measuring radon? Notes In this lesson, we are going to talk about the units that we use to measure radon.

Size: px
Start display at page:

Download "measuring radon? Notes In this lesson, we are going to talk about the units that we use to measure radon."

Transcription

1 Lesson 4: What are the units for measuring radon? Lesson overview This lesson introduces the units used to measure radon. Lesson objectives By the end of this lesson, the learners will be able to: Identify three units used to measure radon and radon decay products in homes List the EPA action levels for the three units used to measure radon and radon decay products in homes Identify four factors that may affect measurements of radon decay products In this lesson, we are going to talk about the units that we use to measure radon. See slide 4 1. First, we ll talk briefly about measuring radioactivity, or the number of radioactive decays over a given period of time. The important unit here is the picocurie, which equals decays per second 1 decay every 27 seconds 2.22 decays per minute See slide 4 2. When we measure radon gas, we consider the activity (the number of decays per minute) for a given volume of air (one liter). A liter is a little larger than a quart. So 1 pci/l = 2.22 decays/minute/liter Remember the EPA action level for radon: 4 pci/l. What does the EPA action level represent in terms of radioactive decays per time and volume? Correct answer: EPA action level = 4 pci/l = 8.88 decays/minute/liter. Lesson 4 1

2 See slide 4 3. Assume that a client spent 10 hours/day (perhaps sleeping for 8 hours and watching TV for 2 hours) in a room that had a radon level of 4 pci/l. How many decays/liter would the client be exposed to each day? Answer: 5,328 days/day/liter. See slide 4 4. This slide illustrates the average exposure to radiation in the United States. As you can see, radon accounts for more exposure than any other single source. See slide 4 5. Another method of measuring radioactivity, often used outside the United States, uses units called becquerels. A becquerel equals 1 decay per second. Since a picocurie equals one decay every 27 seconds, one becquerel also equals 27 picocuries. And since one picocurie equals decays/second, one picocurie also equals becquerels. Like picocuries, becquerels measure activity. To measure radon gas, we use activity (becquerels) for a given volume of air (in this case, a cubic meter, not a liter). A cubic meter equals 1000 liters. When we do the math, we find: One picocurie per liter of radon equals 37 becquerels per cubic meter. Again, let s consider the EPA action level for radon. How would you represent it in becquerels? Correct answer: EPA action level = 4 x 37 Bq/m 3 = 148 Bq/ m 3 See slide 4 6. So far, we ve been talking about how to measure radon gas alone. However, earlier we explained that radon decay products (RDPs) Lesson 4 2

3 also contribute to health risks. In fact, the term radon sometimes refers broadly to both radon and its decay products. In particular, we measure the alpha radiation emitted by the four short lived radon decay products: Polonium 218 Lead 214 Bismuth 214 Polonium 214 See slide 4 7. We measure the radiation from radon decay products differently. For RDPs, we generally use a unit called the working level (WL). There are several ways to define the working level. One WL is the concentration of RDPs produced from one liter of air that contains 100 pci/l of radon. One WL is the amount of short lived radon progeny that exists at a single moment if a container is kept at a constant 100 pci/l. The equivalent of the EPA action level of 4 pci/l is 0.02 WL. See slide 4 8. In summary, we can express the EPA action level for radon in three forms: 4 pci/l 148 Bq/m WL As a practical matter, the form we use most often is 4 pci/l. See slide 4 9. Are there any questions so far? See slide Several factors can raise or lower the concentration of radon and RDPs that can be measured. Some radon gas and RDPs naturally escape as air flows out of the home. Lesson 4 3

4 As we noted earlier, unlike radon gas, radon decay products are Solid particles Electrically charged Chemically reactive These characteristics determine how RDPs behave and how they are measured. Some RDPs attach to (or plate out on) solid objects, such as walls, floors, ceilings, and furniture. Plating out lowers their concentration in the air. Plated out RDPs cannot be measured. o Only the RDPs that remain in the air can be measured. o Therefore, factors that affect plating out also affect the measurement of RDPs. See slide Among the factors that we need to consider are Air circulation Ventilation Air filters Particles suspended in the air. See slide Let s first consider air circulation (that is, moving around the air that is already within a room). For example, fans increase normal air circulation. How do you think air circulation would affect the concentration of RDPs? Correct answer: Circulation, or moving air, may increase plating out, as RDP particles blow toward solid objects and attach to them. When plating out increases, the concentration of RDPs in the air decreases. See slide Lesson 4 4

5 We said that circulation refers to moving around air that is already in the space. In contrast, ventilation refers to a supply of fresh air. Open windows and doors increase ventilation. What effect do you think ventilation would have on the concentration of RDPs? Correct answer: Again, ventilation is likely to lower the concentration of RDPs. It may also reduce the concentration of radon, as the gas escapes from the home. See slide Another factor that affects the concentration of RDPs is an air filter in a furnace, for example. How do you think an air filter would affect the concentration of RDPs? Correct answer: A filter might remove some RDPs, which are charged particles that are chemically active. A filter would not remove radon gas itself, which has no electrical charge and is not chemically active. Thus, a filter would lower the concentration of RDPs. See slide What effect do you think particles suspended in the air (such as dust, smoke, and aerosols) might have? Correct answer: When there are particles in the air, RDPs are more likely to attach to these particles. Thus the RDP concentration in the air is likely to decrease. Lesson 4 5

6 See slide As you see, air circulation, ventilation, air filters, and particles in the air can all affect radon measurement. We ll see the importance of these factors again when we discuss the conditions that are needed to measure radon during short term tests. See slide Earlier, when we described radon, we said that over time, radon decays into various short lived radon decay products. In a closed system, like a closed home, the concentration of RDPs in the house increases until a situation called secular equilibrium is reached. (In this term, secular means eventual.) Secular equilibrium occurs when the radon decay products have the same level of radioactivity as the radon itself. In other words, the rate of decay of each short lived RDP will equal the rate of decay of the radon itself. Achieving secular equilibrium takes about 3 to 4 hours. You will need to measure radon in a home after it has reached secular equilibrium. When we talk about the necessary conditions for shortterm testing, you ll see that these conditions reflect the time needed to achieve secular equilibrium. See slide This slide is intended as a little light relief and as a reminder of why the information in this section is important. See handout 4 1. Handout 4 1 summarizes this section on the units we use to measure radon and its decay products. Summary. See slide Let s review the units for measuring radon and radon decay products: Picocuries/liter Becquerels/cubic meter Working levels Lesson 4 6

7 What are the EPA action levels for these methods of measurement? Correct numbers: 4 pci/l 148 Bq/m WL See slide We also talked about factors that affect the measurement of radon and radon decay products, including Air circulation Ventilation Air filters Particles in the air These factors are important when we consider the conditions necessary for testing a home. See slide Do you have any questions about the units for measuring radon? See slide Check comprehension. See handout 4 2A. This comprehension check is not graded. Now you re going to see whether you remember the main points that we ve discussed in this lesson. Please answer the questions on handout 4 2A. When you all finish, we ll review the answers together. Review the answers. See handout 4 2B, the answer key. Lesson 4 7

8 Resources U.S. Environmental Protection Agency Radon Proficiency Program (RPP) Handbook. Residential Measurement and Mitigation Proficiency. EPA 402 R July. Accessed January 23, EPA Assessment of risks from radon in homes United States Air and Radiation (6608J). EPA 402 R June. Lesson 4 8

9 Handout 4 1: Units for measuring radon and its decay products Radon gas U.S. system Measuring activity (number of radioactive decays per unit of time) 1 picocurie (pci) = one trillionth of curie (1Ci x ) = decays/second (dps) = Bq = 2.22 decays/minute (dpm) = 1 decay/27 seconds Measuring radon (number of decays per unit of time per volume) 1 picocurie/liter of air (pci/l) = 2.22 decays/minute/liter EPA action level 4 pci/l International system Measuring activity (number of radioactive decays per unit of time) 1 becquerel (Bq) = 1 decay/second = 27 pci Measuring radon (number of decays per unit of time per volume) 1 becquerel/cubic meter of air (Bq/m 3 ) = 1 decay/second/m 3 Working level (WL) Radon decay products Measuring concentration of radon decay products in volume of air = Any combination of short lived radon decay products that will produce 1.3 x 10 5 million electron volts of alpha energy per liter of air Lesson 4 9

10 Conversions If you have picocuries/ liter (pci/l) And you want becquerels/ cubic meter * (Bq/m 3 ) If you have becquerels/ cubic meter * (Bq/m 3 ) And you want picocuries/ liter (pci/l) Method Multiply pci/l by 37 Multiply Bq/m 3 by Example: EPA action level 4 pci/l x 37 = 148 Bq/m Bq/m 3 x = 4 pci/l Equation 1 pci/l = 37 Bq/m 3 1 Bq/m 3 = pci/l Working levels Method Example: EPA action level Equation If you have picocuries/ liter (pci/l) And you want working levels (WL) Multiply pci/l by the equilibrium ratio (ER) (usually assumed to be 0.5) and divide by 100 WL = 4 x 0.5 = WL = pci/l x ER 100 If you have working levels (WL) And you want picocuries/ liter (pci/l) Multiply WL by 100 and divide by equilibrium ratio (ER) (usually assumed to be 0.5) pci/l = 0.02 x 100 = pci/l = WL x 100 ER * 1 cubic meter (1 m 3 ) = 1000 liters (1000 L) Lesson 4 10

11 Handout 4 2A: Check your understanding Select the best answer from the choices below. Circle the correct answer. 1. Radon activity means a. How many radon atoms enter a home within a given period of time b. How many radon atoms spread through a home within a given period of time c. The number of radioactive decays in a given period of time for a given volume of air d. The number of radon atoms moving within a given volume of air 2. We usually measure radon activity in a. Curies/cubic meter of air b. Picocuries/liter of air c. Picocuries/cubic meter of air d. Liters of radon gas/picocurie 3. Using the units above (from question 2), the EPA action level for radon is a b. 0.4 c. 4.0 d In units used in the International System, the EPA action level for radon is a. 37 Becquerels/cubic meter b. 148 Becquerels/cubic meter c. 73 mackerels/liter d. 148 working levels/cubic meter 5. The units we use to measure radon decay products are a. Microcuries/liter of air and acting levels b. Picocuries/liter of air and working levels c. Secular equilibrium ratios d. Functional levels 6. The length of time to achieve secular equilibrium is about a. 7 days b. 3 7 minutes c. 3 4 days d. 3 4 hours 7. Which of the following factors probably will not affect radon measurement a. Open windows b. Attic fans c. Dust in the air d. Furniture placement Lesson 4 11

12 Handout 4 2B: Check your understanding Answer key The correct answers are shown in bold. 1. Radon activity means a. How many radon atoms enter a home within a given period of time b. How many radon atoms spread through a home within a given period of time c. The number of radioactive decays in a given period of time for a given volume of air d. The number of radon atoms moving within a given volume of air 2. We usually measure radon activity in a. Curies/cubic meter of air b. Picocuries/liter of air c. Picocuries/cubic meter of air d. Liters of radon gas/picocurie 3. Using the units above (from question 2), the EPA action level for radon is a b. 0.4 c. 4.0 d The units we use to measure radon decay products are a. Microcuries/liter of air and acting levels b. Picocuries/liter of air and working levels c. Secular equilibrium ratios d. Functional levels 6. The length of time to achieve secular equilibrium is about a. 7 days b. 3 7 minutes c. 3 4 days d. 3 4 hours 7. Which of the following factors probably will not affect radon measurement a. Open windows b. Attic fans c. Dust in the air d. Furniture placement 4. In units used in the International system, the EPA action level for radon is a. 37 Becquerels/cubic meter b. 148 Becquerels/cubic meter c. 73 mackerels/liter of water d. 148 working levels/cubic meter Lesson 4 12

ISO Measurement of radioactivity in the environment Air: radon-222 Part 5: Continuous measurement method of the activity concentration

ISO Measurement of radioactivity in the environment Air: radon-222 Part 5: Continuous measurement method of the activity concentration INTERNATIONAL STANDARD ISO 11665-5 First edition 2012-07-15 Measurement of radioactivity in the environment Air: radon-222 Part 5: Continuous measurement method of the activity concentration Mesurage de

More information

This document is a preview generated by EVS

This document is a preview generated by EVS INTERNATIONAL STANDARD ISO 11665-6 First edition 2012-07-15 Measurement of radioactivity in the environment Air: radon-222 Part 6: Spot measurement method of the activity concentration Mesurage de la radioactivité

More information

NORM and TENORM: Occurrence, Characterizing, Handling and Disposal

NORM and TENORM: Occurrence, Characterizing, Handling and Disposal NORM and TENORM: Occurrence, Characterizing, Handling and Disposal Ionizing Radiation and Hazard Potential John R. Frazier, Ph.D. Certified Health Physicist May 12, 2014 Radiation Radiation is a word that

More information

Ion Chamber. Radon Measurements. Theremino System Rev.1. Theremino System IonChamber_ENG Page 1

Ion Chamber. Radon Measurements. Theremino System Rev.1. Theremino System IonChamber_ENG Page 1 Ion Chamber Radon Measurements Theremino System Rev.1 Theremino System IonChamber_ENG Page 1 Table of Contents Misure con Camera a Ioni... 3 Theory... 3 Equipment... 3 Radon in Buildings - Rn 222... 4

More information

P.M. WEDNESDAY, 10 June minutes

P.M. WEDNESDAY, 10 June minutes Candidate Name Centre Number Candidate Number 0 GCSE 241/02 ADDITIONAL SCIENCE HIGHER TIER PHYSICS 2 P.M. WEDNESDAY, 10 June 2009 45 minutes ADDITIONAL MATERIALS In addition to this paper you may require

More information

What happens during nuclear decay? During nuclear decay, atoms of one element can change into atoms of a different element altogether.

What happens during nuclear decay? During nuclear decay, atoms of one element can change into atoms of a different element altogether. When Henri Becquerel placed uranium salts on a photographic plate and then developed the plate, he found a foggy image. The image was caused by rays that had not been observed before. For his discovery

More information

Available online at ScienceDirect. Procedia Engineering 172 (2017 )

Available online at  ScienceDirect. Procedia Engineering 172 (2017 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 172 (2017 ) 1184 1189 Modern Building Materials, Structures and Techniques, MBMST 2016 Radon - occurrence and health risks in

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.3, pp , 2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.3, pp , 2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.8, No.3, pp 1047-1052, 2015 Radioactive Measurements by Using Chemical Detectors (CR) and (TLD) in Damascus City Rose

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO 11665-5 First edition 2012-07-15 Measurement of radioactivity in the environment Air: radon-222 Part 5: Continuous measurement method of the activity concentration Mesurage de

More information

BASIC OF RADIATION; ORIGIN AND UNITS

BASIC OF RADIATION; ORIGIN AND UNITS INAYA MEDICAL COLLEGE (IMC) RAD 243 - LECTURE 2 BASIC OF RADIATION; ORIGIN AND UNITS DR. MOHAMMED MOSTAFA EMAM LECTURES & CLASS ACTIVITIES https://inayacollegedrmohammedemam.wordpress.com/ Password: drmohammedemam

More information

Atomic Structure Summary

Atomic Structure Summary Atomic Structure Summary All atoms have: a positively charged nucleus and negatively charged electrons around it Atomic nucleus consists of: positively charged protons and neutrons that have no electric

More information

Air Filter Alpha Spectrometry Report

Air Filter Alpha Spectrometry Report search this site Air Filter Alpha Spectrometry Report Navigation Latest News Realtime Air Monitoring Environmental Monitoring About RadWatch BRAWM Data (2011-2013) KelpWatch Frequently Asked Questions

More information

10.1 RADIOACTIVE DECAY

10.1 RADIOACTIVE DECAY 10.1 RADIOACTIVE DECAY When Henri Becquerel placed uranium salts on a photographic plate and then developed the plate, he found a foggy image. The image was caused by rays that had not been observed before.

More information

The detector and counter are used in an experiment to show that a radioactive source gives out alpha and beta radiation only.

The detector and counter are used in an experiment to show that a radioactive source gives out alpha and beta radiation only. ATOMS AND NUCLEAR RADIATION PART II Q1. The detector and counter are used in an experiment to show that a radioactive source gives out alpha and beta radiation only. Two different types of absorber are

More information

Natural Rock Sample Manual

Natural Rock Sample Manual Natural Rock Sample Manual Revision 2014-06-12 DURRIDGE Company Inc. 524 Boston Road Billerica, MA 01821 Tel: (978) 667-9556 Fax: (978) 667-9557 service@durridge.com www.durridge.com 2014, DURRIDGE Company

More information

CAM Equations De-Mystified LA-UR

CAM Equations De-Mystified LA-UR CAM Equations De-Mystified LA-UR-09-02553 Alan Justus Health Physics Measurement Group (RP-2) Radiation Instrumentation and Calibration eam (RIC) Presented at HPIC 2009 Annual Meeting U N C L A S S I F

More information

Understanding the Atom

Understanding the Atom CHAPTER 7 Understanding the Atom LESSON 2 Protons, Neutrons, and Electrons How Atoms Differ What do you think? Read the three statements below and decide whether you agree or disagree with them. Place

More information

The LSC Approach to Radon Counting in Air and Water

The LSC Approach to Radon Counting in Air and Water CHAPTER 32 The LSC Approach to Radon Counting in Air and Water Charles J. Passo, Jr. and James M. Floeckher INTRODUCTION Various methods exist to monitor 222Rn in air. There are seven commonly used types

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 37 Modern Physics Nuclear Physics Radioactivity Nuclear reactions http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 29 1 Lightning Review Last lecture: 1. Nuclear

More information

y = sin(x) y = x x = 0 x = 1.

y = sin(x) y = x x = 0 x = 1. Math 122 Fall 2008 Unit Test 2 Review Problems Set B We have chosen these problems because we think that they are representative of many of the mathematical concepts that we have studied. There is no guarantee

More information

Keywords: Cape coast, concentration, E-PERM, exposure, LR-115, radon

Keywords: Cape coast, concentration, E-PERM, exposure, LR-115, radon Research Journal of Environmental and Earth Sciences 4(7): 715-719, 2012 ISSN: 2041-0492 Maxwell Scientific Organization, 2012 Submitted: May 18, 2012 Accepted: June 12, 2012 Published: July 25, 2012 Preliminary

More information

ARMUG New CAM Developments. Arran Morgan MSc Physicist

ARMUG New CAM Developments. Arran Morgan MSc Physicist New CAM Developments Arran Morgan MSc Physicist Topics Particulate sampling considerations Alpha spectral analysis Concentration calculation Spectrum stabilisation Beta measurement Loose filter Bi detection

More information

PHYSICS 176 UNIVERSITY PHYSICS LAB II. Experiment 13. Radioactivity, Radiation and Isotopes

PHYSICS 176 UNIVERSITY PHYSICS LAB II. Experiment 13. Radioactivity, Radiation and Isotopes PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 13 Radioactivity, Radiation and Isotopes Equipment: ST-360 Counter with GM Tube and stand, shelf stand, and a source holder with isotopes. Historical overview:

More information

Applications of Systems of Differential Equations

Applications of Systems of Differential Equations Home Heating Newton Cooling Model Applications of Systems of Differential Equations Homogeneous Solution and Particular Solution Underpowered Heater Forced Air Furnace and Furnace Cycling Home Heating

More information

NATURAL ROCK SAMPLE. Performance Monitoring Accessory for the RAD7 User Manual

NATURAL ROCK SAMPLE. Performance Monitoring Accessory for the RAD7 User Manual NATURAL ROCK SAMPLE Performance Monitoring Accessory for the RAD7 User Manual TABLE OF CONTENTS TABLE OF CONTENTS 2 1 INTRODUCTION 3 2 RAD7 RADON SENSITIVITY CHECK 4 2.1 Purge the RAD7 5 2.2 Hook up to

More information

Industrial Hygiene: Assessment and Control of the Occupational Environment

Industrial Hygiene: Assessment and Control of the Occupational Environment Industrial Hygiene: Assessment and Control of the Occupational Environment Main Topics Air Pollution Control Analytical Methods Ergonomics Gas and Vapour Sampling General Practice Heat and Cold Stress

More information

Source:

Source: Glossary Activity - The rate of disintegration (transformation) or decay of radioactive material. The units of activity are the curie (Ci) and the becquerel (Bq). Source: http://www.nrc.gov/reading-rm/doc-collections/cfr/part020/part020-1003.html

More information

Radiological Preparedness & Emergency Response. Session II. Objectives. Basic Radiation Physics

Radiological Preparedness & Emergency Response. Session II. Objectives. Basic Radiation Physics Radiological Preparedness & Emergency Response Session II Basic Radiation Physics Objectives Discuss the difference between ionizing and non-ionizing radiation. Describe radioactive decay. Discuss the

More information

EXTRA NOTES FOR IGCSE PHYSICS. Calculate the orbital speed of the Earth around the Sun. (Earth orbital radius = 150 million km)

EXTRA NOTES FOR IGCSE PHYSICS. Calculate the orbital speed of the Earth around the Sun. (Earth orbital radius = 150 million km) EXTRA NOTES FOR IGCSE PHYSICS #1.33 use the relationship between orbital speed, orbital radius and time period: orbital speed = 2 π orbital radius time period or v = 2 π r T Example 1: Calculate the orbital

More information

Thursday, April 23, 15. Nuclear Physics

Thursday, April 23, 15. Nuclear Physics Nuclear Physics Some Properties of Nuclei! All nuclei are composed of protons and neutrons! Exception is ordinary hydrogen with just a proton! The atomic number, Z, equals the number of protons in the

More information

REPORT RESULTS OF RADON DIFFUSION COEFFICIENT (SAMPLES SYNTHESIA O-14015)

REPORT RESULTS OF RADON DIFFUSION COEFFICIENT (SAMPLES SYNTHESIA O-14015) REPORT RESULTS OF RADON DIFFUSION COEFFICIENT (SAMPLES SYNTHESIA O-14015) Prof. Dr. Carlos Sainz Fernandez Technical Director REPORT RESULTS RADON DIFFUSION COEFFICIENT - SYNTHESIA CONTENTS 1. INTRODUCTION

More information

Radioactive Decay. Becquerel. Atomic Physics. In 1896 Henri Becquerel. - uranium compounds would fog photographic plates as if exposed to light.

Radioactive Decay. Becquerel. Atomic Physics. In 1896 Henri Becquerel. - uranium compounds would fog photographic plates as if exposed to light. Radioactive Decay Atomic Physics Becquerel In 1896 Henri Becquerel - uranium compounds would fog photographic plates as if exposed to light. - a magnetic field could deflect the radiation that caused the

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

Environmental sampling for radioisotopes on the Hampden-Sydney College campus

Environmental sampling for radioisotopes on the Hampden-Sydney College campus Environmental sampling for radioisotopes on the Hampden-Sydney College campus William R. Zechman and Hugh O. Thurman, III Department of Physics and Astronomy, Hampden-Sydney College, Hampden-Sydney, VA

More information

Physics Experimental Physics Temple University, Spring C. J. Martoff, Instructor

Physics Experimental Physics Temple University, Spring C. J. Martoff, Instructor Physics 4796 - Experimental Physics Temple University, Spring 2010-11 C. J. Martoff, Instructor Physics 4796 Lab Writeup Counting Statistics (or, Is it Radioactive?) 0.1 Purpose of This Lab Exercise: Demonstrate

More information

Chapter 3 Radioactivity

Chapter 3 Radioactivity Chapter 3 Radioactivity Marie Curie 1867 1934 Discovered new radioactive elements Shared Nobel Prize in physics in 1903 Nobel Prize in Chemistry in 1911 Radioactivity Radioactivity is the spontaneous emission

More information

Geologic Hazards. Montour County Multi-jurisdictional. General. Earthquake

Geologic Hazards. Montour County Multi-jurisdictional. General. Earthquake Geologic Hazards General s are very rare in Pennsylvania and have caused little damage with no reported injuries or causalities. s that do occur in Pennsylvania happen deep within the Earth s crust. This

More information

11/23/2014 RADIATION AND DOSE MEASUREMENTS. Units of Radioactivity

11/23/2014 RADIATION AND DOSE MEASUREMENTS. Units of Radioactivity CHAPTER 4 RADIATION UNITS RADIATION AND DOSE MEASUREMENTS 1 Units of Radioactivity 2 1 Radiation Units There are specific units for the amount of radiation you receive in a given time and for the total

More information

Classroom notes for: Radiation and Life Lecture Thomas M. Regan Pinanski 207 ext 3283

Classroom notes for: Radiation and Life Lecture Thomas M. Regan Pinanski 207 ext 3283 Classroom notes for: Radiation and Life Lecture 11 98.101.201 Thomas M. Regan Pinanski 207 ext 3283 1 Radioactive Decay Series ( Chains ) A radioactive isotope (radioisotope) can decay and transform into

More information

Radiation Basics. Candace C. Davison, M.Engr. Mary Lou Dunzik-Gougar, Ph.D.

Radiation Basics. Candace C. Davison, M.Engr. Mary Lou Dunzik-Gougar, Ph.D. Radiation Basics Candace C. Davison, M.Engr. Research & Education Specialist Pennsylvania State University Radiation Science and Engineering Center Mary Lou Dunzik-Gougar, Ph.D. Assistant Prof of Nuclear

More information

SECTION 8 Part I Typical Questions

SECTION 8 Part I Typical Questions SECTION 8 Part I Typical Questions 1. For a narrow beam of photons, the relaxation length is that thickness of absorber that will result in a reduction of in the initial beam intensity. 1. 1/10. 2. 1/2.

More information

Activity 11 Solutions: Ionizing Radiation II

Activity 11 Solutions: Ionizing Radiation II Activity 11 Solutions: Ionizing Radiation II 11.1 Additional Sources of Ionizing Radiation 1) Cosmic Rays Your instructor will show you radiation events in a cloud chamber. Look for vapor trails that do

More information

Lecture 21 Fundamentals of Physics Phys 120, Fall 2015 Nuclear Physics

Lecture 21 Fundamentals of Physics Phys 120, Fall 2015 Nuclear Physics Lecture 21 Fundamentals of Physics Phys 120, Fall 2015 Nuclear Physics A. J. Wagner North Dakota State University, Fargo, ND 58102 Fargo, November 13, 2015 Overview Why care about nuclei? How do nuclei

More information

Radioactivity Karolina H. Czarnecka, PhD Department of Molecular Bases of Medicine

Radioactivity Karolina H. Czarnecka, PhD Department of Molecular Bases of Medicine Radioactivity Karolina H. Czarnecka, PhD Department of Molecular Bases of Medicine karolina.czarnecka@umed.lodz.pl The periodic table is a tabular arrangement of the chemical elements, ordered by their

More information

Electrical conductivity of air related to ion pair production rate from radon and its progeny concentrations in dwellings of Mysore city

Electrical conductivity of air related to ion pair production rate from radon and its progeny concentrations in dwellings of Mysore city Indian Journal of Pure & Applied Physics Vol. 43, September 2005, pp. 679-683 Electrical conductivity of air related to ion pair production rate from radon and its progeny concentrations in dwellings of

More information

Georgia Institute of Technology. Radiation Detection & Protection (Day 3)

Georgia Institute of Technology. Radiation Detection & Protection (Day 3) Georgia Institute of Technology The George W. Woodruff School of Mechanical Engineering Nuclear & Radiological Engineering/Medical Physics Program Ph.D. Qualifier Exam Spring Semester 2009 Your ID Code

More information

1 Radioactivity BEFORE YOU READ. Atomic Energy. National Science Education Standards STUDY TIP

1 Radioactivity BEFORE YOU READ. Atomic Energy. National Science Education Standards STUDY TIP CHAPTER 4 1 Radioactivity SECTION Atomic Energy BEFORE YOU READ After you read this section, you should be able to answer these questions: What are three types of radioactive decay? How does radiation

More information

A Brief Overview of Radiation and Analytical Water Testing for Radiological Contaminants.

A Brief Overview of Radiation and Analytical Water Testing for Radiological Contaminants. A Brief Overview of Radiation and Analytical Water Testing for Radiological Contaminants. James Henitz Radioanalytical Services NJ Water Monitoring Council: January 24, 2018 Overview of Presentation What

More information

Measurement of Radon and Uranium Concentrations and Background Gamma Rays at the University of Baghdad -Jadiriyah Site

Measurement of Radon and Uranium Concentrations and Background Gamma Rays at the University of Baghdad -Jadiriyah Site Measurement of Radon and Uranium Concentrations and Background Gamma Rays at the University of Baghdad -Jadiriyah Site Shafik S. Shafik 1, Aamir A. Mohammed 2 1, 2 Department of Physics, College of Science,

More information

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield.

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. Nuclear Radiation Natural Radioactivity A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. 1 Radioactive Isotopes A radioactive isotope has an unstable

More information

Nuclear Properties. Thornton and Rex, Ch. 12

Nuclear Properties. Thornton and Rex, Ch. 12 Nuclear Properties Thornton and Rex, Ch. 12 A pre-history 1896 Radioactivity discovered - Becquerel a rays + (Helium) b rays - (electrons) g rays 0 (EM waves) 1902 Transmutation observed - Rutherford and

More information

Introduction to Nuclear Engineering. Ahmad Al Khatibeh

Introduction to Nuclear Engineering. Ahmad Al Khatibeh Introduction to Nuclear Engineering Ahmad Al Khatibeh CONTENTS INTRODUCTION (Revision) RADIOACTIVITY Radioactive Decay Rates Units of Measurement for Radioactivity Variation of Radioactivity Over Time.

More information

Radioactivity INTRODUCTION. Natural Radiation in the Background. Radioactive Decay

Radioactivity INTRODUCTION. Natural Radiation in the Background. Radioactive Decay Radioactivity INTRODUCTION The most common form of radiation is the electromagnetic wave. These waves include low energy radio waves, microwaves, visible light, x-rays, and high-energy gamma rays. Electromagnetic

More information

Wisconsin State Laboratory of Hygiene Radiochemistry Unit Lynn West

Wisconsin State Laboratory of Hygiene Radiochemistry Unit Lynn West 1.0 Introduction Wisconsin State Laboratory of Hygiene Radiochemistry Unit Lynn West This document will describe the types of methods approved to analyze uranium in groundwater and the effects of converting

More information

V.Schmidt, P. Hamel. Radon in the Living Environment, April 1999, Athens, Greece

V.Schmidt, P. Hamel. Radon in the Living Environment, April 1999, Athens, Greece Radon in the Living Environment, 39 MEASUREMENTS OF DEPOSITION VELOCITY OF RADON DECAY PRODUCTS FOR EXAMINATION OF THE CORRELATION BETWEEN AIR ACTIVITY CONCENTRATION OF RADON AND THE ACCUMULATED Po-0 SURFACE

More information

How many protons are there in the nucleus of the atom?... What is the mass number of the atom?... (Total 2 marks)

How many protons are there in the nucleus of the atom?... What is the mass number of the atom?... (Total 2 marks) Q1. The diagram shows an atom. How many protons are there in the nucleus of the atom?... What is the mass number of the atom?... (Total 2 marks) Page 1 of 53 Q2. The picture shows a man at work in a factory

More information

Sampling Instead of Source Blending: A Potential Inexpensive Path to Gross Alpha MCL Compliance

Sampling Instead of Source Blending: A Potential Inexpensive Path to Gross Alpha MCL Compliance Sampling Instead of Source Blending: A Potential Inexpensive Path to Gross Alpha MCL Compliance Jeff Stovall, Ph.D., P.E., Carollo Engineers and Geri Wellborn, Norman Utilities Authority 2017 Southwest

More information

Nuclear Properties. Thornton and Rex, Ch. 12

Nuclear Properties. Thornton and Rex, Ch. 12 Nuclear Properties Thornton and Rex, Ch. 12 A pre-history 1896 Radioactivity discovered - Becquerel a rays + (Helium) b rays - (electrons) g rays 0 (EM waves) 1902 Transmutation observed - Rutherford and

More information

COUNTING ERRORS AND STATISTICS RCT STUDY GUIDE Identify the five general types of radiation measurement errors.

COUNTING ERRORS AND STATISTICS RCT STUDY GUIDE Identify the five general types of radiation measurement errors. LEARNING OBJECTIVES: 2.03.01 Identify the five general types of radiation measurement errors. 2.03.02 Describe the effect of each source of error on radiation measurements. 2.03.03 State the two purposes

More information

Building Envelope Requirements Overview Page 3-4

Building Envelope Requirements Overview Page 3-4 Building Envelope Requirements Overview Page 3-4 The benefit of a high reflectance surface is obvious: while dark surfaces absorb the sun s energy (visible light, invisible infrared. and ultraviolet radiation)

More information

RESPONSE OF A RADON CHARCOAL CANNISTER TO CLIMATIC AND RADON VARIATIONS IN THE INTE RADON CHAMBER. A. Vargas, X. Ortega, I.

RESPONSE OF A RADON CHARCOAL CANNISTER TO CLIMATIC AND RADON VARIATIONS IN THE INTE RADON CHAMBER. A. Vargas, X. Ortega, I. RESPONSE OF A RADON CHARCOAL CANNISTER TO CLIMATIC AND RADON VARIATIONS IN THE INTE RADON CHAMBER A. Vargas, X. Ortega, I. Serrano Institut de Tècniques Energètiques (INTE), Universitat Politècnica de

More information

CALIBRATION OF INSTRUMENTS MEASURING RADON OVER A LARGE ACTIVITY RANGE. N. Michielsen, V. Voisin

CALIBRATION OF INSTRUMENTS MEASURING RADON OVER A LARGE ACTIVITY RANGE. N. Michielsen, V. Voisin Radon in the Living Environment, 011 CALIBRATION OF INSTRUMENTS MEASURING RADON OVER A LARGE ACTIVITY RANGE N. Michielsen, V. Voisin Institut de Protection et de Sûreté Nucléaire, Département de Prévention

More information

New GCSE 4463/01 SCIENCE A FOUNDATION TIER PHYSICS 1

New GCSE 4463/01 SCIENCE A FOUNDATION TIER PHYSICS 1 Surname Other Names Centre Number 0 Candidate Number New GCSE 4463/01 SCIENCE A FOUNDATION TIER PHYSICS 1 P.M. THURSDAY, 17 January 2013 1 hour Question For s use Maximum Mark Mark Awarded 1. 2 2. 3 3.

More information

Uncertainty in radon measurements with CR39 detector due to unknown deposition of Po

Uncertainty in radon measurements with CR39 detector due to unknown deposition of Po Nuclear Instruments and Methods in Physics Research A 450 (2000) 568} 572 Uncertainty in radon measurements with CR39 detector due to unknown deposition of Po D. NikezicH, K.N. Yu* Department of Physics

More information

ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION

ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION I. People usually receive radiation mainly from natural sources. About one-third of the natural radiation is related

More information

10.1 Radioactivity. Section Resources

10.1 Radioactivity. Section Resources Section 1.1 1.1 Radioactivity 1 FOCUS Objectives 1.1.1 Describe the process of nuclear decay. 1.1. Classify nuclear radiation as alpha particles, beta particles, or gamma rays. 1.1.3 Balance nuclear equations.

More information

The Richter Scale. Micro Less than 2.0 Microearthquakes, not felt. About 8,000/day

The Richter Scale. Micro Less than 2.0 Microearthquakes, not felt. About 8,000/day Geologic Hazards General s are very rare in Pennsylvania and have caused very little damage and no reported injuries or casualties. Since the Commonwealth is not on an active fault, the earthquakes that

More information

Half Life Introduction

Half Life Introduction Name: Date: Period: Half Life Introduction The half-life of an element is the time it will take half of the parent atoms to transmutate into different atoms (through alpha or beta decays, or another process).

More information

APPENDIX A RADIATION OVERVIEW

APPENDIX A RADIATION OVERVIEW Former NAVWPNSTA Concord, Inland Area APPENDIX A RADIATION OVERVIEW Draft ECSD-3211-0005-0004 08/2009 This page intentionally left blank. Draft ECSD-3211-0005-0004 08/2009 APPENDIX A RADIATION OVERVIEW

More information

Episode 509: Radioactive background and detectors

Episode 509: Radioactive background and detectors Episode 509: Radioactive background and detectors This episode introduces the ubiquitous nature of radioactivity, and considers its detection. It draws on students previous knowledge, and emphasises the

More information

Rules: With each statement, vote true or false. If your vote is correct and you can justify your answer, move along the board.

Rules: With each statement, vote true or false. If your vote is correct and you can justify your answer, move along the board. Rules: With each statement, vote true or false. If your vote is correct and you can justify your answer, move along the board. If your vote is incorrect, move towards the centre. Drop into the middle and

More information

Applications of Systems of Differential Equations

Applications of Systems of Differential Equations Brine Tank Cascade Cascade Model Recycled Brine Tank Cascade Recycled Cascade Model Home Heating Newton Cooling Model Applications of Systems of Differential Equations Homogeneous Solution and Particular

More information

sample What happens when we are exposed to radiation? 1.1 Natural radiation Cosmic radiation

sample What happens when we are exposed to radiation? 1.1 Natural radiation Cosmic radiation 1.1 Natural radiation 3 1 What happens when we are exposed to radiation? 1.1 Natural radiation For as long as humans have walked the earth, we have continually been exposed to naturally-occurring radiation.

More information

Teacher: Mr. gerraputa. Name: Which two radioisotopes have the same decay mode?

Teacher: Mr. gerraputa. Name: Which two radioisotopes have the same decay mode? Teacher: Mr. gerraputa Print Close Name: 1 Which two radioisotopes have the same decay mode? 37 Ca and 53 Fe 220 Fr and 60 Co 37 K and 42 K 99 Tc and 19 Ne 1 5. 3 Exactly how much time must elapse before

More information

Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry

Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry V. V. Bastrikov 1, M. V. Zhukovsky 2 1 Experimental Physics Department, Ural State Technical University, Mira St., 19/5, 620002, Ekaterinburg,

More information

Radiation and the Universe C Questions

Radiation and the Universe C Questions Radiation and the Universe C Questions Name: Madeley High School Q. To gain full marks in this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific

More information

Differentiating Chemical Reactions from Nuclear Reactions

Differentiating Chemical Reactions from Nuclear Reactions Differentiating Chemical Reactions from Nuclear Reactions 1 CHEMICAL Occurs when bonds are broken or formed. Atoms remained unchanged, though may be rearranged. Involves valence electrons Small energy

More information

Populating nucleon states. From the Last Time. Other(less stable) helium isotopes. Radioactivity. Radioactive nuclei. Stability of nuclei.

Populating nucleon states. From the Last Time. Other(less stable) helium isotopes. Radioactivity. Radioactive nuclei. Stability of nuclei. Nucleus: From the Last Time System of and neutrons bound by the strong force Proton number determines the element. Different isotopes have different # neutrons. Stable isotopes generally have similar number

More information

International Atomic Energy Agency Learning programme: Radon gas. Module 4: Developing and Implementing a Representative Indoor Radon Survey

International Atomic Energy Agency Learning programme: Radon gas. Module 4: Developing and Implementing a Representative Indoor Radon Survey International Atomic Energy Agency Learning programme: Radon gas Module 4: Developing and Implementing a Representative Indoor Radon Survey Content Scope of this module Representative radon survey aims

More information

Today s A/C systems include:

Today s A/C systems include: * www.sgvenergywise.org Replac ing your A/C system REQUIRES a permit from your c ity - it s important. WHY? Because A/C (air conditioning) is a SYSTEM, not just one piece of equipment. The thermostat,

More information

10.2 Rates of Nuclear Decay

10.2 Rates of Nuclear Decay Section 0. 0. Rates of Nuclear Decay FOCUS Objectives 0.. Define half-life, and relate half-life to the age of a radioactive sample. 0.. Compare and contrast nuclear reaction rates with chemical reaction

More information

Computing Horsepower (HP) Lesson 8

Computing Horsepower (HP) Lesson 8 Computing Horsepower (HP) Lesson 8 Remember: Pretty Please My Dear Aunt Sally (From left to right; Parentheses; Power; Multiply; Divide; Add, Subtract) Today, we re going to find how to compute the one

More information

1. What would be the dose rate of two curies of 60Co with combined energies of 2500 kev given off 100% of the time?

1. What would be the dose rate of two curies of 60Co with combined energies of 2500 kev given off 100% of the time? 1.11 WORKSHEET #1 1. What would be the dose rate of two curies of 60Co with combined energies of 500 kev given off 100% of the time?. What would be the dose rate of 450 mci of 137Cs (gamma yield is 90%)?

More information

Architectural Acoustics Prof. Shankha Pratim Bhattacharya Department of Architecture and Regional Planning Indian Institute of Technology, Kharagpur

Architectural Acoustics Prof. Shankha Pratim Bhattacharya Department of Architecture and Regional Planning Indian Institute of Technology, Kharagpur Architectural Acoustics Prof. Shankha Pratim Bhattacharya Department of Architecture and Regional Planning Indian Institute of Technology, Kharagpur Lecture 10 Application of Reverberation Time Good morning,

More information

Nuclear units and applications

Nuclear units and applications Nuclear units and applications Activity The rate of nuclear disintegrations is known as the activity. Activity is the total number of disintegrations in a sample. It is measured using the becquerel (Bq),

More information

MATHEMATICAL MODEL OF RADON ACTIVITY MEASUREMENTS

MATHEMATICAL MODEL OF RADON ACTIVITY MEASUREMENTS 2015 International Nuclear Atlantic Conference - INAC 2015 São Paulo, SP, Brazil, October 4-9, 2015 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-06-9 MATHEMATICAL MODEL OF RADON ACTIVITY

More information

New GCSE 4463/02 SCIENCE A HIGHER TIER PHYSICS 1

New GCSE 4463/02 SCIENCE A HIGHER TIER PHYSICS 1 Surname Other Names Centre Number 0 Candidate Number New GCSE 4463/02 SCIENCE A HIGHER TIER PHYSICS 1 P.M. THURSDAY, 17 January 2013 1 hour ADDITIONAL MATERIALS In addition to this paper you may require

More information

Q1. The diagram represents an atom of lithium.

Q1. The diagram represents an atom of lithium. Q1. The diagram represents an atom of lithium. Complete the diagram by writing in the spaces the name of each type of particle. Use only words given in the box. Each word may be used once or not at all.

More information

Radiation Awareness Training. Stephen Price Office of Research Safety

Radiation Awareness Training. Stephen Price Office of Research Safety Radiation Awareness Training Stephen Price Office of Research Safety Purpose This training is intended for Clemson University Faculty, Staff or Students who do not work directly with radioactive materials

More information

A. Identify the highly penetrating radioactive emission that exposed the photographic plates.

A. Identify the highly penetrating radioactive emission that exposed the photographic plates. Name Unit 3: Nuclear Chemistry Date Part 2 Questions 1. In 1896, Antoine H. Becquerel discovered that a uranium compound could expose a photographic plate wrapped in heavy paper in the absence of light.

More information

( ) ( ). ( ) " d#. ( ) " cos (%) " d%

( ) ( ). ( )  d#. ( )  cos (%)  d% Math 22 Fall 2008 Solutions to Homework #6 Problems from Pages 404-407 (Section 76) 6 We will use the technique of Separation of Variables to solve the differential equation: dy d" = ey # sin 2 (") y #

More information

6. Atomic and Nuclear Physics

6. Atomic and Nuclear Physics 6. Atomic and Nuclear Physics Chapter 6.2 Radioactivity From IB OCC, prepared by J. Domingues based on Tsokos Physics book Warm Up Define: nucleon atomic number mass number isotope. Radioactivity In 1896,

More information

Any student who registers as a new attendee of Teaneck High School after August 15 th will have an extra week to complete the summer assignment.

Any student who registers as a new attendee of Teaneck High School after August 15 th will have an extra week to complete the summer assignment. Dear Parents and Students: All students entering Algebra I or Algebra I Honors in September are required to complete this assignment. This assignment is comprised of two components: a review of essential

More information

EXPERIMENT FOUR - RADIOACTIVITY This experiment has been largely adapted from an experiment from the United States Naval Academy, Annapolis MD

EXPERIMENT FOUR - RADIOACTIVITY This experiment has been largely adapted from an experiment from the United States Naval Academy, Annapolis MD EXPERIMENT FOUR - RADIOACTIVITY This experiment has been largely adapted from an experiment from the United States Naval Academy, Annapolis MD MATERIALS: (total amounts per lab) small bottle of KCl; isogenerator

More information

Opening. Monster Guard. Teacher s Guide

Opening. Monster Guard. Teacher s Guide Teacher s Guide PLEASE NOTE: Students must complete the Initiation section of the Monster Guard app before they begin this activity, in order to gain access to the Severe Winter Weather training mission.

More information

Problem Set 5 Solutions Prepared by Lisa Neef & Tony Key (last revision: 15 May 2007)

Problem Set 5 Solutions Prepared by Lisa Neef & Tony Key (last revision: 15 May 2007) Problem Set 5 Solutions Prepared by Lisa Neef & Tony Key (last revision: 15 May 2007) 1. ISOTOPIC DILUTION. A) Mass of Exchangeable Calcium. Model. Here are all the things we are given in this problem:

More information

Determining the Efficiency of a Geiger Müller Tube

Determining the Efficiency of a Geiger Müller Tube Determining the Efficiency of a Geiger Müller Tube Introduction Richard Born Northern Illinois University Operations Management and Information Systems The percent efficiency (ɛ of a Geiger Müller (G M)

More information

Homework Assignment Scientific Notation, Unit Conversions, and Radiation Units IEER Workshop 2007

Homework Assignment Scientific Notation, Unit Conversions, and Radiation Units IEER Workshop 2007 Homework Assignment Scientific Notation, Unit Conversions, and Radiation Units IEER Workshop 2007 This is an optional exercise that will get you on your technical toes for the IEER workshop. IEER board

More information

INFLUENCE OF EXPOSURE GEOMETRY ON THE RESPONSE OF CR39 SSNT RADON DETECTORS *

INFLUENCE OF EXPOSURE GEOMETRY ON THE RESPONSE OF CR39 SSNT RADON DETECTORS * Romanian Reports in Physics, Vol. 63, No. 2, P. 376 382, 11 INFLUENCE OF EXPOSURE GEOMETRY ON THE RESPONSE OF CR39 SSNT RADON DETECTORS * ELENA ROBU 1, FRANZ JOSEF MARINGER 2, MASSIMO GARAVALIA 3, LUCA

More information

CHEMISTRY 130 General Chemistry I. Radioisotopes

CHEMISTRY 130 General Chemistry I. Radioisotopes CHEMISTRY 130 General Chemistry I Radioisotopes Positron Emission Tomography or PET scans use the radioisotope 18 F to create an image of the brain. DEPARTMENT OF CHEMISTRY UNIVERSITY OF KANSAS Radioisotopes

More information