Static Headspace Analysis of Residual Solvents in Flexible Packaging and Quantitation with Multiple Headspace Extraction Following EN : 2002

Size: px
Start display at page:

Download "Static Headspace Analysis of Residual Solvents in Flexible Packaging and Quantitation with Multiple Headspace Extraction Following EN : 2002"

Transcription

1 Static eadspace nalysis of Residual Solvents in Flexible ackaging and Quantitation with ultiple eadspace Extraction Following E 8-: Silvia emme and assimo Santoro Thermo Fisher Scientific, ilan, taly pplication ote 9 Key Words Flexible packaging, TRE, Trilus S, hromeleon DS, static headspace, E 8-, E, cling film, plastic wrap ntroduction Flexible packaging is essential in ensuring the safety, quality and shelf-life of packaged consumer products. Such packaging, commonly referred to as cling film or plastic wrap, is often comprised of layers bonded together with adhesives (multilayer) and imprinted with product information. During the process of manufacturing, shipping or storage, the packaging itself might leach solvents from the adhesives and printing inks or finishes into the very product it was meant to protect. When these are food products, those solvents can pose significant health risks and negatively impact the taste, aroma, or appearance of the product. Food manufacturers need to both ensure the quality of their food for commercial success and to comply with government food safety standards. For this and other applications with non-food products, headspace (S) gas chromatography is the recommended method of analysis. The method for the quantitative determination of residual solvents in flexible packaging by static headspace is reported in the European Standard absolute method E 8-:. E 8-: in particular specifies methods for the quantitative determination of residual solvents in flexible packaging by static headspace chromatography where the chemical identities of the residual solvents are known before commencing analysis. Quantification is achieved by the multiple headspace extraction (E) procedure using external or internal standards. E eliminates any effect of the sample matrix by extracting the whole amount of analytes in a few consecutive extraction cycles of the same sample. E 8-: applies to flexible packaging materials that may consist of mono- or multilayer plastic films, paper or board, foil or combinations thereof and does not apply to residual solvents with amounts lower than. mg/m². Using headspace autosamplers like the Thermo Scientific Trilus eadspace utosampler, quantification is achieved by E. The advantage of using E is high precision in the determination of the residual solvents with a relatively light work load, thanks to a fully automated process. o external calibration solutions or standard additions are required. oal The goal of this application note is to demonstrate the applicability of a modern, high-throughput valveand-loop static headspace autosampler to obtain full compliance with E 8-:.

2 aterials and ethods eadspace analysis was conducted using a Trilus eadspace utosampler equipped with the standard m loop and connected to a Thermo Scientific TRE as hromatograph (). The system was further configured with an instant connect Split/Splitless (SS) injector and an instant connect Flame onization Detector (FD) module. The Thermo Scientific Dionex hromeleon 7. hromatography Data System was used to control the system, acquire data and generate all reports. For the headspace analyses, m headspace vials (/ 8-) with magnetic caps and TFE/silicone septa (/ 8-) were used. For the SS injector, the S/SE straight liner (/ ) was used and a capillary column with a phase dedicated for the separation of volatile compounds was chosen. n example of this kind of column is the Thermo Scientific TraceD T- ( m. mm id. um, 8-). Standard mixtures specifically prepared for residual solvents analysis in packaging were purchased: Residual Solvents in ackaging aterial ixture, analytical standard, 7.% (v/v) (Sigma-ldrich cat# 899-U) Residual Solvents in ackaging aterial ixture, analytical standard, 9.9% (v/v) (Sigma-ldrich cat# 899-U) ethod Development To find the proper equilibration time, µ of each standard mixture was placed in five m headspace vials, then capped and crimped. The headspace vial equilibration times were increased, and the peak area of each compound versus the equilibration time was reported. To find the optimum heating time, the ethod Development ptimization (D) function of Trilus eadspace utosampler was used. The D function automatically increments the heating time in consecutive runs by an amount set by the user. ere, the starting heating time was min and increased in min increments, so the five vials were heated respectively for,,, and min. Figure shows the optimal equilibration time was determined to be min, after which a slight decrease of the peak areas was observed for a few analytes. peak area (p/s) 8 ptimal eating Time cetone -ropanol -ropanol -ethyl--propanol -Ethoxyethyl acetate 7 heating time (min) Figure. eating times shown in five increments of min each through D. ext, µ of each standard mixture was placed into a m headspace vial, then capped and crimped to run an E experiment with extraction repetitions on the same vial. For each compound tested, E 8- requires the correlation coefficient of the natural logarithm of the peak area from the consecutive four analyses plotted against the number of E cycles to be at least articular instrument parameters (equilibration time and temperatures) had to be used to run the analysis for the determination of residual solvents in the samples to allow the required correlation coefficient to be obtained. Table shows the system parameters that were used for method development, and for the method used to produce the data in this note. To analyze real samples and determine the residual solvents, the flexible packaging material (plastic films or paper) was trimmed into a piece with a surface of cm, placed into a m headspace vial, capped and crimped. f this analysis is repeated using different headspace vial volumes, it must be considered that E 8- requires the ratio between the specimen area (in cm²) and the vial volume (in m) to be between three and five.

3 Table. and headspace parameters used in this method. Trilus eadspace nalyzer parameters for D* heating time optimization for standard mixtures/ sample analysis oven temp manifold temp transfer line temp equilibration time from min to min, increments of min min shaking medium medium pressure mode pressure pressure aux pressure bar bar pressure eq. time. min. min loop fill mode pressure pressure other parameters loop pressure:. bar; loop eq.time:. min loop pressure:. bar; loop eq.time:. min injection time. min. min injection mode standard standard vial venting on on purge time. min. min purge flow m/min m/min others TRE as hromatograph SS mode split SS temperature split flow m/min splitless time min constant purge on carrier mode helium, constant flow carrier flow m/min FD temperature oven program ( min), /min to ( min) for ultiple eadspace Extraction: E multiple, repetitions Quantification of the residual solvent(s) found in a sample was done on the first and second extraction cycles of the E analysis using the equations below, which are reported in E 8-: where: en = (e) (e - e) en is the total peak area of one solvent of the standard mix e is the peak area of the same solvent in the first e is the peak area of the same solvent in the second where: an = (a) (a - a) an is the total peak area of one residual solvent of the sample a is the peak area of the same solvent in the first a is the peak area of the same solvent in the second Q = (an p)/(en S) where: Q is the quantity of one residual solvent (in mg/m ) of packaging material p is the mass of solvent in the standard mix expressed in milligrams (mg) S is the area of specimen expressed in square meters (m )

4 Results and Discussion The elution order of the compounds of the two standard mixtures (Figure ) and their retention times (Table ) were determined using a Thermo Scientific SQ T Single Quadrupole -S running in full scan mode (mass range - m/z). 9 p F inutes Figure. The elution order of the compounds in the two standard mixtures. Table. ompound retention times in the two standard mixtures. eak RTs (min) ompound 8. ethanol.7 Ethanol.7 cetone. -ropanol. ethyl acetate.78 -ropanol 7.9 Ethyl acetate & -utanone F 7.7 -utanol 8.7 Tetrahydrofuran 8.9 yclohexane 9.7 -ethyl--propanol 9.8 sopropyl acetate. -utanol ethoxy--propanol & -ethoxyethanol 9.78 ropyl acetate.8 -Ethoxyethanol.97 -ethyl--pentanone.7 Toluene.8 sobutyl acetate 7.9 utyl acetate 9.9 -ethoxyethyl acetate.78 -Ethoxyethyl acetate. yclohexanone p-. Figure shows the chromatograms and Figure shows the E results of the two standard mixtures. 9 p inutes Figure. E chromatograms for the two standard mixtures with extraction cycles. n eak reas 8 7 Figure. E results for the two standard mixtures (overlay). F Extraction Repetition # F E ultiple eaks R eaks R F p-.

5 lthough not specifically required by E 8-, a linearity check was run by preparing calibration levels with different volumes of Residual Solvents ixture (. µ for evel,. µ for evel,. µ for evel, and µ for evel ) placed in different m headspace empty vials. Figure shows a graph of the excellent correlation coefficients obtained in the linearity check, proving the system can be used for the determination of residual solvents over a wide range of concentrations. rea (p/s) evel The correlation coefficients obtained by plotting the natural logarithms of the peak areas of the residual solvents found in the film sample against the number of E cycles are shown in Figure 7. ln area ln area R² =.997 repetition # F eaks R eaks R evel µ of ix Figure. orrelation coefficients from the linearity check on Residual Solvents ixture. ext, samples of transparent plastic film used to wrap commercial magazines with a surface of 9 cm each, were placed in a m headspace vial, capped and crimped. Then they were analyzed in E mode (Figure ) with extraction repetitions. Figure 7. orrelation coefficients of E extractions on the identified solvents from real samples of transparent plastic film. 9 p F p R² =.998 repetition # ln area R² = 9 repetition # 8. inutes Figure. hromatograms of E extractions from real samples of transparent plastic film.

6 Each residual solvent present in the sample was quantified using hromeleon DS (Table ). Table. mount of residual solvents present in the real samples of transparent plastic film. Residual Solvent Found mount mg/m onclusion The data obtained in this application demonstrate that the technique of headspace gas chromatography using E in an automated fashion easily meets the requirements of the E 8-: standard and provides excellent quantitation results without any sample preparation. ll the quality criteria requested by the method were verified, including the linearity of E curves for all solvents tested. The system configuration of the TRE, Trilus eadspace utosampler, and hromeleon DS proved to be a solid, fully integrated, easy-to-use and reliable platform to perform this analysis with a great degree of automation, from sample analysis to data reporting. With its -vial sample tray and the large 8-vial incubation oven overlap capacity, the Trilus eadspace valve-and-loop autosampler guarantees excellent throughput allowing the analysis of multiple samples at once and ensuring true weekend-long operations. pplication ote 9 Reference. E 8- ctober ackaging. Flexible packaging material Determination of residual solvents by static headspace gas chromatography. art : bsolute methods.. Kolb,., Ettre,.S., Static eadspace hromatography, Theory and ractice. Wiley-V, pp.. Thermo Fisher Scientific nc. ll rights reserved. Sigma ldrich is a trademark of Sigma ldrich o. ll other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. t is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. ot all products are available in all countries. lease consult your local sales representative for details. frica + ustralia ustria elgium + 7 anada hina (free call domestic) 8 Denmark + 7 Europe-ther + Finland France ermany +9 8 ndia taly Japan +8 9 atin merica iddle East + etherlands ew Zealand orway Russia/S + Singapore Spain Sweden Switzerland UK + US E 8S

Analyzing Residual Solvents in Pharmaceutical Products Using GC Headspace with Valve-and-Loop Sampling

Analyzing Residual Solvents in Pharmaceutical Products Using GC Headspace with Valve-and-Loop Sampling Analyzing Residual Solvents in Pharmaceutical Products Using GC Headspace with Valve-and-Loop Sampling Andrea Caruso and Massimo Santoro, Thermo Fisher Scientific, Milan, Italy Application Note 1316 Key

More information

Exploring the Benefits of Automated Unattended Sample Derivatization Prior to Gas Chromatography Analysis

Exploring the Benefits of Automated Unattended Sample Derivatization Prior to Gas Chromatography Analysis Exploring the Benefits of Automated Unattended Sample Derivatization Prior to Gas Chromatography Analysis A. Caruso, M. Santoro, P. Magni, S. Pelagatti, and R. Facchetti Thermo Fisher Scientific, Milan,

More information

Forensic Toxicology. Analysis of Ethanol in Blood using Master SHS Static Headspace Sampler and Master GC Gas Chromatograph APPLICATION NOTE

Forensic Toxicology. Analysis of Ethanol in Blood using Master SHS Static Headspace Sampler and Master GC Gas Chromatograph APPLICATION NOTE Analysis of Ethanol in Blood using Master SHS Static Headspace Sampler and Master GC Gas Chromatograph APPLICATION NOTE Authors: DANI Instruments SpA viale Brianza, 87 Cologno Monzese Milano Italy Key

More information

Characterization of Polymers and Plastics (pellets, powders and films) by the Thermo Scientific FLASH 2000 Elemental Analyzer

Characterization of Polymers and Plastics (pellets, powders and films) by the Thermo Scientific FLASH 2000 Elemental Analyzer Characterization of Polymers and Plastics (pellets, powders and films) by the Thermo Scientific FLASH 000 Elemental Analyzer Dr. Liliana Krotz and Dr. Guido Giazzi Thermo Fisher Scientific, Milan, Italy

More information

Determination of BTEX in Cigarette Filter Fibers Using GC-MS with Automated Calibration

Determination of BTEX in Cigarette Filter Fibers Using GC-MS with Automated Calibration Determination of BTEX in Cigarette Filter Fibers Using GC-MS with Automated Calibration Zhang Xuebin 1, Yu Chongtian 1, Liang Lina 1, Hans-Joachim Huebschmann 2, Thermo Fisher Scientific Shanghai, 1 China,

More information

A Strategy for an Unknown Screening Approach on Environmental Samples using HRAM Mass Spectrometry

A Strategy for an Unknown Screening Approach on Environmental Samples using HRAM Mass Spectrometry A Strategy for an Unknown Screening Approach on Environmental Samples using HRAM Mass Spectrometry O. Scheibner, 1 P. van Baar, 2 F. Wode, 2 U. Dünnbier, 2 K. Akervik, 3 J. Humphries, 3 M. Bromirski 1

More information

SPME-GC-MS/MS for Identification and Quantification of Migration Contaminants in Paperboard Food Packaging

SPME-GC-MS/MS for Identification and Quantification of Migration Contaminants in Paperboard Food Packaging SPME-GC-MS/MS for Identification and Quantification of Migration Contaminants in Paperboard Food Packaging Katerina Bousova, 1 Michal Godula, 2 Michele Suman 3 1 Thermo Fisher Scientific, Special Solutions

More information

Accelerated Solvent Extraction GC-MS Analysis and Detection of Polycyclic Aromatic Hydrocarbons in Soil

Accelerated Solvent Extraction GC-MS Analysis and Detection of Polycyclic Aromatic Hydrocarbons in Soil Accelerated Solvent Extraction GC-MS Analysis and Detection of Polycyclic Aromatic Hydrocarbons in Soil Che Jinshui, 1 Deng Guifeng, 1 Liang Lina, 1 and Aaron Kettle, 2 1 Thermo Fisher Scientific (China)

More information

A Study of Stability, Robustness and Time Efficiency of a New HPLC and a New Tandem MS

A Study of Stability, Robustness and Time Efficiency of a New HPLC and a New Tandem MS A Study of Stability, Robustness and Time Efficiency of a New HPLC and a New Tandem MS Jason Lai, Jia Wang, Brad Hart, Pavel Aronov, Kristine Van Natta, Marta Kozak, Jorge Valdivia, Andy Jacobs, Haibo

More information

Analysis of Residual Solvents in Pharmaceuticals (USP<467>) with Shimadzu GC-2010 Plus and HS-10 Headspace Sampler

Analysis of Residual Solvents in Pharmaceuticals (USP<467>) with Shimadzu GC-2010 Plus and HS-10 Headspace Sampler No. SSI-GC- Gas Chromatography No. GC- Analysis of Residual Solvents in Pharmaceuticals (USP) with Shimadzu GC- Plus and HS- Headspace Sampler Introduction Organic solvents are routinely used in manufacturing

More information

Determination of VOC in Artificial Runway by Multiple Headspace Extraction-GC/MS. Gas Chromatography/ Mass Spectrometry APPLICATION.

Determination of VOC in Artificial Runway by Multiple Headspace Extraction-GC/MS. Gas Chromatography/ Mass Spectrometry APPLICATION. APPLICATION NOTE Gas Chromatography/ Mass Spectrometry Author: Kira. Yang PerkinElmer, Inc. Shanghai, China Determination of VOC in Artificial Runway by Multiple Headspace Extraction-GC/MS Introduction

More information

Analysis of USP Method <467> Residual Solvents on the Agilent 8890 GC System

Analysis of USP Method <467> Residual Solvents on the Agilent 8890 GC System Application Note Residual Solvent Analysis of USP Method Residual Solvents on the Agilent 889 GC System Author Lukas Wieder, Jie Pan, and Rebecca Veeneman Agilent Technologies, Inc. 8 Centerville Road

More information

Optimizing GC Parameters for Faster Separations with Conventional Instrumentation

Optimizing GC Parameters for Faster Separations with Conventional Instrumentation Optimizing GC Parameters for Faster Separations with Conventional Instrumentation Anila I. Khan, Thermo Fisher Scientific, Runcorn, Cheshire, UK Technical Note 243 Key Words TraceGOLD fast GC analysis

More information

Method Development for a Simple and Reliable Determination of PCBs in Mineral Insulating Oil by SPME-GC-ECD

Method Development for a Simple and Reliable Determination of PCBs in Mineral Insulating Oil by SPME-GC-ECD Method Development for a Simple and Reliable Determination of PCBs in Mineral Insulating Oil by SPME-GC-ECD Massimo Santoro, 1 Sergio Guazzotti, 1 Danilo Pierone, 2 Alexandre Souza, 3 Jaqueline Lorena,

More information

Evaluation of a New HPLC, a New Tandem MS and a New Data Processing Software for General Clinical Use

Evaluation of a New HPLC, a New Tandem MS and a New Data Processing Software for General Clinical Use Evaluation of a New HPLC, a New Tandem MS and a New Data Processing Software for General Clinical Use Shih-Tse Jason Lai, Jia Wang, Brad Hart, Kristine Van Natta, Marta Kozak, Jorge Valdivia, Haibo Wang,

More information

Insights Into the Nanoworld Analysis of Nanoparticles with ICP-MS

Insights Into the Nanoworld Analysis of Nanoparticles with ICP-MS Insights Into the Nanoworld Analysis of Nanoparticles with ICP-MS Daniel Kutscher, 1 Jörg Bettmer, 2 Torsten Lindemann, 1 Shona McSheehy-Ducos, 1 Lothar Rottmann 1 1 Thermo Fisher Scientific, Germany 2

More information

Improved Screening for 250 Pesticides in Matrix using a LC-Triple Quadrupole Mass Spectrometer

Improved Screening for 250 Pesticides in Matrix using a LC-Triple Quadrupole Mass Spectrometer Improved Screening for 2 Pesticides in Matrix using a LC-Triple Quadrupole Mass Spectrometer Mary lackburn, Jia Wang, Jonathan eck, Charles Yang, Dipankar Ghosh, Thermo Fisher Scientific, San Jose, C,

More information

A Strategy for an Unknown Screening Approach on Environmental Samples Using HRAM Mass Spectrometry

A Strategy for an Unknown Screening Approach on Environmental Samples Using HRAM Mass Spectrometry A Strategy for an Unknown Screening Approach on Environmental Samples Using HRAM Mass Spectrometry Olaf Scheibner, 1 Patrizia van Baar, 2 Florian Wode, 2 Uwe Dünnbier, 2 Kristi Akervik, 3 Jamie Humphrie,

More information

High-Pressure Electrolytic Carbonate Eluent Generation Devices and Their Applications in Ion Chromatography Systems

High-Pressure Electrolytic Carbonate Eluent Generation Devices and Their Applications in Ion Chromatography Systems High-Pressure Electrolytic Carbonate Eluent Generation Devices and Their Applications in Ion Chromatography Systems Yan Liu, Zhongqing Lu, and Chris Pohl; Thermo Fisher Scientific, Sunnyvale, CA USA Overview

More information

Thermo Scientific ELEMENT GD PLUS Glow Discharge Mass Spectrometer. Defining quality standards for the analysis of solid samples

Thermo Scientific ELEMENT GD PLUS Glow Discharge Mass Spectrometer. Defining quality standards for the analysis of solid samples Thermo Scientific ELEMENT GD PLUS Glow Discharge Mass Spectrometer Defining quality standards for the analysis of solid samples Redefine your quality standards for the elemental analysis of solid samples

More information

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application Analysis of Trace (mg/kg) Thiophene in Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application Petrochemical Authors James D. McCurry and Bruce D. Quimby Agilent Technologies

More information

Determination of Tetrafluoroborate, Perchlorate, and Hexafluorophosphate in a Simulated Electrolyte Sample from Lithium Ion Battery Production

Determination of Tetrafluoroborate, Perchlorate, and Hexafluorophosphate in a Simulated Electrolyte Sample from Lithium Ion Battery Production Determination of Tetrafluoroborate, Perchlorate, and Hexafluorophosphate in a Simulated Electrolyte Sample from Lithium Ion Battery Production Thunyarat Phesatcha, Suparerk Tukkeeree, Jeff Rohrer 2 Thermo

More information

The Focus Robotic Sample Processor as a Tool for the Multiple Analysis of Samples using Complementary Techniques

The Focus Robotic Sample Processor as a Tool for the Multiple Analysis of Samples using Complementary Techniques Application Note No. 085 The Focus Robotic Sample Processor as a Tool for the Multiple Analysis of Samples using Complementary Techniques Diane Nicholas Multiple techniques using one instrument Simple

More information

Mass Spectral Studies of Polypropylene Chromatographic Well Plates

Mass Spectral Studies of Polypropylene Chromatographic Well Plates Mass Spectral Studies of Polypropylene Chromatographic Well Plates Brian King, Thermo Fisher Scientific, Runcorn, Cheshire, UK Detlev Lennartz, Thermo Fisher Scientific, Langerwehe, Germany White Paper

More information

LC-MS/MS Method for the Determination of Diclofenac in Human Plasma

LC-MS/MS Method for the Determination of Diclofenac in Human Plasma LC-MS/MS Method for the Determination of Diclofenac in Human Plasma J. Jones, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 20569 Key Words SPE, SOLA, Accucore RP-MS, diclofenac, Core

More information

Thermo Scientific ConFlo IV Universal Interface. Continuous Flow Interface. Isotope Ratio MS

Thermo Scientific ConFlo IV Universal Interface. Continuous Flow Interface. Isotope Ratio MS Thermo Scientific ConFlo IV Universal Interface Continuous Flow Interface Isotope Ratio MS 3 ConFlo IV Universal Interface for Continuous Flow Isotope Ratio MS The development of Continuous Flow carrier

More information

Headspace Technology for GC and GC/MS: Features, benefits & applications

Headspace Technology for GC and GC/MS: Features, benefits & applications Headspace Technology for GC and GC/MS: Features, benefits & applications Karima Baudin Oct 2015 Why use Headspace? Very Simple no to minimum sample prep Robust enhance uptime Non-detectable carry-over

More information

Simultaneous, Fast Analysis of Melamine and Analogues in Pharmaceutical Components Using Q Exactive - Benchtop Orbitrap LC-MS/MS

Simultaneous, Fast Analysis of Melamine and Analogues in Pharmaceutical Components Using Q Exactive - Benchtop Orbitrap LC-MS/MS Simultaneous, Fast Analysis of Melamine and Analogues in Pharmaceutical Components Using Q Exactive - Benchtop Orbitrap LC-MS/MS Kate Comstock, Tim Stratton, Hongxia (Jessica) Wang, and Yingying Huang

More information

Automated, intelligent sample preparation: Integration of the ESI prepfast Auto-dilution System with the Thermo Scientific icap 7400 ICP-OES

Automated, intelligent sample preparation: Integration of the ESI prepfast Auto-dilution System with the Thermo Scientific icap 7400 ICP-OES TECHNICAL NOTE 43252 Automated, intelligent sample preparation: Integration of the ESI prepfast Auto-dilution System with the Thermo Scientific icap 7400 ICP-OES Keywords Auto-dilution, Intelligent dilution,

More information

Sensitive HILIC UHPLC-UV determination of steviol glycoside natural sweeteners

Sensitive HILIC UHPLC-UV determination of steviol glycoside natural sweeteners APPLICATION NOTE 21734 Sensitive HILIC UHPLC-UV determination of steviol glycoside natural sweeteners Authors Aaron Lamb, Joanne Jones, Thermo Fisher Scientific, Runcorn, UK Keywords Environment, food

More information

Achieve confident synthesis control with the Thermo Scientific ISQ EC single quadrupole mass spectrometer

Achieve confident synthesis control with the Thermo Scientific ISQ EC single quadrupole mass spectrometer APPLICATION NOTE 72385 Achieve confident synthesis control with the Thermo Scientific ISQ EC single quadrupole mass spectrometer Authors Stephan Meding, Katherine Lovejoy, Martin Ruehl Thermo Fisher Scientific,

More information

Study of Residual Solvents in Various Matrices by Static Headspace

Study of Residual Solvents in Various Matrices by Static Headspace Application Note Abstract United States Pharmacopeia (USP) chapter is a widely used method for identifying and quantifying Organic Volatile Impurities (OVI) used in the production of pharmaceuticals.

More information

Application Note. Abstract. Authors. Introduction

Application Note. Abstract. Authors. Introduction Multiple Headspace Extraction for the Quantitative Determination of Residual Monomer and Solvents in Polystyrene Pellets Using the Agilent 7697A Headspace Sampler Application Note Authors Wenwen Shen and

More information

Multiple Fragmentation Methods for Small Molecule Characterization on a Dual Pressure Linear Ion Trap Orbitrap Hybrid Mass Spectrometer

Multiple Fragmentation Methods for Small Molecule Characterization on a Dual Pressure Linear Ion Trap Orbitrap Hybrid Mass Spectrometer Application ote: 54 Multiple Fragmentation Methods for Small Molecule Characterization on a Dual Pressure Linear Ion Trap rbitrap Hybrid Mass Spectrometer Kate Comstock, Yingying Huang; Thermo Fisher Scientific,

More information

A novel high resolution accurate mass Orbitrap-based GC-MS platform for routine analysis of Short Chained Chlorinated Paraffins

A novel high resolution accurate mass Orbitrap-based GC-MS platform for routine analysis of Short Chained Chlorinated Paraffins TECHNICAL NOTE 39 A novel high resolution accurate mass Orbitrap-based GC-MS platform for routine analysis of Short Chained Chlorinated Paraffins Author Cristian Cojocariu Thermo Fisher Scientific, Runcorn,

More information

Increasing Speed of UHPLC-MS Analysis Using Single-stage Orbitrap Mass Spectrometer

Increasing Speed of UHPLC-MS Analysis Using Single-stage Orbitrap Mass Spectrometer Increasing Speed of UHPLC-MS Analysis Using Single-stage Orbitrap Mass Spectrometer Olaf Scheibner and Maciej Bromirski Thermo Fisher Scientific, Bremen, Germany Overview Purpose: Improve the performance

More information

Elemental Analysis: NCS characterization of paper

Elemental Analysis: NCS characterization of paper APPLICATION NOTE 42231 Elemental Analysis: NCS characterization of paper Authors Dr. Liliana Krotz, Dr. Francesco Leone and Dr. Guido Giazzi Thermo Fisher Scientific, Milan, Italy Keywords Argon, CHNS/O,

More information

A Comparative Analysis of Fuel Oxygenates in Soil by Dynamic and Static Headspace Utilizing the HT3 TM Automatic Headspace Analyzer

A Comparative Analysis of Fuel Oxygenates in Soil by Dynamic and Static Headspace Utilizing the HT3 TM Automatic Headspace Analyzer A Comparative Analysis of Fuel Oxygenates in Soil by Dynamic and Static Headspace Utilizing the HT3 TM Automatic Headspace Analyzer Application Note By: Anne Jurek Abstract This application note presents

More information

Nitrogen/Protein determination of infant food by the Thermo Scientific FlashSmart Elemental Analyzer using helium or argon as carrier gases

Nitrogen/Protein determination of infant food by the Thermo Scientific FlashSmart Elemental Analyzer using helium or argon as carrier gases APPLICATION NOTE 42255 Nitrogen/Protein determination of infant food by the Thermo Scientific FlashSmart Elemental Analyzer using helium or argon as carrier gases Authors Dr. Liliana Krotz, Dr. Francesco

More information

Routine-grade performance of a new static headspace autosampler for the analysis of residual solvents according to USP <467> method

Routine-grade performance of a new static headspace autosampler for the analysis of residual solvents according to USP <467> method APPLICATION NOTE 0676 Routine-grade performance of a new static headspace autosampler for the analysis of residual solvents according to USP method Authors Giulia Riccardino, Paolo Magni, Stefano

More information

GC Application Note. Dilution/standard addition: Efficient and traceable.

GC Application Note. Dilution/standard addition: Efficient and traceable. GC Application Note Dilution/standard addition: Efficient and traceable. www.palsystem.com Dilution / standard addition: Efficient and traceable. Philippe Mottay Brechbuehler AG Steinwiessenstrasse 3 CH-8952

More information

The Importance of Area and Retention Time Precision in Gas Chromatography Technical Note

The Importance of Area and Retention Time Precision in Gas Chromatography Technical Note The Importance of Area and Retention Time Precision in Gas Chromatography Technical Note Abstract Area and retention time are the two primary measurements in gas chromatography. The precision with which

More information

Automated Sample Preparation of Headspace Standards Using the Agilent 7696 WorkBench

Automated Sample Preparation of Headspace Standards Using the Agilent 7696 WorkBench Automated Sample Preparation of Headspace Standards Using the Agilent 7696 WorkBench Application Note Forensic Toxicology and Drug Testing Author Jared Bushey Agilent Technologies, Inc. 285 Centerville

More information

Application. Gas Chromatography February Introduction

Application. Gas Chromatography February Introduction Ambient Headspace Analysis with the Agilent 7683 Automatic Liquid Sampler Application Gas Chromatography February 1998 Authors Matthew S. Klee and Chin Kai Meng Agilent Technologies, Inc. 2850 Centerville

More information

GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY

GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY Page 1 of 13 CIPAC/4105/R GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY Prepared for CIPAC by Dr M J Tandy*, P M Clarke and B White (UK) The rapid

More information

Key Words Q Exactive, Accela, MetQuest, Mass Frontier, Drug Discovery

Key Words Q Exactive, Accela, MetQuest, Mass Frontier, Drug Discovery Metabolite Stability Screening and Hotspot Metabolite Identification by Combining High-Resolution, Accurate-Mass Nonselective and Selective Fragmentation Tim Stratton, Caroline Ding, Yingying Huang, Dan

More information

Comparison of Solid Core HPLC Column Performance: Effect of Particle Diameter

Comparison of Solid Core HPLC Column Performance: Effect of Particle Diameter Comparison of Solid Core HPLC Column Performance: Effect of Particle Diameter Luisa Pereira, Thermo Fisher Scientific, Runcorn, Cheshire, UK Technical Note 20755 Key Words Solid core, fused core, superficially

More information

A Fast, Simple FET Headspace GC-FID Technique for Determining Residual Solvents in Cannabis Concentrates

A Fast, Simple FET Headspace GC-FID Technique for Determining Residual Solvents in Cannabis Concentrates Abstract Foods, Flavors & Fragrances Applications A Fast, Simple FET Headspace GC-FID Technique for Determining Residual Solvents in Cannabis Concentrates By Corby Hilliard; Amanda Rigdon; William Schroeder*,

More information

GAS CHROMATOGRAPHY (GC)

GAS CHROMATOGRAPHY (GC) GAS CHROMATOGRAPHY (GC) Pre-Lab Questions Questions are to be answered before the beginning of the laboratory. The answers are due at the beginning of each experiment (the questions are for credit and

More information

Speciation of Bromine Compounds in Ozonated Drinking Water using Ion Chromatography and Inductively Coupled Plasma Mass Spectrometry

Speciation of Bromine Compounds in Ozonated Drinking Water using Ion Chromatography and Inductively Coupled Plasma Mass Spectrometry APPLICATION NOTE Speciation of Bromine Compounds in Ozonated Drinking Water using Ion Chromatography and Inductively Coupled Plasma Mass Spectrometry AN43227 Antonella Guzzonato 1, Shona McSheehy Ducos

More information

Improved Throughput and Reproducibility for Targeted Protein Quantification Using a New High-Performance Triple Quadrupole Mass Spectrometer

Improved Throughput and Reproducibility for Targeted Protein Quantification Using a New High-Performance Triple Quadrupole Mass Spectrometer Improved Throughput and Reproducibility for Targeted Protein Quantification Using a New High-Performance Triple Quadrupole Mass Spectrometer Reiko Kiyonami, Mary Blackburn, Andreas FR Hühme: Thermo Fisher

More information

Utility of H-SRM to Reduce Matrix Interference in Food Residue Analysis of Pesticides by LC-MS/MS Using the TSQ Quantum Discovery

Utility of H-SRM to Reduce Matrix Interference in Food Residue Analysis of Pesticides by LC-MS/MS Using the TSQ Quantum Discovery Application Note: 3 Utility of H-SRM to Reduce Matrix Interference in Food Residue Analysis of Pesticides by LC-MS/MS Using the TSQ Quantum Discovery Yoko Yamagishi, Thermo Fisher Scientific, C-2F 3-9

More information

Static Headspace Blood Alcohol Analysis with the G1888 Network Headspace Sampler Application

Static Headspace Blood Alcohol Analysis with the G1888 Network Headspace Sampler Application Static Headspace Blood Alcohol Analysis with the G Network Headspace Sampler Application Forensics Author Roger L. Firor and Chin-Kai Meng Agilent Technologies, Inc. 0 Centerville Road Wilmington, DE 90-0

More information

The end of. mass-speculation. MS Certified Vials Pre-cleaned and certified vials for mass spectrometry

The end of. mass-speculation. MS Certified Vials Pre-cleaned and certified vials for mass spectrometry The end of mass-speculation Pre-cleaned and certified vials for mass spectrometry Bonded, ultra-pure closures LC/MS and GC/MS Manufacturing the Ultimate Vial for Mass Spectrometry More than a quarter century

More information

Total Elemental Analysis of Food Samples for Routine and Research Laboratories, using the Thermo Scientific icap RQ ICP-MS

Total Elemental Analysis of Food Samples for Routine and Research Laboratories, using the Thermo Scientific icap RQ ICP-MS Total Elemental Analysis of Food Samples for Routine and Research Laboratories, using the Thermo Scientific icap RQ ICP-MS Tomoko Vincent 1, Simon Lofthouse 2, Daniel Kutscher 1 and Shona McSheehy Ducos

More information

Elemental Analysis: CHNS/O characterization of polymers and plastics

Elemental Analysis: CHNS/O characterization of polymers and plastics APPLICATION NOTE 0 Elemental Analysis: CHNS/O characterization of polymers and plastics Authors Introduction Dr. Liliana Krotz and Dr. Guido Giazzi Thermo Fisher Scientific, Milan, Italy The chemical composition

More information

Helium conservation in volatile organic compound analysis using U.S. EPA Method 8260C

Helium conservation in volatile organic compound analysis using U.S. EPA Method 8260C APPLICATION NOTE 10441 Helium conservation in volatile organic compound analysis using U.S. EPA Method 8260C Authors Andrea Caruso, 1 Tommaso Albertini, 1 Jacob A. Rebholz 2 ; 1 Thermo Fisher Scientific,

More information

Plasma-free Metanephrines Quantitation with Automated Online Sample Preparation and a Liquid Chromatography-Tandem Mass Spectrometry Method

Plasma-free Metanephrines Quantitation with Automated Online Sample Preparation and a Liquid Chromatography-Tandem Mass Spectrometry Method Plasma-free Metanephrines Quantitation with Automated Online Sample Preparation and a Liquid Chromatography-Tandem Mass Spectrometry Method Xiang He and Marta Kozak ThermoFisher Scientific, San Jose, CA,

More information

Residual Solvents in Pharmaceuticals by USP Chapter <467> Methodology

Residual Solvents in Pharmaceuticals by USP Chapter <467> Methodology APPLICATION NOTE Gas Chromatography Author: David Scott PerkinElmer, Inc. Shelton, CT Residual Solvents in Pharmaceuticals by USP Chapter Methodology Introduction The synthesis of active pharmaceutical

More information

Fitting of ETD Rate Constants for Doubly and Triply Charged Ions in a Linear Ion Trap

Fitting of ETD Rate Constants for Doubly and Triply Charged Ions in a Linear Ion Trap Fitting of ETD Rate Constants for Doubly and Triply Charged Ions in a Linear Ion Trap Dirk Nolting and Andreas Wieghaus Thermo Fisher Scientific, Bremen, Germany Overview Purpose: Characterize the rate

More information

Automated and accurate component detection using reference mass spectra

Automated and accurate component detection using reference mass spectra TECHNICAL NOTE 72703 Automated and accurate component detection using reference mass spectra Authors Barbara van Cann 1 and Amit Gujar 2 1 Thermo Fisher Scientific, Breda, NL 2 Thermo Fisher Scientific,

More information

Fast and Reliable Method for the Analysis of Methylmalonic Acid from Human Plasma

Fast and Reliable Method for the Analysis of Methylmalonic Acid from Human Plasma Fast and Reliable Method for the Analysis of Methylmalonic Acid from Human Plasma Jon Bardsley 1, James Goldberg 2 1 Thermo Fisher Scientific, Runcorn, UK; 2 Thermo Fisher Scientific, West Palm Beach,

More information

Using a Reagent-Free ion chromatography system to monitor trace anion contamination in the extracts of electronic components

Using a Reagent-Free ion chromatography system to monitor trace anion contamination in the extracts of electronic components APPLICATION UPDATE 157 Using a Reagent-Free ion chromatography system to monitor trace anion contamination in the extracts of electronic components Authors Sumate Pengpumkiat, Weerapong Worawirunwong,

More information

PAL SPME Arrow The Better SPME

PAL SPME Arrow The Better SPME PAL The Better SPME PAL The new dimension for Solid-Phase Micro SPME has become one of the most widely used extraction technologies for environmental, food and clinical analyses. It is well suited for

More information

Simultaneous dual capillary column headspace GC with flame ionization confirmation and quantification according to USP <467> Application Note

Simultaneous dual capillary column headspace GC with flame ionization confirmation and quantification according to USP <467> Application Note Simultaneous dual capillary column headspace GC with flame ionization confirmation and quantification according to USP Application Note Joseph M. Levy Michael Kraft Abstract Agilent Equipment 7890A

More information

Active Flow Technology Understanding How the Flow Rate Profile Affects the Chromatographic Efficiency

Active Flow Technology Understanding How the Flow Rate Profile Affects the Chromatographic Efficiency Active Flow Technology Understanding How the Flow Rate Profile Affects the Chromatographic Efficiency Anthony Edge, 1 Luisa Pereira, 1 Dafydd Milton 1 and Andrew Shalliker 2 1 Thermo Fisher Scientific,

More information

PAL SPME Arrow The Better SPME

PAL SPME Arrow The Better SPME PAL The Better SPME PAL The new dimension for Solid-Phase Micro SPME has become one of the most widely used extraction technologies for environmental, food and clinical analyses. It is well suited for

More information

Dionex IonPac AS28-Fast-4µm column

Dionex IonPac AS28-Fast-4µm column CHROMATOGRAPHY Thermo Scientific Dionex IonPac AS-Fast-4µm Columns Product Specifications The Thermo Scientific Dionex IonPac AS-Fast-4µm column is a high-capacity, hydroxide-selective anionexchange column

More information

Understanding Gas Chromatography

Understanding Gas Chromatography Understanding Gas Chromatography What is Really Going on Inside the Box? Simon Jones GC Applications Engineer Page 1 Group/Presentation Title Month ##, 200X ?? K? Page 2 Typical GC System Gas supply Injector

More information

Complementary Use of Raman and FT-IR Imaging for the Analysis of Multi-Layer Polymer Composites

Complementary Use of Raman and FT-IR Imaging for the Analysis of Multi-Layer Polymer Composites Complementary Use of Raman and FT-IR Imaging for the Analysis of Multi-Layer Polymer Composites Robert Heintz, Mark Wall, Jennifer Ramirez, Stephan Woods Thermo Fisher Scientific, Madison WI Overview Purpose:

More information

Determination of ultratrace elements in photoresist solvents using the Thermo Scientific icap TQs ICP-MS

Determination of ultratrace elements in photoresist solvents using the Thermo Scientific icap TQs ICP-MS APPLICATION NOTE 43374 Determination of ultratrace elements in photoresist solvents using the Thermo Scientific icap TQs ICP-MS Authors Tomoko Vincent, Product Specialist, Thermo Fisher Scientific Keywords

More information

Introduction to Capillary GC. Page 1. Agilent Restricted February 2, 2011

Introduction to Capillary GC. Page 1. Agilent Restricted February 2, 2011 ?? Kβ? Page 1 Typical GC System Gas supply Injector Detector Data handling GAS Column Oven Page 2 CARRIER GAS Carries the solutes down the column Selection and velocity influences efficiency and retention

More information

Quantification of Rice Aroma, 2-Acetyl-1-Pyrroline (2-AP), Using TurboMatrix Headspace Trap Coupled with GC/NPD and GC/MS

Quantification of Rice Aroma, 2-Acetyl-1-Pyrroline (2-AP), Using TurboMatrix Headspace Trap Coupled with GC/NPD and GC/MS APPLICATION NOTE Gas Chromatography/ Mass Spectrometry Authors: Kitsada Pitija, PhD Tinnakorn Srisedkha, PhD Chanchira Wiwatsamretkun PerkinElmer Inc. Bangkok, Thailand Quantification of Rice Aroma, 2-Acetyl-1-Pyrroline

More information

Determinations of Inorganic Anions and Organic Acids in Beverages Using Suppressed Conductivity and Charge Detection

Determinations of Inorganic Anions and Organic Acids in Beverages Using Suppressed Conductivity and Charge Detection Determinations of Inorganic Anions and Organic Acids in Beverages Using Suppressed Conductivity and Charge Detection Terri Christison, Linda Lopez Thermo Fisher Scientific, Sunnyvale, CA, USA Overview

More information

Analysis of Silicone Oils by High Performance Liquid Chromatography and Corona Charged Aerosol Detection

Analysis of Silicone Oils by High Performance Liquid Chromatography and Corona Charged Aerosol Detection Analysis of Silicone Oils by High Performance Liquid Chromatography and Corona Charged Aerosol Detection Marc Plante, Bruce Bailey, Ian N. Acworth Thermo Fisher Scientific, Chelmsford, MA, USA Overview

More information

Determination of underivatized aflatoxins B2, B1, G2, and G1 in ground hazelnuts by immunoaffinity solid-phase extraction with HPLC-FLD detection

Determination of underivatized aflatoxins B2, B1, G2, and G1 in ground hazelnuts by immunoaffinity solid-phase extraction with HPLC-FLD detection APPLICATION NOTE 72686 Determination of underivatized aflatoxins,, G2, and in ground hazelnuts by immunoaffinity solid-phase extraction with HPLC-FLD detection Authors Sylvia Grosse, Mauro De Pra, Frank

More information

Thermo Scientific TriPlus RSH Autosampler Integrated Sampling System. You are productive solving your chromatography challenges

Thermo Scientific TriPlus RSH Autosampler Integrated Sampling System. You are productive solving your chromatography challenges Thermo Scientific TriPlus RSH Autosampler Integrated Sampling System You are productive solving your chromatography challenges A step ahead in automated sampling The quality of gas chromatography results

More information

Hydrophilic Interaction Liquid Chromatography: Some Aspects of Solvent and Column Selectivity

Hydrophilic Interaction Liquid Chromatography: Some Aspects of Solvent and Column Selectivity Hydrophilic Interaction Liquid Chromatography: Some Aspects of Solvent and Column Selectivity Monica Dolci, Thermo Fisher Scientific, Runcorn, Cheshire, UK Technical Note 20544 Key Words Hydrophilic, HILIC,

More information

A Fast, Simple FET Headspace GC-FID Technique for Determining Residual Solvents in Cannabis Concentrates

A Fast, Simple FET Headspace GC-FID Technique for Determining Residual Solvents in Cannabis Concentrates Abstract Due to rapid growth in the medical cannabis industry, demand is increasing for analysis of residual solvents in cannabis concentrates in order to protect consumer safety. This application note

More information

Determination of Pesticides in Aqueous Samples by On-Line Coupling Solid-Phase Extraction to Gas Chromatography with At-Column Concentrating Interface

Determination of Pesticides in Aqueous Samples by On-Line Coupling Solid-Phase Extraction to Gas Chromatography with At-Column Concentrating Interface Application Note No. 033 Determination of Pesticides in Aqueous Samples by On-Line Coupling Solid-Phase Extraction to Gas Chromatography with At-Column Concentrating Interface Ryoichi Sasano*, Takayuki

More information

Innovative Thermal Desorption From Agilent Technologies. Vivek Dhyani Application Chemist

Innovative Thermal Desorption From Agilent Technologies. Vivek Dhyani Application Chemist Innovative Thermal Desorption From Agilent Technologies Vivek Dhyani Application Chemist What is thermal desorption (TD)? How does thermal desorption compare to Head Space? Thermal desorption (TD) is the

More information

Introduction to Capillary GC

Introduction to Capillary GC ?? Kβ? Page 1 Typical GC System Gas supply Injector Detector Data handling GAS Column Oven Page 2 CARRIER GAS Carries the solutes down the column Selection and velocity influences efficiency and retention

More information

Simultaneous Estimation of Residual Solvents (Isopropyl Alcohol and Dichloromethane) in Dosage Form by GC-HS-FID

Simultaneous Estimation of Residual Solvents (Isopropyl Alcohol and Dichloromethane) in Dosage Form by GC-HS-FID Asian Journal of Chemistry Vol. 21, No. 3 (2009), 1739-1746 Simultaneous Estimation of Residual Solvents (Isopropyl Alcohol and Dichloromethane) in Dosage Form by GC-HS-FID PRAVEEN KUMAR BALIYAN*, R.P.

More information

U.S. EPA Method 8270 for multicomponent analyte determination

U.S. EPA Method 8270 for multicomponent analyte determination ENVIRONMENTAL application note U.S. EPA Method 8270 for multicomponent analyte determination Elaine A. LeMoine and Herman Hoberecht Introduction Multicomponent analytes are compounds that yield several

More information

HILIC Method Development in a Few Simple Steps

HILIC Method Development in a Few Simple Steps HILIC Method Development in a Few Simple Steps Monica Dolci, Luisa Pereira, Dafydd Milton and Tony Edge Thermo Fisher Scientific, Runcorn, Cheshire, UK Overview This poster presents a systematic approach

More information

Supported Liquid Extraction (SLE) Guide and FAQ s. User Guide

Supported Liquid Extraction (SLE) Guide and FAQ s. User Guide Supported Liquid Extraction (SLE) Guide and FAQ s User Guide What is SLE? Supported Liquid Extraction (SLE) is an extraction technique that separates out compounds based on their affinity for one solvent

More information

Defining quality standards for the analysis of solid samples

Defining quality standards for the analysis of solid samples Defining quality standards for the analysis of solid samples Thermo Scientific Element GD Plus Glow Discharge Mass Spectrometer Redefine your quality standards for the elemental analysis of solid samples

More information

of mass spectrometry

of mass spectrometry Thermo Scientific 253 Ultra High resolution isotope ratio MS Discover a new world of mass spectrometry Paleoclimatology Atmospheric science Biogeochemistry Petrology Discover the isotopic anatomy of molecules

More information

Determination of trace anions in concentrated hydrofluoric acid

Determination of trace anions in concentrated hydrofluoric acid APPLICATION NOTE 78 Determination of trace anions in concentrated hydrofluoric acid Authors Archava Siriraks Thermo Fisher Scientific, Sunnyvale, CA Keywords HF, ICS-5000 +, IonPac AS10, IonPac AC10, ion

More information

Benzene Contamination in BabyFood and Beverages by New Generation of Static Headspace Autosampler coupled to Fast GC-TOFMS

Benzene Contamination in BabyFood and Beverages by New Generation of Static Headspace Autosampler coupled to Fast GC-TOFMS Benzene Contamination in BabyFood and Beverages by New Generation of Static Headspace Autosampler coupled to Fast GC-TOFMS Authors: Daniela Cavagnino DANI Instruments SpA viale Brianza, 87 Cologno Monzese

More information

Impurity Profiling of Pharmaceutical Starting Materials Using Gas Chromatography Coupled with High- Resolution Accurate Mass Spectrometry

Impurity Profiling of Pharmaceutical Starting Materials Using Gas Chromatography Coupled with High- Resolution Accurate Mass Spectrometry Impurity Profiling of Pharmaceutical Starting Materials Using Gas Chromatography Coupled with High- Resolution Accurate Mass Spectrometry Cristian Cojocariu and Paul Silcock Thermo Fisher Scientific, Runcorn,

More information

HR/AM Targeted Peptide Quantification on a Q Exactive MS: A Unique Combination of High Selectivity, High Sensitivity, and High Throughput

HR/AM Targeted Peptide Quantification on a Q Exactive MS: A Unique Combination of High Selectivity, High Sensitivity, and High Throughput HR/AM Targeted Peptide Quantification on a Q Exactive MS: A Unique Combination of High Selectivity, High Sensitivity, and High Throughput Yi Zhang 1, Zhiqi Hao 1, Markus Kellmann 2 and Andreas FR. Huhmer

More information

Thermo Scientific GasBench II

Thermo Scientific GasBench II MASS SPECTROMETRY Thermo Scientific GasBench II Universal On-Line Gas Preparation and Introduction System for Isotope Ratio MS Product Specifications The Thermo Scientific GasBench II is an innovative

More information

USP <467> Headspace Residual Solvent Assay with a HT3 Headspace Instrument

USP <467> Headspace Residual Solvent Assay with a HT3 Headspace Instrument Application Note Abstract The US Pharmacopeia recently released USP as the current monograph for determining residual solvents in pharmaceutical products by static headspace. The USP classified these

More information

Analysis of Terpenes in Cannabis Using the Agilent 7697A/7890B/5977B Headspace GC-MSD System

Analysis of Terpenes in Cannabis Using the Agilent 7697A/7890B/5977B Headspace GC-MSD System Analysis of Terpenes in Cannabis Using the Agilent 7697A/789B/977B Headspace GC-MSD System Faster Analysis Time = Greater Productivity Application Note Cannabis, Food Authors Ronald Honnold, Robert Kubas,

More information

New Multi-Collector Mass Spectrometry Data for Noble Gases Analysis

New Multi-Collector Mass Spectrometry Data for Noble Gases Analysis New Multi-Collector Mass Spectrometry Data for Noble Gases Analysis Alessandro Santato, 1 Doug Hamilton, 1 Jan Wijbrans, 2 Claudia Bouman 1 1 Thermo Fisher Scientific, Bremen, Germany 2 VU University Amsterdam,

More information

Analyze Hydrocarbon Impurities in 1,3-Butadiene with an Agilent J&W GS-Alumina PT Column

Analyze Hydrocarbon Impurities in 1,3-Butadiene with an Agilent J&W GS-Alumina PT Column Analyze Hydrocarbon Impurities in,3-butadiene with an Agilent J&W GS-Alua PT Column Application Note Energy and Chemicals Authors Yun Zou and Chunxiao Wang Agilent Technologies Shanghai Ltd Abstract The

More information

Total elemental analysis of food samples for routine and research laboratories using the Thermo Scientific icap RQ ICP-MS

Total elemental analysis of food samples for routine and research laboratories using the Thermo Scientific icap RQ ICP-MS APPLICATION NOTE 43326 Total elemental analysis of food samples for routine and research laboratories using the Thermo Scientific icap RQ ICP-MS Authors Introduction Tomoko Vincent1, Simon Lofthouse2,

More information

Rapid Quan/Qual Metabolic Stability Analysis with Online Oxidative Metabolism Synthesis

Rapid Quan/Qual Metabolic Stability Analysis with Online Oxidative Metabolism Synthesis Rapid Quan/Qual Metabolic Stability Analysis with Online Oxidative Metabolism Synthesis Tim Stratton 1, Yingying Huang 1, Katianna Pihakari 1, Ian Acworth 2, and Michael Weber 2 1 Thermo Fisher Scientific,

More information

A Newly Approved ASTM Standard For Analysis of Thiophene in Benzene Using a Pulsed Flame Photometric Detector (PFPD)

A Newly Approved ASTM Standard For Analysis of Thiophene in Benzene Using a Pulsed Flame Photometric Detector (PFPD) Application Note 19010803 A Newly Approved ASTM Standard For Analysis of in Using a Pulsed Flame Photometric Detector (PFPD) Keywords ASTM Standard D4735-96 FPD Flame Photometric Detector Model 5380 PFPD

More information