Development of K-step Yard sampling method and Apply to the ADME-T In Silico Screening. In Silico Data, Ltd.

Size: px
Start display at page:

Download "Development of K-step Yard sampling method and Apply to the ADME-T In Silico Screening. In Silico Data, Ltd."

Transcription

1 Development of K-step Yard sampling method and Apply to the ADME-T In ilico creening Kohtaro Yuta In ilico Data, Ltd.

2 1. Toxicity prediction and Pattern recognition (PR) 2. General features of data analysis by PR. 3. Building process to the features of KY-method *tep1 ;Yard sampling methods *tep2 ; K-step approach *tep3 ; Merge two approaches Yard sampling and K-step handling 4. Applicability statement of KY-method Classifying 7000 sample set of Ames test 5. ummary and conclusion

3 Approaches for toxicity screening Toxicity 1. Unexplained & complex mechanisms 2. High structural diversity CADD Multi-variate Pattern recognition Artificial intelligence Factorial analysis Black box Know-how Prediction

4 Problems of toxicity screening by pattern recognition Only a few methods can be applicable on toxicity screening Most of drug design methods can not be applied. Un-known mechanisms Inability of Hypothesis testing method Extremely high compounds diversity From methane to macrolide Large sample population Normal D.D. approach handle small samples

5 Basic concept of prediction by Pattern recognition Principle of Information Equivalence Compound Protein Genome tarting Black Box (Correlation) Information Equivalence Inevitability Explained by Pattern recognition Activity Toxicity ide-effects ADME Biodegradability Results

6 Basic concept of prediction by Pattern recognition Principle of Information Equivalence NH 2 Activity HO OH O F N N N N Cl Clofarabin: Antileukemia Initial Descriptors MW Atoms/Bonds HOMO/LUMO CP Others Black Box (Correlation) Information Equivalence Inevitability Feature election Final Descriptor et Toxicity ide-effects ADME Biodegradability

7 General features of data analysis by Pattern recognition techniques Linear / Non-linear and DA / Fitting

8 :Positive :Negative Discriminant function for perfect classification ample space :two cluster samples

9 :Positive :Negative ample space :highly overlapped space Discriminant function generated by various methods

10 :Positive :Negative ample space :highly overlapped space Discriminant function : Linear and non-linear

11 imple classification and scientific classification Pattern space impossible to be classified by linear discriminant N N N A N A A A N A N A N A N A A N N A N A A A A A A A N N A Neural network Recursive partitioning Classified by pattern space Feature selection Linear discriminant Pattern space classified by linear discriminant ADMEWORK N N N N N A A A N A N N A A N N A A A N N A A A A A Classified by scientific reasons

12 cience based approach Extrapolation outlier imple fitting and scientific fitting No science based approach U Interpolation Fitting by Neural Networks R=0.99>R=0.70 Feature selection Extrapolation ADMEWORK Y=a 1 x 1 +a 2 x 2 + +a n x n +const. Which is true outlier? Extrapolation Linear regression line

13 Non-linear approach Fit lines on existed sample space No-remake sample space cientific approach Linear approach Remake sample space trong feature selection is required Fit samples for individual end point

14 Building process to the features of K-step Yard sampling method tep1: Yard sampling methods

15 patial region on sample space Both side of sample space Pure and no-overlapping on this region

16 patial region on sample space Both side of sample space Pure and no-overlapping on this region Highly overlapped Two Discriminant function

17 Property of AP(All Positive)model :Positive :Negative All Positive samples were correctly classified No-classification on Negative samples

18 Property of AN(All Negative)model :Positive :Negative All Negative samples were correctly classified No-classificateion on Positive samples

19 Combination of AN and AP models Positive Zone Negative Zone Grey Zone High reliability High reliability Not to be classified AP AN

20 Linear and non-linear discriminant on AP and AN models Positive Zone Negative Zone Grey Zone AP AN High reliability High reliability Not to be classified

21 Relations between ample space & AN and AP models Positive Zone Negative Zone Grey Zone Determination Determination No conclusion Negative Positive AN model Positive Negative AP model

22 Class determination by AN and AP models ample Classification and prediction must be done by Combination of the results of AP and AN models. AP model AN model Results 1AP;POI,AN;POI POI 2AP;POI,AN;NEGA 3AP;NEGA,AN;POI 4AP;NEGA,AN;NEGA GREY GREY NEGA

23 Building steps to the features of K-step Yard sampling method tep2: K-step approach

24 Problems of Yard sampling methods 50% of samples 80% of samples 90% of samples The ratio of Grey zone:highly overlapped sample space

25 teps to the K-step methods Grey Zone 50% Expanded space of the former Grey zone Grey Zone 50% Expanded space of the former Grey zone Grey Zone 50%

26 K-step Yard sampling (KY)Method Improvement by repeated classification of Grey Zone samples Grey Zone (1) New Positive Zone Generate new sample pattern space Grey Zone (2) New Negative Zone

27 Relocation of Grey Zone samples on new sample space Grey Zone (1) K-step Yard sampling (KY)Method

28 Building steps to the features of K-step Yard sampling method tep3: Merge two approaches: Yard sampling and K-step handling

29 The way to perfect classification Partially realized by Yard sampling process Not determined class on Grey zone compounds Fixed up by K-step approach Perfect classification for all samples: any case, any time, any condition, others

30 K-step Yard sampling method Yard sampling process For perfect classification K-step repeated processes For no Grey zone

31 Applicability statement of K-step Yard sampling method Classifying 7000 sample set of Ames test

32 Challenge for classification and prediction K-step Yard sampling method KY-method The most powerful and advanced data analysis method The most difficult classification problem 6,965 sample of Ames test samples were, Classified perfectly

33 Application test of K-step Yard sampling amples 1. Ames test data 2. ample population total :6,965 Mutagen; 2,932 Non-mutagen; 4,033 Result of KY-method 1. Number of steps : 23 steps ; 22 (2 models) + 1 (1 model) 2.Classification ratio : 100 % Used system ADMEWORK / ModelBuilder V Used parameters (Initial condition) Number of generated parameters : 838 Number of parameters for step 1 : 98 Confidency index (amples(6965) / Parameters(98)) : 71.1 > 4.0

34 Application test by various D.A. methods 1. Linear discriminant analysis with linear least-squares method Classification ratio : total; 73.50(6965), Mutagen;73.02(2932), Non mutagen;73.84(4033) Number of mis-classified : (1846), ( 791) (1055) Prediction ratio (L100 out) 72.58% deviance(0.92%) (L500 out) 73.32% deviance(0.18%) 2. VM (upport Vector Machine with Kernel) Classification ratio : total; 90.87(6965), Mutagen;86.83(2932) Non mutagen; 93.80(4033) Number of mis-classified : ( 636), ( 386) ( 250) Prediction ratio (L500 out) 80.99% deviance(9.88%) 3. AdaBoost Classification ratio : total; 77.24(6965), Mutagen;66.13(2932) Non-mutagen; 85.32(4033) Number of mis-classified : (1585) ( 993) ( 592) Prediction ratio (L500 out) 75.16% deviance(2.08%)

35 Classification results by AdaBoost ample distribution of 6,965 of 77.24% Mis-classified Correctryclassified Correctry-classified Mis-classified

36 K-step Yard sampling (KY)Method Total steps : 23 steps (2 models) + 1 step (1 model) ステップ ID(KY 法 ) tarting samples(total) Mutagen (Initial) Non-mutagen (Initial) Grey sample (Initial) Final samples Mutagen (Final) Non-mutagen (Final) Grey sample (Final) Determined samples(total) Determined samples(mut.) etermined samples(non-mu Grey ratio(%) (Grey/Total)

37 K-step Yard sampling (KY)Method (1 model)

38 K-step Yard sampling (KY)Method Classification results by 3 steps

39 ummary patial features of K-step Yard sampling Features 1. KY-method is a meta-method Used with various DA and Fitting methods. 2. Perfect classification is achieved in any condition Disadvantages 1. Relatively complex operation to generate discriminant functions 2. Need powerful computer power

40 ummary patial features of K-step Yard sampling Advantages 1. ample number free approach 2. ample distribution free approach 3. Perfect classification is achieved in any condition Disadvantages 1. Relatively complex operation to generate discriminant functions 2. Need powerful computer power

41 Kohtaro Yuta In ilico Data, Ltd.

Structure-Activity Modeling - QSAR. Uwe Koch

Structure-Activity Modeling - QSAR. Uwe Koch Structure-Activity Modeling - QSAR Uwe Koch QSAR Assumption: QSAR attempts to quantify the relationship between activity and molecular strcucture by correlating descriptors with properties Biological activity

More information

Linear Models for Classification

Linear Models for Classification Linear Models for Classification Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Linear

More information

In silico pharmacology for drug discovery

In silico pharmacology for drug discovery In silico pharmacology for drug discovery In silico drug design In silico methods can contribute to drug targets identification through application of bionformatics tools. Currently, the application of

More information

Plan. Lecture: What is Chemoinformatics and Drug Design? Description of Support Vector Machine (SVM) and its used in Chemoinformatics.

Plan. Lecture: What is Chemoinformatics and Drug Design? Description of Support Vector Machine (SVM) and its used in Chemoinformatics. Plan Lecture: What is Chemoinformatics and Drug Design? Description of Support Vector Machine (SVM) and its used in Chemoinformatics. Exercise: Example and exercise with herg potassium channel: Use of

More information

Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs

Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs William (Bill) Welsh welshwj@umdnj.edu Prospective Funding by DTRA/JSTO-CBD CBIS Conference 1 A State-wide, Regional and National

More information

Statistical learning theory, Support vector machines, and Bioinformatics

Statistical learning theory, Support vector machines, and Bioinformatics 1 Statistical learning theory, Support vector machines, and Bioinformatics Jean-Philippe.Vert@mines.org Ecole des Mines de Paris Computational Biology group ENS Paris, november 25, 2003. 2 Overview 1.

More information

Support Vector Machines: Kernels

Support Vector Machines: Kernels Support Vector Machines: Kernels CS6780 Advanced Machine Learning Spring 2015 Thorsten Joachims Cornell University Reading: Murphy 14.1, 14.2, 14.4 Schoelkopf/Smola Chapter 7.4, 7.6, 7.8 Non-Linear Problems

More information

Pattern Recognition 2018 Support Vector Machines

Pattern Recognition 2018 Support Vector Machines Pattern Recognition 2018 Support Vector Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recognition 1 / 48 Support Vector Machines Ad Feelders ( Universiteit Utrecht

More information

Gaussian Processes: We demand rigorously defined areas of uncertainty and doubt

Gaussian Processes: We demand rigorously defined areas of uncertainty and doubt Gaussian Processes: We demand rigorously defined areas of uncertainty and doubt ACS Spring National Meeting. COMP, March 16 th 2016 Matthew Segall, Peter Hunt, Ed Champness matt.segall@optibrium.com Optibrium,

More information

EVALUATING MISCLASSIFICATION PROBABILITY USING EMPIRICAL RISK 1. Victor Nedel ko

EVALUATING MISCLASSIFICATION PROBABILITY USING EMPIRICAL RISK 1. Victor Nedel ko 94 International Journal "Information Theories & Applications" Vol13 [Raudys, 001] Raudys S, Statistical and neural classifiers, Springer, 001 [Mirenkova, 00] S V Mirenkova (edel ko) A method for prediction

More information

MULTIVARIATE PATTERN RECOGNITION FOR CHEMOMETRICS. Richard Brereton

MULTIVARIATE PATTERN RECOGNITION FOR CHEMOMETRICS. Richard Brereton MULTIVARIATE PATTERN RECOGNITION FOR CHEMOMETRICS Richard Brereton r.g.brereton@bris.ac.uk Pattern Recognition Book Chemometrics for Pattern Recognition, Wiley, 2009 Pattern Recognition Pattern Recognition

More information

Notes of Dr. Anil Mishra at 1

Notes of Dr. Anil Mishra at   1 Introduction Quantitative Structure-Activity Relationships QSPR Quantitative Structure-Property Relationships What is? is a mathematical relationship between a biological activity of a molecular system

More information

DATA MINING WITH DIFFERENT TYPES OF X-RAY DATA

DATA MINING WITH DIFFERENT TYPES OF X-RAY DATA DATA MINING WITH DIFFERENT TYPES OF X-RAY DATA 315 C. K. Lowe-Ma, A. E. Chen, D. Scholl Physical & Environmental Sciences, Research and Advanced Engineering Ford Motor Company, Dearborn, Michigan, USA

More information

QSAR/QSPR modeling. Quantitative Structure-Activity Relationships Quantitative Structure-Property-Relationships

QSAR/QSPR modeling. Quantitative Structure-Activity Relationships Quantitative Structure-Property-Relationships Quantitative Structure-Activity Relationships Quantitative Structure-Property-Relationships QSAR/QSPR modeling Alexandre Varnek Faculté de Chimie, ULP, Strasbourg, FRANCE QSAR/QSPR models Development Validation

More information

hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference

hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference CS 229 Project Report (TR# MSB2010) Submitted 12/10/2010 hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference Muhammad Shoaib Sehgal Computer Science

More information

Society for Biomolecular Screening 10th Annual Conference, Orlando, FL, September 11-15, 2004

Society for Biomolecular Screening 10th Annual Conference, Orlando, FL, September 11-15, 2004 Society for Biomolecular Screening 10th Annual Conference, Orlando, FL, September 11-15, 2004 Advanced Methods in Dose-Response Screening of Enzyme Inhibitors Petr uzmič, Ph.D. Bioin, Ltd. TOPICS: 1. Fitting

More information

CS7267 MACHINE LEARNING

CS7267 MACHINE LEARNING CS7267 MACHINE LEARNING ENSEMBLE LEARNING Ref: Dr. Ricardo Gutierrez-Osuna at TAMU, and Aarti Singh at CMU Mingon Kang, Ph.D. Computer Science, Kennesaw State University Definition of Ensemble Learning

More information

Numerical Learning Algorithms

Numerical Learning Algorithms Numerical Learning Algorithms Example SVM for Separable Examples.......................... Example SVM for Nonseparable Examples....................... 4 Example Gaussian Kernel SVM...............................

More information

Interactive Feature Selection with

Interactive Feature Selection with Chapter 6 Interactive Feature Selection with TotalBoost g ν We saw in the experimental section that the generalization performance of the corrective and totally corrective boosting algorithms is comparable.

More information

Learning with multiple models. Boosting.

Learning with multiple models. Boosting. CS 2750 Machine Learning Lecture 21 Learning with multiple models. Boosting. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Learning with multiple models: Approach 2 Approach 2: use multiple models

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

Decision Trees (Cont.)

Decision Trees (Cont.) Decision Trees (Cont.) R&N Chapter 18.2,18.3 Side example with discrete (categorical) attributes: Predicting age (3 values: less than 30, 30-45, more than 45 yrs old) from census data. Attributes (split

More information

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM 1 Support Vector Machines (SVM) in bioinformatics Day 1: Introduction to SVM Jean-Philippe Vert Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org Human Genome Center, University

More information

Data Mining und Maschinelles Lernen

Data Mining und Maschinelles Lernen Data Mining und Maschinelles Lernen Ensemble Methods Bias-Variance Trade-off Basic Idea of Ensembles Bagging Basic Algorithm Bagging with Costs Randomization Random Forests Boosting Stacking Error-Correcting

More information

Intelligent Systems Statistical Machine Learning

Intelligent Systems Statistical Machine Learning Intelligent Systems Statistical Machine Learning Carsten Rother, Dmitrij Schlesinger WS2014/2015, Our tasks (recap) The model: two variables are usually present: - the first one is typically discrete k

More information

An Introduction to Statistical Theory of Learning. Nakul Verma Janelia, HHMI

An Introduction to Statistical Theory of Learning. Nakul Verma Janelia, HHMI An Introduction to Statistical Theory of Learning Nakul Verma Janelia, HHMI Towards formalizing learning What does it mean to learn a concept? Gain knowledge or experience of the concept. The basic process

More information

Bayesian Modeling and Classification of Neural Signals

Bayesian Modeling and Classification of Neural Signals Bayesian Modeling and Classification of Neural Signals Michael S. Lewicki Computation and Neural Systems Program California Institute of Technology 216-76 Pasadena, CA 91125 lewickiocns.caltech.edu Abstract

More information

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE Data Provided: None DEPARTMENT OF COMPUTER SCIENCE Autumn Semester 203 204 MACHINE LEARNING AND ADAPTIVE INTELLIGENCE 2 hours Answer THREE of the four questions. All questions carry equal weight. Figures

More information

Classifier Selection. Nicholas Ver Hoeve Craig Martek Ben Gardner

Classifier Selection. Nicholas Ver Hoeve Craig Martek Ben Gardner Classifier Selection Nicholas Ver Hoeve Craig Martek Ben Gardner Classifier Ensembles Assume we have an ensemble of classifiers with a well-chosen feature set. We want to optimize the competence of this

More information

Intelligence and statistics for rapid and robust earthquake detection, association and location

Intelligence and statistics for rapid and robust earthquake detection, association and location Intelligence and statistics for rapid and robust earthquake detection, association and location Anthony Lomax ALomax Scientific, Mouans-Sartoux, France anthony@alomax.net www.alomax.net @ALomaxNet Alberto

More information

Quantitative Structure-Activity Relationship (QSAR) computational-drug-design.html

Quantitative Structure-Activity Relationship (QSAR)  computational-drug-design.html Quantitative Structure-Activity Relationship (QSAR) http://www.biophys.mpg.de/en/theoretical-biophysics/ computational-drug-design.html 07.11.2017 Ahmad Reza Mehdipour 07.11.2017 Course Outline 1. 1.Ligand-

More information

Experimental Design and Data Analysis for Biologists

Experimental Design and Data Analysis for Biologists Experimental Design and Data Analysis for Biologists Gerry P. Quinn Monash University Michael J. Keough University of Melbourne CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv I I Introduction 1 1.1

More information

Does Unlabeled Data Help?

Does Unlabeled Data Help? Does Unlabeled Data Help? Worst-case Analysis of the Sample Complexity of Semi-supervised Learning. Ben-David, Lu and Pal; COLT, 2008. Presentation by Ashish Rastogi Courant Machine Learning Seminar. Outline

More information

CS534 Machine Learning - Spring Final Exam

CS534 Machine Learning - Spring Final Exam CS534 Machine Learning - Spring 2013 Final Exam Name: You have 110 minutes. There are 6 questions (8 pages including cover page). If you get stuck on one question, move on to others and come back to the

More information

Prediction in bioinformatics applications by conformal predictors

Prediction in bioinformatics applications by conformal predictors Prediction in bioinformatics applications by conformal predictors Alex Gammerman (joint work with Ilia Nuoretdinov and Paolo Toccaceli) Computer Learning Research Centre Royal Holloway, University of London

More information

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Erin Allwein, Robert Schapire and Yoram Singer Journal of Machine Learning Research, 1:113-141, 000 CSE 54: Seminar on Learning

More information

Final Examination CS540-2: Introduction to Artificial Intelligence

Final Examination CS540-2: Introduction to Artificial Intelligence Final Examination CS540-2: Introduction to Artificial Intelligence May 9, 2018 LAST NAME: SOLUTIONS FIRST NAME: Directions 1. This exam contains 33 questions worth a total of 100 points 2. Fill in your

More information

MIDTERM SOLUTIONS: FALL 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE

MIDTERM SOLUTIONS: FALL 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE MIDTERM SOLUTIONS: FALL 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE March 28, 2012 The exam is closed book. You are allowed a double sided one page cheat sheet. Answer the questions in the spaces provided on

More information

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9 Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9 Slides adapted from Jordan Boyd-Graber Machine Learning: Chenhao Tan Boulder 1 of 39 Recap Supervised learning Previously: KNN, naïve

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Decision Trees Instructor: Yang Liu 1 Supervised Classifier X 1 X 2. X M Ref class label 2 1 Three variables: Attribute 1: Hair = {blond, dark} Attribute 2: Height = {tall, short}

More information

Neural network time series classification of changes in nuclear power plant processes

Neural network time series classification of changes in nuclear power plant processes 2009 Quality and Productivity Research Conference Neural network time series classification of changes in nuclear power plant processes Karel Kupka TriloByte Statistical Research, Center for Quality and

More information

FINAL: CS 6375 (Machine Learning) Fall 2014

FINAL: CS 6375 (Machine Learning) Fall 2014 FINAL: CS 6375 (Machine Learning) Fall 2014 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for

More information

Learning Ensembles. 293S T. Yang. UCSB, 2017.

Learning Ensembles. 293S T. Yang. UCSB, 2017. Learning Ensembles 293S T. Yang. UCSB, 2017. Outlines Learning Assembles Random Forest Adaboost Training data: Restaurant example Examples described by attribute values (Boolean, discrete, continuous)

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Jordan Boyd-Graber University of Colorado Boulder LECTURE 7 Slides adapted from Tom Mitchell, Eric Xing, and Lauren Hannah Jordan Boyd-Graber Boulder Support Vector Machines 1 of

More information

A Tiered Screen Protocol for the Discovery of Structurally Diverse HIV Integrase Inhibitors

A Tiered Screen Protocol for the Discovery of Structurally Diverse HIV Integrase Inhibitors A Tiered Screen Protocol for the Discovery of Structurally Diverse HIV Integrase Inhibitors Rajarshi Guha, Debojyoti Dutta, Ting Chen and David J. Wild School of Informatics Indiana University and Dept.

More information

Discriminative Direction for Kernel Classifiers

Discriminative Direction for Kernel Classifiers Discriminative Direction for Kernel Classifiers Polina Golland Artificial Intelligence Lab Massachusetts Institute of Technology Cambridge, MA 02139 polina@ai.mit.edu Abstract In many scientific and engineering

More information

An Integrated Approach to in-silico

An Integrated Approach to in-silico An Integrated Approach to in-silico Screening Joseph L. Durant Jr., Douglas. R. Henry, Maurizio Bronzetti, and David. A. Evans MDL Information Systems, Inc. 14600 Catalina St., San Leandro, CA 94577 Goals

More information

Learning Methods for Linear Detectors

Learning Methods for Linear Detectors Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2011/2012 Lesson 20 27 April 2012 Contents Learning Methods for Linear Detectors Learning Linear Detectors...2

More information

FINAL EXAM: FALL 2013 CS 6375 INSTRUCTOR: VIBHAV GOGATE

FINAL EXAM: FALL 2013 CS 6375 INSTRUCTOR: VIBHAV GOGATE FINAL EXAM: FALL 2013 CS 6375 INSTRUCTOR: VIBHAV GOGATE You are allowed a two-page cheat sheet. You are also allowed to use a calculator. Answer the questions in the spaces provided on the question sheets.

More information

Introduction to Machine Learning Midterm Exam

Introduction to Machine Learning Midterm Exam 10-701 Introduction to Machine Learning Midterm Exam Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes, but

More information

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION 1 Outline Basic terminology Features Training and validation Model selection Error and loss measures Statistical comparison Evaluation measures 2 Terminology

More information

Noise Tolerance Under Risk Minimization

Noise Tolerance Under Risk Minimization Noise Tolerance Under Risk Minimization Naresh Manwani, P. S. Sastry, Senior Member, IEEE arxiv:09.52v4 cs.lg] Oct 202 Abstract In this paper we explore noise tolerant learning of classifiers. We formulate

More information

Encoding molecular structures as ranks of models: A new, secure way for sharing chemical data and development of ADME/T models. Igor V.

Encoding molecular structures as ranks of models: A new, secure way for sharing chemical data and development of ADME/T models. Igor V. Encoding molecular structures as ranks of models: A new, secure way for sharing chemical data and development of ADME/T models Igor V. Tetko IBPC, Ukrainian Academy of Sciences, Kyiv, Ukraine and Institute

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Machine Learning: Jordan Boyd-Graber University of Maryland SUPPORT VECTOR MACHINES Slides adapted from Tom Mitchell, Eric Xing, and Lauren Hannah Machine Learning: Jordan

More information

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University A Gentle Introduction to Gradient Boosting Cheng Li chengli@ccs.neu.edu College of Computer and Information Science Northeastern University Gradient Boosting a powerful machine learning algorithm it can

More information

Empirical Risk Minimization, Model Selection, and Model Assessment

Empirical Risk Minimization, Model Selection, and Model Assessment Empirical Risk Minimization, Model Selection, and Model Assessment CS6780 Advanced Machine Learning Spring 2015 Thorsten Joachims Cornell University Reading: Murphy 5.7-5.7.2.4, 6.5-6.5.3.1 Dietterich,

More information

Statistical concepts in QSAR.

Statistical concepts in QSAR. Statistical concepts in QSAR. Computational chemistry represents molecular structures as a numerical models and simulates their behavior with the equations of quantum and classical physics. Available programs

More information

TDT4173 Machine Learning

TDT4173 Machine Learning TDT4173 Machine Learning Lecture 3 Bagging & Boosting + SVMs Norwegian University of Science and Technology Helge Langseth IT-VEST 310 helgel@idi.ntnu.no 1 TDT4173 Machine Learning Outline 1 Ensemble-methods

More information

Gene Expression Data Classification with Revised Kernel Partial Least Squares Algorithm

Gene Expression Data Classification with Revised Kernel Partial Least Squares Algorithm Gene Expression Data Classification with Revised Kernel Partial Least Squares Algorithm Zhenqiu Liu, Dechang Chen 2 Department of Computer Science Wayne State University, Market Street, Frederick, MD 273,

More information

Generalization, Overfitting, and Model Selection

Generalization, Overfitting, and Model Selection Generalization, Overfitting, and Model Selection Sample Complexity Results for Supervised Classification Maria-Florina (Nina) Balcan 10/03/2016 Two Core Aspects of Machine Learning Algorithm Design. How

More information

Ensembles of Classifiers.

Ensembles of Classifiers. Ensembles of Classifiers www.biostat.wisc.edu/~dpage/cs760/ 1 Goals for the lecture you should understand the following concepts ensemble bootstrap sample bagging boosting random forests error correcting

More information

ECHO CLASSIFICATION AND SPECTRAL PROCESSING FOR THE DISCRIMINATION OF CLUTTER FROM WEATHER

ECHO CLASSIFICATION AND SPECTRAL PROCESSING FOR THE DISCRIMINATION OF CLUTTER FROM WEATHER P4R.6 ECHO CLASSIFICATION AND SPECTRAL PROCESSING FOR THE DISCRIMINATION OF CLUTTER FROM WEATHER Michael Dixon, Cathy Kessinger and John Hubbert National Center for Atmospheric Research*, Boulder, Colorado

More information

Human Health Models Skin sensitization

Human Health Models Skin sensitization Human Health Models Skin sensitization Laboratory of Mathematical Chemistry, Bulgaria 1 Outline Predicting skin sensitization in TIMES TIMES-SS model Applicability domain in TIMES (Q)SAR models Model performance

More information

A Rough Set Interpretation of User s Web Behavior: A Comparison with Information Theoretic Measure

A Rough Set Interpretation of User s Web Behavior: A Comparison with Information Theoretic Measure A Rough et Interpretation of User s Web Behavior: A Comparison with Information Theoretic easure George V. eghabghab Roane tate Dept of Computer cience Technology Oak Ridge, TN, 37830 gmeghab@hotmail.com

More information

Practical Meta-Analysis -- Lipsey & Wilson

Practical Meta-Analysis -- Lipsey & Wilson Overview of Meta-Analytic Data Analysis Transformations, Adjustments and Outliers The Inverse Variance Weight The Mean Effect Size and Associated Statistics Homogeneity Analysis Fixed Effects Analysis

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Support Vector Machine (SVM) Hamid R. Rabiee Hadi Asheri, Jafar Muhammadi, Nima Pourdamghani Spring 2013 http://ce.sharif.edu/courses/91-92/2/ce725-1/ Agenda Introduction

More information

How do we compare the relative performance among competing models?

How do we compare the relative performance among competing models? How do we compare the relative performance among competing models? 1 Comparing Data Mining Methods Frequent problem: we want to know which of the two learning techniques is better How to reliably say Model

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

Multivariate statistical methods and data mining in particle physics

Multivariate statistical methods and data mining in particle physics Multivariate statistical methods and data mining in particle physics RHUL Physics www.pp.rhul.ac.uk/~cowan Academic Training Lectures CERN 16 19 June, 2008 1 Outline Statement of the problem Some general

More information

Exploiting k-nearest Neighbor Information with Many Data

Exploiting k-nearest Neighbor Information with Many Data Exploiting k-nearest Neighbor Information with Many Data 2017 TEST TECHNOLOGY WORKSHOP 2017. 10. 24 (Tue.) Yung-Kyun Noh Robotics Lab., Contents Nonparametric methods for estimating density functions Nearest

More information

HCOC: hierarchical classifier with overlapping class groups

HCOC: hierarchical classifier with overlapping class groups HCOC: hierarchical classifier with overlapping class groups Igor T Podolak Group of Machine Learning Methods GMUM Theoretical Foundations of Machine Learning, Będlewo 2015 20th February 2015 1 / Igor T

More information

CHAPTER-17. Decision Tree Induction

CHAPTER-17. Decision Tree Induction CHAPTER-17 Decision Tree Induction 17.1 Introduction 17.2 Attribute selection measure 17.3 Tree Pruning 17.4 Extracting Classification Rules from Decision Trees 17.5 Bayesian Classification 17.6 Bayes

More information

Supervised Learning. George Konidaris

Supervised Learning. George Konidaris Supervised Learning George Konidaris gdk@cs.brown.edu Fall 2017 Machine Learning Subfield of AI concerned with learning from data. Broadly, using: Experience To Improve Performance On Some Task (Tom Mitchell,

More information

QSAR Modeling of Human Liver Microsomal Stability Alexey Zakharov

QSAR Modeling of Human Liver Microsomal Stability Alexey Zakharov QSAR Modeling of Human Liver Microsomal Stability Alexey Zakharov CADD Group Chemical Biology Laboratory Frederick National Laboratory for Cancer Research National Cancer Institute, National Institutes

More information

Chemogenomic: Approaches to Rational Drug Design. Jonas Skjødt Møller

Chemogenomic: Approaches to Rational Drug Design. Jonas Skjødt Møller Chemogenomic: Approaches to Rational Drug Design Jonas Skjødt Møller Chemogenomic Chemistry Biology Chemical biology Medical chemistry Chemical genetics Chemoinformatics Bioinformatics Chemoproteomics

More information

Support Vector Machine (continued)

Support Vector Machine (continued) Support Vector Machine continued) Overlapping class distribution: In practice the class-conditional distributions may overlap, so that the training data points are no longer linearly separable. We need

More information

ROBUST KERNEL METHODS IN CONTEXT-DEPENDENT FUSION

ROBUST KERNEL METHODS IN CONTEXT-DEPENDENT FUSION ROBUST KERNEL METHODS IN CONTEXT-DEPENDENT FUSION By GYEONGYONG HEO A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

More information

AIM HIGH SCHOOL. Curriculum Map W. 12 Mile Road Farmington Hills, MI (248)

AIM HIGH SCHOOL. Curriculum Map W. 12 Mile Road Farmington Hills, MI (248) AIM HIGH SCHOOL Curriculum Map 2923 W. 12 Mile Road Farmington Hills, MI 48334 (248) 702-6922 www.aimhighschool.com COURSE TITLE: Statistics DESCRIPTION OF COURSE: PREREQUISITES: Algebra 2 Students will

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

Induction of Decision Trees

Induction of Decision Trees Induction of Decision Trees Peter Waiganjo Wagacha This notes are for ICS320 Foundations of Learning and Adaptive Systems Institute of Computer Science University of Nairobi PO Box 30197, 00200 Nairobi.

More information

Non-parametric Classification of Facial Features

Non-parametric Classification of Facial Features Non-parametric Classification of Facial Features Hyun Sung Chang Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Problem statement In this project, I attempted

More information

Approximate Linear Relationships

Approximate Linear Relationships Approximate Linear Relationships In the real world, rarely do things follow trends perfectly. When the trend is expected to behave linearly, or when inspection suggests the trend is behaving linearly,

More information

A. Pelliccioni (*), R. Cotroneo (*), F. Pungì (*) (*)ISPESL-DIPIA, Via Fontana Candida 1, 00040, Monteporzio Catone (RM), Italy.

A. Pelliccioni (*), R. Cotroneo (*), F. Pungì (*) (*)ISPESL-DIPIA, Via Fontana Candida 1, 00040, Monteporzio Catone (RM), Italy. Application of Neural Net Models to classify and to forecast the observed precipitation type at the ground using the Artificial Intelligence Competition data set. A. Pelliccioni (*), R. Cotroneo (*), F.

More information

Bagging and Other Ensemble Methods

Bagging and Other Ensemble Methods Bagging and Other Ensemble Methods Sargur N. Srihari srihari@buffalo.edu 1 Regularization Strategies 1. Parameter Norm Penalties 2. Norm Penalties as Constrained Optimization 3. Regularization and Underconstrained

More information

Machine Learning 2010

Machine Learning 2010 Machine Learning 2010 Michael M Richter Support Vector Machines Email: mrichter@ucalgary.ca 1 - Topic This chapter deals with concept learning the numerical way. That means all concepts, problems and decisions

More information

Multivariate statistical methods and data mining in particle physics Lecture 4 (19 June, 2008)

Multivariate statistical methods and data mining in particle physics Lecture 4 (19 June, 2008) Multivariate statistical methods and data mining in particle physics Lecture 4 (19 June, 2008) RHUL Physics www.pp.rhul.ac.uk/~cowan Academic Training Lectures CERN 16 19 June, 2008 1 Outline Statement

More information

Optimization Methods for Machine Learning (OMML)

Optimization Methods for Machine Learning (OMML) Optimization Methods for Machine Learning (OMML) 2nd lecture (2 slots) Prof. L. Palagi 16/10/2014 1 What is (not) Data Mining? By Namwar Rizvi - Ad Hoc Query: ad Hoc queries just examines the current data

More information

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18 CSE 417T: Introduction to Machine Learning Final Review Henry Chai 12/4/18 Overfitting Overfitting is fitting the training data more than is warranted Fitting noise rather than signal 2 Estimating! "#$

More information

ALOGPS is a free on-line program to predict lipophilicity and aqueous solubility of chemical compounds

ALOGPS is a free on-line program to predict lipophilicity and aqueous solubility of chemical compounds ALOGPS is a free on-line program to predict lipophilicity and aqueous solubility of chemical compounds Igor V. Tetko & Vsevolod Yu. Tanchuk IBPC, Ukrainian Academy of Sciences, Kyiv, Ukraine and Institute

More information

Methods and Results for Challenge 3A

Methods and Results for Challenge 3A Methods and Results for Challenge 3A Robert Bruggner, Rachel Finck, Robin Jia, Noah Zimmerman Stanford University rbruggner@stanford.edu FlowCAPII Summit Sept 23 2011 Challenge 3A and Method Overview Challenge

More information

Sparse Kernel Machines - SVM

Sparse Kernel Machines - SVM Sparse Kernel Machines - SVM Henrik I. Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I. Christensen (RIM@GT) Support

More information

QSAR in Green Chemistry

QSAR in Green Chemistry QSAR in Green Chemistry Activity Relationship QSAR is the acronym for Quantitative Structure-Activity Relationship Chemistry is based on the premise that similar chemicals will behave similarly The behavior/activity

More information

Residuals, Coefficient of Determination Worksheet Solutions

Residuals, Coefficient of Determination Worksheet Solutions Math 121 Ravenwood Residuals, Coefficient of Determination Worksheet Solutions Atmospheric Temperature as a Function of Altitude (not real data) Which means the linear regression equation is 6.488 14.977,

More information

Types of spatial data. The Nature of Geographic Data. Types of spatial data. Spatial Autocorrelation. Continuous spatial data: geostatistics

Types of spatial data. The Nature of Geographic Data. Types of spatial data. Spatial Autocorrelation. Continuous spatial data: geostatistics The Nature of Geographic Data Types of spatial data Continuous spatial data: geostatistics Samples may be taken at intervals, but the spatial process is continuous e.g. soil quality Discrete data Irregular:

More information

Classifier Complexity and Support Vector Classifiers

Classifier Complexity and Support Vector Classifiers Classifier Complexity and Support Vector Classifiers Feature 2 6 4 2 0 2 4 6 8 RBF kernel 10 10 8 6 4 2 0 2 4 6 Feature 1 David M.J. Tax Pattern Recognition Laboratory Delft University of Technology D.M.J.Tax@tudelft.nl

More information

WALD LECTURE II LOOKING INSIDE THE BLACK BOX. Leo Breiman UCB Statistics

WALD LECTURE II LOOKING INSIDE THE BLACK BOX. Leo Breiman UCB Statistics 1 WALD LECTURE II LOOKING INSIDE THE BLACK BOX Leo Breiman UCB Statistics leo@stat.berkeley.edu ORIGIN OF BLACK BOXES 2 Statistics uses data to explore problems. Think of the data as being generated by

More information

SVM TRADE-OFF BETWEEN MAXIMIZE THE MARGIN AND MINIMIZE THE VARIABLES USED FOR REGRESSION

SVM TRADE-OFF BETWEEN MAXIMIZE THE MARGIN AND MINIMIZE THE VARIABLES USED FOR REGRESSION International Journal of Pure and Applied Mathematics Volume 87 No. 6 2013, 741-750 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v87i6.2

More information

Parametric Test. Multiple Linear Regression Spatial Application I: State Homicide Rates Equations taken from Zar, 1984.

Parametric Test. Multiple Linear Regression Spatial Application I: State Homicide Rates Equations taken from Zar, 1984. Multiple Linear Regression Spatial Application I: State Homicide Rates Equations taken from Zar, 984. y ˆ = a + b x + b 2 x 2K + b n x n where n is the number of variables Example: In an earlier bivariate

More information

Linear Correlation and Regression Analysis

Linear Correlation and Regression Analysis Linear Correlation and Regression Analysis Set Up the Calculator 2 nd CATALOG D arrow down DiagnosticOn ENTER ENTER SCATTER DIAGRAM Positive Linear Correlation Positive Correlation Variables will tend

More information

Machine Learning: Fisher s Linear Discriminant. Lecture 05

Machine Learning: Fisher s Linear Discriminant. Lecture 05 Machine Learning: Fisher s Linear Discriinant Lecture 05 Razvan C. Bunescu chool of Electrical Engineering and Coputer cience bunescu@ohio.edu Lecture 05 upervised Learning ask learn an (unkon) function

More information