution of nitrous acid (HNO 2, a eak acid), the equilibrium constant expression is [H ] [NO 2 ] = [HNO ] 2 [H ][N][O] [HNO 2] =

More information

Public Review - Acids and Bases. June A solution of which ph would make red litmus paper turn blue? (A) 2 (B) 4 (C) 6 (D) 8

Public Review - Acids and Bases. June A solution of which ph would make red litmus paper turn blue? (A) 2 (B) 4 (C) 6 (D) 8 Public Review Acids and Bases June 2005 13. A solution of which ph would make red litmus paper turn blue? 2 4 6 8 14. Which is the most recent definition of an acid? Arrhenius Brønsted)Lowry modified Arrhenius

More information

Aims to increases students understanding of: History, nature and practice of chemistry. Applications and uses of chemistry

Aims to increases students understanding of: History, nature and practice of chemistry. Applications and uses of chemistry Aims to increases students understanding of: History, nature and practice of chemistry Applications and uses of chemistry Implications of chemistry for society and the environment 1. Definitions: Lavoisier

More information

CHAPTER 7 Acid Base Equilibria

CHAPTER 7 Acid Base Equilibria 1 CHAPTER 7 Acid Base Equilibria Learning Objectives Acid base theories Acid base equilibria in water Weak acids and bases Salts of weak acids and bases Buffers Logarithmic concentration diagrams 2 ACID

More information

CHEMISTRY - BURDGE-ATOMS FIRST 3E CH.17 - ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA

CHEMISTRY - BURDGE-ATOMS FIRST 3E CH.17 - ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA !! www.clutchprep.com CONCEPT: CLASSIFICATION AND IDENTIFICATION OF BUFFERS Solutions which contain a acid and its base are called buffer solutions because they resist drastic changes in ph. They resist

More information

acid : a substance which base : a substance which H +

acid : a substance which base : a substance which H + 4.4. BronstedLowry Theory of A&B acid : a substance which base : a substance which H Typical BronstedLowry AB rxn eqn: eg1) NH 3 H 2 O NH 4 base acid OH eg2) CH 3 COOH H 2 O CH 3 COO H 3 O H 2 O an acid

More information

Acid & Base Review. The H + acceptor for the forward reaction is A) H2O( ) B) NH3(g) 20. Given the reaction: HSO4 + HPO4 2 «SO4 2 + H2PO4

Acid & Base Review. The H + acceptor for the forward reaction is A) H2O( ) B) NH3(g) 20. Given the reaction: HSO4 + HPO4 2 «SO4 2 + H2PO4 1. Which compound is an electrolyte? A) B) C) D) 2. Which laboratory test result can be used to determine if KCl(s) is an electrolyte? A) ph of KCl(aq) B) ph of KCl(s) C) electrical conductivity of KCl(aq)

More information

Name Date Class ACID-BASE THEORIES

Name Date Class ACID-BASE THEORIES 19.1 ACID-BASE THEORIES Section Review Objectives Define the properties of acids and bases Compare and contrast acids and bases as defined by the theories of Arrhenius, Brønsted-Lowry, and Lewis Vocabulary

More information

1.12 Acid Base Equilibria

1.12 Acid Base Equilibria .2 Acid Base Equilibria BronstedLowry Definition of acid Base behaviour A BronstedLowry acid is defined as a substance that can donate a proton. A BronstedLowry base is defined as a substance that can

More information

Aqueous Equilibria, Part 2 AP Chemistry Lecture Outline

Aqueous Equilibria, Part 2 AP Chemistry Lecture Outline Aqueous Equilibria, Part 2 AP Chemistry Lecture Outline Name: The Common-Ion Effect Suppose we have a weak acid and a soluble salt of that acid. CH 3 COOH NaCH 3 COO CH 3 COOH CH 3 COO + H + Since NaCH

More information

5.1.3 Acids, Bases and Buffers

5.1.3 Acids, Bases and Buffers 5..3 Acids, Bases and Buffers BronstedLowry Definition of Acid Base behaviour A BronstedLowry acid is defined as a substance that can donate a proton. A BronstedLowry base is defined as a substance that

More information

Bellwork: Answer these in your notes. What is the [H + ] of a solution with a ph of 4.90? Name this acid: H 3 PO 4. Name this base: KOH

Bellwork: Answer these in your notes. What is the [H + ] of a solution with a ph of 4.90? Name this acid: H 3 PO 4. Name this base: KOH Bellwork: Answer these in your notes. What is the [H + ] of a solution with a ph of 4.90? Name this acid: H 3 PO 4 Name this base: KOH Stoichiometry The stoichiometry of an acid-base neutralization reaction

More information

Acid Base Equilibrium Review

Acid Base Equilibrium Review Acid Base Equilibrium Review Proof of true understanding of acid base equilibrium culminates in the ability to find ph of any solution or combination of solutions. The ability to determine ph of a multitude

More information

Acid Base Titration Experiment ACID - BASE TITRATION LAB

Acid Base Titration Experiment ACID - BASE TITRATION LAB ACID - BASE TITRATION LAB MATERIALS and CHEMICALS Burette 50 ml Burette clamp Ring stand Stirring rod Plastic funnel Beakers (50 ml, 100 ml, 400 ml) Graduated cylinder (25 ml, 50 ml) 0.10 M NaOH 0.10 M

More information

Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute)

Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute) CHAPTER 16: ACID-BASE EQUILIBRIA Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute) A. Weak Monoprotic Acids. (Section 16.1) 1. Solution of Acetic Acid: 2. See Table

More information

Titration of a Weak Acid with a Strong Base

Titration of a Weak Acid with a Strong Base Titration of a Weak Acid with a Strong Base Weak Acid w/ Strong Base Overall: INITIAL ph: Weak acids do not fully dissociate we need to do an ICE table to determine initial ph. We expect it to be weakly

More information