Selective Activation of Methane on Single-Atom Catalyst of Rhodium Dispersed on Zirconia for Direct Conversion

Size: px
Start display at page:

Download "Selective Activation of Methane on Single-Atom Catalyst of Rhodium Dispersed on Zirconia for Direct Conversion"

Transcription

1 Supporting Information Selective Activation of Methane on Single-Atom Catalyst of Rhodium Dispersed on Zirconia for Direct Conversion Yongwoo Kwon a, Tae Yong Kim b, Gihun Kwon a, Jongheop Yi b *, and Hyunjoo Lee a * a Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea; b School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea Additional Data: Table S1-S4 Figure S1-S13 S1

2 Figure S1. Calibration curves for the quantification of (a) MeOH and (b) MeOOH using 1 H NMR data. The standard solutions were made with various MeOH and MeOOH concentrations, and the concentrations were plotted versus the peak (MeOH, δ=3.35ppm; MeOOH, δ=3.85ppm) area ratio to internal standard (DSS). The methyl hydroperoxide (MeOOH) was synthesized in the lab by using dimethyl sulfate. S1 Hydrogen peroxide solution (30%, Ducksan, 3.75g), H 2 O (6.25ml), and dimethyl sulfate (99.5%, Samcheon, 2.5g) were mixed in a round-flask with a condenser. KOH solution (40 wt%, Samcheon, 5.25g) was added to the solution and stirred for 1 h. The concentration of the synthesized MeOOH was estimated as a difference between the concentrations of total peroxides and H 2 O 2. The concentration of total peroxides was measured by titration with KI. The H 2 O 2 concentration was measured spectrophotometrically using titanium oxalate assay. S2 S2

3 Figure S2. (a) TEM image and (b) XRD pattern of the synthesized ZrO 2 support. S3

4 Figure S3. Rh K edge k 3 -weighted EXAFS oscillations of the 0.3 wt% Rh/ZrO 2, 2 wt% Rh/ZrO 2, 5 wt% Rh/SiO 2, and Rh foil in k-range. S4

5 Figure S4. (a) HAADF-STEM and (b) EDS mapping images of the 0.3 wt% Rh/ZrO 2 catalyst. (c) HAADF-STEM (b) EDS mapping images of the 0.3 wt% Rh/ZrO 2 catalyst after methane to methanol reaction. S5

6 Figure S5. HR-TEM images of (a) 0.3 wt% Rh/ZrO2, (b) 2 wt% Rh/ZrO2, and (c) 5 wt% Rh/SiO2 catalysts. S6

7 Figure S6. HAADF-STEM images of 2 wt% Rh/ZrO 2 with (a) high and (b) low magnification. The white arrows indicate Rh clusters on ZrO 2 support. S7

8 Table S1. IR peaks of the germinal dicarbonyl adsorption on the Rh sites of various Rh/ZrO 2 samples. The angle between the adsorbed CO molecules was estimated by using the area of the symmetric and asymmetric peak. Samples Rh(CO) 2 symmetric (cm -1 ) A sym a Rh(CO) 2 asymmetric (cm -1 ) A asym a 2ɑ( ) b RhCl 3 +ZrO wt% Rh/ZrO 2 2 wt% Rh/ZrO wt% Rh/ZrO 2 a The area of the symmetric or asymmetric peaks. b The angle between the adsorbed CO molecules (tan 2 ɑ = A asym /A sym ). S8

9 Table S2. Relative energies of various DFT models for a single atomic Rh on ZrO 2 surface. The density of hydroxyl groups on hydroxylated surface (Hyd) is 4.3 OH/nm 2 because this density showed the lowest surface free energy at room temperature under 1 atm of H 2 O partial pressure as shown in Figure S7a. Model structure Relative energy E (ev) Oxidation state e Adsorption A a Rh 1 /Clean Rh 1 /Hyd Adsorption B b Rh 1 O 2 /Clean Rh 1 O 2 /Hyd Adsorption C c Rh 1 /O v Rh 1 /O v -Hyd Zr Substitution d Rh Zr -Clean Rh Zr -Hyd a 1/2 Rh 2 O 3 (bulk) + Surface (clean or hydroxylated ZrO 2 (101) surface) Rh/surface + 3/4 O 2 (gas); E =E / + E E E b 1/2 Rh 2 O 3 (bulk) + Surface (clean or hydroxylated ZrO 2 (101) surface) + 1/4 O 2 RhO 2 /surface; E =E / E E E c 1/2 Rh 2 O 3 (bulk) + Surface with oxygen vacancy (O v ) Rh-O v + 3/4 O 2 (gas); E = E / + E E E d 1/2 Rh 2 O 3 (bulk) + Surface (clean or hydroxylated ZrO 2 (101) surface) + 1/4 O 2 Rh-Zr v + ZrO 2 (bulk); E =E +E E E E e Bader charge of Rh on each model was calculated, then the Rh oxidation state was estimated from the calibration line in Figure S6. S9

10 Figure S7. Surface free energy of tetragonal ZrO 2 (101) surface as a function of temperature under (a) 1 atm and (b) 10-5 atm of H 2 O partial pressure. Dotted lines in (a) and (b) indicate reaction temperature for liquid- and gas-phase methane oxidation, respectively. S10

11 Figure S8. Top views of the simulated structures of (a) Rh 1 /Clean, (b) Rh 1 /Hyd, (c) Rh 1 O 2 /Clean, (d) Rh 1 O 2 /Hyd, (e) Rh 1 /O v, (f) Rh 1 /O v -Hyd. The number in the inset indicates Rh oxidation state estimated by Bader charge analysis. S11

12 Figure S9. A relation between Bader charge of Rh calculated by DFT and its oxidation state for metallic Rh, Rh 2 O 3, and RhO 2. S12

13 Table S3. The direct methane oxidation results for various kinds of metal supported on ZrO 2. Reaction condition: 30 bar of 95% CH 4 /He, 70 C, 30 min, 0.5 M H 2 O 2, 30 min, and catalyst 30 mg. Catalyst Product (µmol/ µmol metal ) MeOH MeOOH CO wt% Rh/ZrO wt% Pd/ZrO wt% Pt/ZrO wt% Ir/ZrO S13

14 Table S4. The effect of the support for the direct methane oxidation. Reaction condition: 30 bar of 95% CH 4 /He, 70 C, 30 min, 0.5 M H 2 O 2, 30 min, and catalyst 30 mg. Catalyst Product (µmol/µmol Rh ) MeOH MeOOH CO wt% Rh/ZrO wt% Rh/CeO wt% Rh/TiO wt% Rh/SiO S14

15 Figure S10. The change in the product distribution for the direct methane oxidation over reaction time on the 0.3 wt% Rh/ZrO 2 catalyst. Reaction condition: 30 bar of 95% CH 4 /He, 70 C, 0.5 M H 2 O 2, and catalyst 30 mg. S15

16 Figure S11. (a) MeOOH and (b) MeOH decomposition reaction results on the 0.3 wt% Rh/ZrO 2, 2 wt% Rh/ZrO 2, and 5 wt% Rh/SiO 2 catalysts. Reaction condition: 0.8 mm of MeOOH or 0.5 mm of MeOH, 3 bar of He, 70 C, 30 min, 0.5 M H 2 O 2, and catalyst 30 mg S16

17 Figure S12. (a) Optimized model structure and (b) energy diagram of methane oxidation to oxygenates on Rh 1 /ZrO 2 (Rh Zr -Hyd). The density of hydroxyl groups on hydroxylated surface (Hyd) is 4.3 OH/nm 2 because this density showed the lowest surface free energy under reaction condition as shown in Figure S7a. S17

18 Figure S13. (a) Optimized model structure and (b) energy diagram of methane conversion to ethane on Rh 1 /ZrO 2 (Rh Zr -Hyd). The density of hydroxyl groups on hydroxylated surface (Hyd) is 2.9 OH/nm 2 because this density showed the lowest surface free energy under reaction condition as shown in Figure S7b. S18

19 References S1. Davies, D. M.; Deary, M. E., J. Chem. Soc. Perkin Transaction , 4, S2. Sellers, R. M., Analyst 1980, 105, S19

Shape Effect of Ag-Ni Binary Nanoparticles on Catalytic Hydrogenation Aided by Surface Plasmon

Shape Effect of Ag-Ni Binary Nanoparticles on Catalytic Hydrogenation Aided by Surface Plasmon Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supplementary Information Shape Effect of Ag-Ni Binary Nanoparticles on Catalytic Hydrogenation

More information

Zeolite-supported rhodium sub-nano cluster catalyst for low-temperature

Zeolite-supported rhodium sub-nano cluster catalyst for low-temperature Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Zeolite-supported rhodium sub-nano cluster

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. X-ray diffraction patterns of (a) pure LDH, (b) AuCl 4 ion-exchanged LDH and (c) the Au/LDH hybrid catalyst. The refined cell parameters for pure, ion-exchanged,

More information

Iodide-mediated room temperature reduction of graphene oxide: a rapid chemical route for the synthesis of a bifunctional electrocatalyst

Iodide-mediated room temperature reduction of graphene oxide: a rapid chemical route for the synthesis of a bifunctional electrocatalyst Supporting Information Iodide-mediated room temperature reduction of graphene oxide: a rapid chemical route for the synthesis of a bifunctional electrocatalyst Ashok Kumar Das, 1 Manish Srivastav, 1 Rama

More information

Supplementary Figure 2. (a) XRD patterns of the MOF and the simulated Ni-MOF-74

Supplementary Figure 2. (a) XRD patterns of the MOF and the simulated Ni-MOF-74 Supplementary Figure 1. Low-magnification TEM image of Pt-Ni frame @ MOF. The scale bar is 200 nm. Supplementary Figure 2. (a) XRD patterns of the Pt-Ni @ MOF and the simulated Ni-MOF-74 pattern. (b) XRD

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information One-pot synthesis of ultralong coaxial Au@Pt nanocables with

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 217 Supporting Information Catalyst preparation A certain of aqueous NiCl 2 6H 2 O (2 mm), H 2 PtCl

More information

Rh 3d. Co 2p. Binding Energy (ev) Binding Energy (ev) (b) (a)

Rh 3d. Co 2p. Binding Energy (ev) Binding Energy (ev) (b) (a) Co 2p Co(0) 778.3 Rh 3d Rh (0) 307.2 810 800 790 780 770 Binding Energy (ev) (a) 320 315 310 305 Binding Energy (ev) (b) Supplementary Figure 1 Photoemission features of a catalyst precursor which was

More information

Supplementary Information. Hydrogen absorption in 1 nm Pd clusters confined in. MIL-101(Cr)

Supplementary Information. Hydrogen absorption in 1 nm Pd clusters confined in. MIL-101(Cr) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary Information Hydrogen absorption in 1 nm Pd clusters confined

More information

Electronic Supplementary Information. Direct synthesis of H 2 O 2 catalyzed by Pd nanoparticles encapsulated in multi-layered

Electronic Supplementary Information. Direct synthesis of H 2 O 2 catalyzed by Pd nanoparticles encapsulated in multi-layered Electronic Supplementary Information Direct synthesis of H 2 O 2 catalyzed by Pd nanoparticles encapsulated in multi-layered polyelectrolyte nanoreactors on a charged sphere Young-Min Chung,* a Yong-Tak

More information

[Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles

[Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles [Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles Jong Wook Hong, Young Wook Lee, Minjung Kim, Shin Wook Kang, and Sang Woo Han * Department of

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Fig. 1. The GC traces of the products of methanol hydrocarboxylation. (a) liquid sample (toluene as internal standard), (b) gaseous sample. Condition: 40 μmol Ru 3 (CO)

More information

Electronic Supplementary Information. Noninvasive Functionalization of Polymers of Intrinsic Microporosity for Enhanced CO 2 Capture

Electronic Supplementary Information. Noninvasive Functionalization of Polymers of Intrinsic Microporosity for Enhanced CO 2 Capture Electronic Supplementary Information Noninvasive Functionalization of Polymers of Intrinsic Microporosity for Enhanced CO 2 Capture Hasmukh A. Patel and Cafer T. Yavuz* Oxide and Organic Nanomaterials

More information

Shaped Ir-Ni bimetallic nanoparticles for minimizing Ir utilization in oxygen evolution reaction

Shaped Ir-Ni bimetallic nanoparticles for minimizing Ir utilization in oxygen evolution reaction Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2016 Supporting Information Shaped Ir-Ni bimetallic nanoparticles for minimizing Ir utilization

More information

Efficient Molybdenum (VI) Modified Zr-MOF Catalyst for

Efficient Molybdenum (VI) Modified Zr-MOF Catalyst for Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Efficient Molybdenum (VI) Modified Zr-MOF Catalyst for Epoxidation of Olefins Jia Tang, a Wenjun

More information

Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH) 2 and MgO

Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH) 2 and MgO Supporing Information Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH) 2 and MgO Chun-Jiang Jia, Yong Liu, Hans Bongard, Ferdi Schüth* Max-Planck-Institut für Kohlenforschung,

More information

Supporting Information for

Supporting Information for Supporting Information for Microporous Organic Network Hollow Spheres: Useful Templates for Nanoparticulate Co 3 O 4 Hollow Oxidation Catalysts Narae Kang, Ji Hoon Park, Mingshi Jin, Nojin Park, Sang Moon

More information

Recent applications of nanostructured materials - from solar cells and batteries to biological markers

Recent applications of nanostructured materials - from solar cells and batteries to biological markers Recent applications of nanostructured materials - from solar cells and batteries to biological markers Prof. Jan Augustyński o Origins of nanotechnology - limits of miniaturization. o Nanoparticle size

More information

Supporting Information. Concave Rhombic Dodecahedral Au Nanocatalyst with Multiple High-Index Facets for CO 2 Reduction

Supporting Information. Concave Rhombic Dodecahedral Au Nanocatalyst with Multiple High-Index Facets for CO 2 Reduction Supporting Information Concave Rhombic Dodecahedral Au Nanocatalyst with Multiple High-Index Facets for CO 2 Reduction Hye-Eun Lee 1, Ki Dong Yang 1, Sang Moon Yoon 1, Hyo-Yong Ahn 1, Yoon Young Lee 1,

More information

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*,

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, Supported Single Pt 1 /Au 1 Atoms for Methanol Steam Reforming Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, State Key

More information

Room Temperature Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage

Room Temperature Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage (Supporting Information) Room Temperature Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage Sanjay Kumar Singh, Xin-Bo Zhang, and Qiang Xu* National Institute of Advanced Industrial

More information

A General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self- Assembly Process in Inverse Opals

A General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self- Assembly Process in Inverse Opals A General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self- Assembly Process in Inverse Opals Zhenkun Sun,, Yong Liu, Bin Li, Jing Wei, Minghong Wang, Qin Yue, Yonghui Deng,

More information

Yali Liu, Pengfei Zhang, Junmin Liu, Tao Wang, Qisheng Huo, Li Yang, Lei. Sun,*, Zhen-An Qiao,*, and Sheng Dai *, ASSOCIATED CONTENT

Yali Liu, Pengfei Zhang, Junmin Liu, Tao Wang, Qisheng Huo, Li Yang, Lei. Sun,*, Zhen-An Qiao,*, and Sheng Dai *, ASSOCIATED CONTENT ASSOCIATED CONTENT Supporting Information Gold Cluster-CeO 2 Nanostructured Hybrid Architectures as Catalysts for Selective Oxidation of Inert Hydrocarbons Yali Liu, Pengfei Zhang, Junmin Liu, Tao Wang,

More information

Chemical functionalization of graphene sheets by solvothermal reduction of suspension of

Chemical functionalization of graphene sheets by solvothermal reduction of suspension of Supplementary material Chemical functionalization of graphene sheets by solvothermal reduction of suspension of graphene oxide in N-methyl-2-pyrrolidone Viet Hung Pham, Tran Viet Cuong, Seung Hyun Hur,

More information

Enhancing Stability of Platinum on Silica by Surface Modification - Application to CO Oxidation -

Enhancing Stability of Platinum on Silica by Surface Modification - Application to CO Oxidation - 2012 CLEERS Workshop Enhancing Stability of Platinum on Silica by Surface Modification - Application to CO Oxidation - Mi-Young Kim, Jae-Soon Choi, Todd J. Toops Emissions and Catalysis Research Group

More information

Electrostatic interactions to modulate the reflective assembly of nanoparticles at the oilwater

Electrostatic interactions to modulate the reflective assembly of nanoparticles at the oilwater Supplemental Information Electrostatic interactions to modulate the reflective assembly of nanoparticles at the oilwater interface Mingxiang Luo, Gloria K. Olivier, and Joelle Frechette* Department of

More information

Supporting Information

Supporting Information Supporting Information A Simple Descriptor to Rapidly Screen CO Oxidation Activity on Rare- Earth Metal Doped CeO 2 : from Experiment to First-Principles Kyeounghak Kim a,, Jeong Do Yoo b,, Siwon Lee b,

More information

Supplementary Information. ZIF-8 Immobilized Ni(0) Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane

Supplementary Information. ZIF-8 Immobilized Ni(0) Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane Supplementary Information ZIF-8 Immobilized Ni() Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane Pei-Zhou Li, a,b Kengo Aranishi, a and Qiang Xu* a,b

More information

Boosting the hydrogen evolution performance of ruthenium clusters. through synergistic coupling with cobalt phosphide

Boosting the hydrogen evolution performance of ruthenium clusters. through synergistic coupling with cobalt phosphide Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information for Boosting the hydrogen evolution

More information

Supporting Information

Supporting Information Supporting Information Sinmyung Yoon,, Kyunghwan Oh,, Fudong Liu,, Ji Hui Seo, Gabor A. Somorjai,, Jun Hee Lee,, * and Kwangjin An, * School of Energy and hemical Engineering, Ulsan National Institute

More information

Supplementary Figure 1. Schematic layout of set-up for operando NMR studies.

Supplementary Figure 1. Schematic layout of set-up for operando NMR studies. Supplementary Figure 1. Schematic layout of set-up for operando NMR studies. Supplementary Figure 2. Correlations between different ratios of D2O/H2O and 1 H chemical shifts of HDO. The spectra were acquired

More information

Supporting information. Stability Issues in Pd-based Catalysts: The Role of Surface Pt in Improving the Stability

Supporting information. Stability Issues in Pd-based Catalysts: The Role of Surface Pt in Improving the Stability Supporting information Stability Issues in Pd-based Catalysts: The Role of Surface Pt in Improving the Stability and Oxygen Reduction Reaction (ORR) Activity R. K. Singh, R. Rahul, M. Neergat 1 Department

More information

One-Pot Synthesis of Core-Shell-like Pt 3 Co Nanoparticle Electrocatalyst with Pt-enriched Surface for Oxygen Reduction Reaction in Fuel Cells

One-Pot Synthesis of Core-Shell-like Pt 3 Co Nanoparticle Electrocatalyst with Pt-enriched Surface for Oxygen Reduction Reaction in Fuel Cells Electronic Supplementary Information for One-Pot Synthesis of Core-Shell-like 3 Co Nanoparticle Electrocatalyst with -enriched Surface for Oxygen Reduction Reaction in Fuel Cells Ji-Hoon Jang b, Juyeong

More information

Department of Chemistry of The College of Staten Island and The Graduate Center, The City University of

Department of Chemistry of The College of Staten Island and The Graduate Center, The City University of Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Fe 3 O 4 /Carbon quantum dots hybrid nanoflowers for highly active and

More information

Preliminaries and Objectives. Experimental methods

Preliminaries and Objectives. Experimental methods Preliminaries and Objectives The industrial realisation of the CO 2 +CH 4 reaction could be a solution for both reducing the concentration of greenhouse gases and the utilisation of natural gases with

More information

Supplementary Figure S1 Reactor setup Calcined catalyst (0.40 g) and silicon carbide powder (0.4g) were mixed thoroughly and inserted into a 4 mm

Supplementary Figure S1 Reactor setup Calcined catalyst (0.40 g) and silicon carbide powder (0.4g) were mixed thoroughly and inserted into a 4 mm Supplementary Figure S1 Reactor setup Calcined catalyst (.4 g) and silicon carbide powder (.4g) were mixed thoroughly and inserted into a 4 mm diameter silica reactor (G). The powder mixture was sandwiched

More information

Rh/ZrP 2 O 7 as an Efficient Automotive Catalyst for NO x Reduction under Slightly Lean Conditions

Rh/ZrP 2 O 7 as an Efficient Automotive Catalyst for NO x Reduction under Slightly Lean Conditions Supporting Information Rh/ZrP 2 O 7 as an Efficient Automotive Catalyst for NO x Reduction under Slightly Lean Conditions Yuki Nagao, * Yunosuke Nakahara, Takahiro Sato, Hironori Iwakura, Shoya Takeshita,

More information

Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light

Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light Supplementary Information Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light Sang Jun Kim, a Yeob Lee, a Dong Ki Lee, a Jung Woo Lee a and Jeung Ku Kang* a,b

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supporting Information Synthesis and Application of Hexagonal Perovskite BaNiO 3 with Quadrivalent

More information

Supporting Information

Supporting Information Supporting Information Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation** Jian Bao, Xiaodong Zhang,* Bo Fan, Jiajia Zhang, Min Zhou, Wenlong

More information

Supplementary information

Supplementary information Supplementary information Supplementary Figures Supplementary Figure 1. CO 2 light off curve obtained from the 5 wt% Pt/Al 2 O 3 catalyst obtained through heating the catalyst under a 50 ml.min -1 flow

More information

Table S1. Electrocatalyst plating conditions Metal Anode (foil) Plating Potential (V versus Ag/AgCl) Rh Pt 1 M HCl/HPLC.

Table S1. Electrocatalyst plating conditions Metal Anode (foil) Plating Potential (V versus Ag/AgCl) Rh Pt 1 M HCl/HPLC. 1 Materials and Methods Electrode Preparation All chemicals and supplies were high purity (> 999%) and supplied from Alfa Aesar or Fisher Scientific For anodic catalyst selection, 5 cm 2 titanium foil

More information

AP Chem Final Practice Questions (Set #1)

AP Chem Final Practice Questions (Set #1) AP Chem Final Practice Questions (Set #1) 1. Which gas is least soluble in water? (A) H 2 (B) CO 2 (C) NH 3 (D) SO 2 2. Identify every process that is a chemical change. 1. cooling 2. evaporating 3. rusting

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPRTING INFRMATIN Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface xygen Vacancies of Titanium Dioxide Hiroaki Hirakawa, Masaki Hashimoto, Yasuhiro Shiraishi,*,, and Takayuki Hirai

More information

Shaping Single-crystalline Trimetallic Pt Pd Rh Nanocrystals toward. High-efficiency C C Splitting of Ethanol in Conversion to CO 2

Shaping Single-crystalline Trimetallic Pt Pd Rh Nanocrystals toward. High-efficiency C C Splitting of Ethanol in Conversion to CO 2 Supporting Information Shaping Single-crystalline Trimetallic Pt Pd Rh Nanocrystals toward High-efficiency C C Splitting of Ethanol in Conversion to CO 2 Wei Zhu,, Jun Ke,, Si-Bo Wang, Jie Ren, Hong-Hui

More information

Depressing the hydrogenation and decomposition. nanoparticles on oxygen functionalized. carbon nanofibers. Supporting Information

Depressing the hydrogenation and decomposition. nanoparticles on oxygen functionalized. carbon nanofibers. Supporting Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2015 Depressing the hydrogenation and decomposition reaction in H 2 O 2 synthesis

More information

a b c Supplementary Figure S1

a b c Supplementary Figure S1 a b c Supplementary Figure S1 AFM measurements of MoS 2 nanosheets prepared from the electrochemical Liintercalation and exfoliation. (a) AFM measurement of a typical MoS 2 nanosheet, deposited on Si/SiO

More information

Supporting Information

Supporting Information Supporting Information High Performance Electrocatalyst: Pt-Cu Hollow Nanocrystals Xiaofei Yu, a Dingsheng, a Qing Peng a and Yadong Li* a a Department of Chemistry, Tsinghua University, Beijing, 100084

More information

The GO was synthesized by oxidation of purified natural small graphite and graphite

The GO was synthesized by oxidation of purified natural small graphite and graphite Jing-He Yang, a,b Geng Sun, a Yongjun Gao, a Huabo Zhao, a Pei Tang, a Juan Tan, b Lu b and Ding Ma*,a An-Hui a Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering,

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2015 Supplementary Information Insights into the Synergistic Role of Metal-Lattice

More information

Supplementary Figure 1. Calculated Ca-oxalate cluster concentration. Red line show the

Supplementary Figure 1. Calculated Ca-oxalate cluster concentration. Red line show the Supplementary Figure 1. Calculated Ca-oxalate cluster concentration. Red line show the calcium oxalate cluster concentration calculated from ISE measurements and the blue line that calculated using conductivity

More information

Supplementary Information

Supplementary Information Supplementary Information Metal tips on pyramid-shaped PbSe/CdSe/CdS heterostructure nanocrystal photocatalysts: study of ripening and core/shell formation Whi Dong Kim, a Sooho Lee, a Chaewon Pak, a Ju

More information

Microporous carbon nanosheets with redox-active. heteroatoms for pseudocapacitive charge storage

Microporous carbon nanosheets with redox-active. heteroatoms for pseudocapacitive charge storage Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Microporous carbon nanosheets with redox-active heteroatoms for pseudocapacitive

More information

Supporting Information

Supporting Information Supporting Information Protonated Titanate Nanotubes as Solid Acid Catalyst Masaaki Kitano, Kiyotaka Nakajima, Junko N. Kondo, Shigenobu Hayashi, and Michikazu Hara *,, П Materials and Structures Laboratory,

More information

Supporting Information. Photocatalytic C-H activation of Hydrocarbons over 3 N 4

Supporting Information. Photocatalytic C-H activation of Hydrocarbons over 3 N 4 Supporting Information Photocatalytic C-H activation of Hydrocarbons over VO@g-C 3 N 4 Sanny Verma a, R. B. Nasir Baig a, Mallikarjuna N. Nadagouda b and Rajender S. Varma a* a Sustainable Technology Division,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Adding refractory 5d transition metal W into PtCo

More information

A doping of phosphorus and/or sulfur into nitrogen-doped carbon for efficient oxygen reduction reaction in acid media

A doping of phosphorus and/or sulfur into nitrogen-doped carbon for efficient oxygen reduction reaction in acid media Supporting Information A doping of phosphorus and/or sulfur into nitrogen-doped carbon for efficient oxygen reduction reaction in acid media Chang Hyuck Choi, a Min Wook Chung, b Sung Hyeon Park, a and

More information

Hydrophobic fluorinated TiO2 ZrO2 as catalyst in epoxidation of 1-octene with aqueous hydrogen peroxide

Hydrophobic fluorinated TiO2 ZrO2 as catalyst in epoxidation of 1-octene with aqueous hydrogen peroxide University Technology Malaysia From the SelectedWorks of Hadi Nur August, 2006 Hydrophobic fluorinated TiO2 ZrO2 as catalyst in epoxidation of 1-octene with aqueous hydrogen peroxide Hadi Nur, Universiti

More information

Functional Group Adsorption on Calcite: I. Oxygen Containing and Nonpolar Organic Molecules

Functional Group Adsorption on Calcite: I. Oxygen Containing and Nonpolar Organic Molecules SUPPORTING INFORMATION Functional Group Adsorption on Calcite: I. Oxygen Containing and Nonpolar Organic Molecules E. Ataman*, M. P. Andersson, M. Ceccato, N. Bovet, S. L. S. Stipp Nano-Science Center,

More information

Supporting Information

Supporting Information Supporting Information Synchrotron-Based In Situ Characterization of Carbon-Supported Platinum and Platinum Monolayer Electrocatalysts Kotaro Sasaki 1*, Nebojsa Marinkovic 2, Hugh S. Isaacs 1, Radoslav

More information

Supporting Information

Supporting Information Supporting Information Robust Co-Catalytic Performance of Nanodiamonds Loaded on WO 3 for the Decomposition of Volatile Organic Compounds under Visible Light Hyoung il Kim, a Hee-na Kim, a Seunghyun Weon,

More information

Supporting Information

Supporting Information Supporting Information Efficient Temperature Sensing Platform Based on Fluorescent Block Copolymer Functionalized Graphene Oxide Hyunseung Yang, Kwanyeol Paek, and Bumjoon J. Kim * : These authors contributed

More information

Supporting Information for. A Fluorescence Ratiometric Sensor for Trace Vapor Detection of. Hydrogen Peroxide

Supporting Information for. A Fluorescence Ratiometric Sensor for Trace Vapor Detection of. Hydrogen Peroxide Supporting Information for A Fluorescence Ratiometric Sensor for Trace Vapor Detection of Hydrogen Peroxide Miao Xu 1,, Ji-Min Han 1,, Chen Wang 1, Xiaomei Yang 1, Jian Pei 2 and Ling Zang 1, * 1 Department

More information

Chem 1310 I Answers for Assignment VI Due September 27, 2004

Chem 1310 I Answers for Assignment VI Due September 27, 2004 Chem 1310 I Answers for Assignment VI Due September 27, 2004 p. 233, #33 Increasing the volume by a factor of 3.25 lowers the pressure by a factor of 3.25. Doubling the absolute temperature doubles the

More information

Supplementary Figure 1 Morpholigical properties of TiO 2-x SCs. The statistical particle size distribution (a) of the defective {001}-TiO 2-x SCs and

Supplementary Figure 1 Morpholigical properties of TiO 2-x SCs. The statistical particle size distribution (a) of the defective {001}-TiO 2-x SCs and Supplementary Figure 1 Morpholigical properties of TiO 2-x s. The statistical particle size distribution (a) of the defective {1}-TiO 2-x s and their typical TEM images (b, c). Quantity Adsorbed (cm 3

More information

Supracolloidal Polymer Chains of Diblock Copolymer Micelles

Supracolloidal Polymer Chains of Diblock Copolymer Micelles Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2014 Supporting Information Supracolloidal Polymer Chains of Diblock Copolymer Micelles

More information

Supporting Information

Supporting Information Supporting Information MgFeCe ternary layered double hydroxide as highly efficient and recyclable heterogeneous base catalyst for synthesis of dimethyl carbonate by transesterification Nayana T. Nivangune

More information

Acidic Water Monolayer on Ruthenium(0001)

Acidic Water Monolayer on Ruthenium(0001) Acidic Water Monolayer on Ruthenium(0001) Youngsoon Kim, Eui-seong Moon, Sunghwan Shin, and Heon Kang Department of Chemistry, Seoul National University, 1 Gwanak-ro, Seoul 151-747, Republic of Korea.

More information

Unit 8 Chemical Reactions- Funsheets

Unit 8 Chemical Reactions- Funsheets Part A- Balancing Equations and Types of Reactions Balance AND identify the following reactions: Unit 8 Chemical Reactions- Funsheets 1) Mg + Zn(NO 3) 2 Zn Mg(NO 3) 2 2) Ba + AgNO 3 Ag + Ba(NO 3) 2 3)

More information

Zinc-Phosphorus Complex Working as Atomic Valve for Colloidal Growth of Monodisperse Indium Phosphide Quantum Dots

Zinc-Phosphorus Complex Working as Atomic Valve for Colloidal Growth of Monodisperse Indium Phosphide Quantum Dots Supporting Information Zinc-Phosphorus Complex Working as Atomic Valve for Colloidal Growth of Monodisperse Indium Phosphide Quantum Dots Sungjun Koh, Taedaehyeong Eom, Whi Dong Kim, Kangha Lee, Dongkyu

More information

A green and efficient oxidation of alcohols by supported gold. conditions

A green and efficient oxidation of alcohols by supported gold. conditions A green and efficient oxidation of alcohols by supported gold catalysts using aqueous H 2 O 2 under organic solvent-free conditions Ji Ni, Wen-Jian Yu, Lin He, Hao sun, Yong Cao,* He-Yong He, and Kang-Nian

More information

Supplementary Figure 1 HAADF-STEM images of 0.08%Pt/FeO x -R200 single-atom catalyst with different magnifications. Scale bar: a, 20 nm; b, 10 nm; c,

Supplementary Figure 1 HAADF-STEM images of 0.08%Pt/FeO x -R200 single-atom catalyst with different magnifications. Scale bar: a, 20 nm; b, 10 nm; c, Supplementary Figure 1 HAADF-STEM images of 0.08%Pt/FeO x -R200 single-atom catalyst with different magnifications. Scale bar: a, 20 nm; b, 10 nm; c, 2 nm; d, 2 nm. The low magnification images demonstrate

More information

Please do not adjust margins. New Approach for the Reduction of Graphene Oxide with Triphenylphosphine Dihalide

Please do not adjust margins. New Approach for the Reduction of Graphene Oxide with Triphenylphosphine Dihalide Electronic Supplementary Material (ESI) for. This journal is The Royal Society of Chemistry Please do 2016 not adjust margins Supporting Information: New Approach for the Reduction of Graphene Oxide with

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Nickel Cobalt Phosphides Quasi-Hollow Nanocubes as an Efficient

More information

Chemical formula - tells you how many atoms of each element are in a compound example: CO 2 (carbon dioxide) has one carbon atom and two oxygen atoms

Chemical formula - tells you how many atoms of each element are in a compound example: CO 2 (carbon dioxide) has one carbon atom and two oxygen atoms Chemical Reactions Chemical formula - tells you how many atoms of each element are in a compound example: CO 2 (carbon dioxide) has one carbon atom and two oxygen atoms 2 points Chemical Equation - a short,

More information

Fabrication of graphene quantum dot-decorated graphene sheets via. chemical surface modification

Fabrication of graphene quantum dot-decorated graphene sheets via. chemical surface modification Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary Information for: Fabrication of graphene quantum dot-decorated graphene sheets via

More information

Nanosheet-Constructed Porous BiOCl with Dominant {001} Facets for Superior Photosensitized Degradation

Nanosheet-Constructed Porous BiOCl with Dominant {001} Facets for Superior Photosensitized Degradation Electronic Supplementary Information Nanosheet-Constructed Porous BiOCl with Dominant {001} Facets for Superior Photosensitized Degradation Dong-Hong Wang, ab Gui-Qi Gao, b Yue-Wei Zhang, a Li-Sha Zhou,

More information

Burning a Hydrocarbon II

Burning a Hydrocarbon II Burning a Hydrocarbon II Name Lab Section Problem Statement: How are the masses of products limited by the amounts of reactants? I. Data Collection: A. Go to http://cheminfo.chem.ou.edu/~mra/home.html

More information

Supporting Information for: Polyaniline-Modified Pt Catalyst for Improved Electrochemical Reduction of CO 2

Supporting Information for: Polyaniline-Modified Pt Catalyst for Improved Electrochemical Reduction of CO 2 Supporting Information for: Polyaniline-Modified Pt Catalyst for Improved Electrochemical Reduction of CO 2 David N. Abram, a Kendra P. Kuhl b, Etosha R. Cave c, Thomas F. Jaramillo a adepartment of Chemical

More information

Supporting Information

Supporting Information Supporting Information Enhanced Photocatalytic Activity of Titanium Dioxide: Modification with Graphene Oxide and Reduced Graphene Oxide Xuandong Li,* Meirong Kang, Xijiang Han, Jingyu Wang, and Ping Xu

More information

Having a High Mg/Al Molar Ratio

Having a High Mg/Al Molar Ratio SUPPORTING INFORMATION High-Temperature CO 2 Sorption on Hydrotalcite Having a High Mg/Al Molar Ratio Suji Kim, Sang Goo Jeon, and Ki Bong Lee*, Department of Chemical and Biological Engineering, Korea

More information

Photon Energy Threshold in Direct Photocatalysis with Metal Nanoparticles Key Evidence from Action Spectrum of the Reaction

Photon Energy Threshold in Direct Photocatalysis with Metal Nanoparticles Key Evidence from Action Spectrum of the Reaction Supporting Information Photon Energy Threshold in Direct Photocatalysis with Metal Nanoparticles Key Evidence from Action Spectrum of the Reaction Sarina Sarina, a Esa Jaatinen, a Qi Xiao, a,b Yi Ming

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2016 Supporting Information Single-crystalline Pd square nanoplates enclosed by {100}

More information

Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel

Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel Shan Gao 1, Yue Lin 1, Xingchen Jiao 1, Yongfu Sun 1,2, Qiquan Luo 1, Wenhua Zhang 1, Dianqi Li 1, Jinlong Yang

More information

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) for Energy & Environmental Science.

More information

Effect of Electric Field on Condensed-Phase Molecular Systems. II. Stark Effect on the Hydroxyl Stretch Vibration of Ice

Effect of Electric Field on Condensed-Phase Molecular Systems. II. Stark Effect on the Hydroxyl Stretch Vibration of Ice Effect of Electric Field on Condensed-Phase Molecular Systems. II. Stark Effect on the Hydroxyl Stretch Vibration of Ice Sunghwan Shin, Hani Kang, Daeheum Cho, Jin Yong Lee, *, and Heon Kang *, Department

More information

Oxygen Reduction Reaction

Oxygen Reduction Reaction Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Oxygen Reduction Reaction Oxygen is the most common oxidant for most fuel cell cathodes simply

More information

A New Redox Strategy for Low-Temperature Formation of Strong Basicity on Mesoporous Silica

A New Redox Strategy for Low-Temperature Formation of Strong Basicity on Mesoporous Silica Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information A New Redox Strategy for Low-Temperature Formation

More information

Supporting Information. Cyanamide Route to Calcium-Manganese Oxide Foams for Water Oxidation

Supporting Information. Cyanamide Route to Calcium-Manganese Oxide Foams for Water Oxidation Supporting Information Cyanamide Route to Calcium-Manganese Oxide Foams for Water Oxidation Elham Baktash a, Ivelina Zaharieva* b, Marc Schröder c, Caren Goebel a, Holger Dau* b and Arne Thomas* a a Technische

More information

Final Exam Review-Honors Name Period

Final Exam Review-Honors Name Period Final Exam Review-Honors Name Period This is not a fully comprehensive review packet. This packet is especially lacking practice of explanation type questions!!! You should study all previous review sheets

More information

A Highly efficient Iron doped BaTiO 3 nanocatalyst for the catalytic reduction of nitrobenzene to azoxybenzene

A Highly efficient Iron doped BaTiO 3 nanocatalyst for the catalytic reduction of nitrobenzene to azoxybenzene Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 A Highly efficient Iron doped BaTiO 3 nanocatalyst for the catalytic reduction of nitrobenzene

More information

Characterization of partially reduced graphene oxide as room

Characterization of partially reduced graphene oxide as room Supporting Information Characterization of partially reduced graphene oxide as room temperature sensor for H 2 Le-Sheng Zhang a, Wei D. Wang b, Xian-Qing Liang c, Wang-Sheng Chu d, Wei-Guo Song a *, Wei

More information

Supporting Information

Supporting Information Supporting Information Remarkable performance of Ir 1 /FeO x single-atom catalyst in water gas shift reaction Jian Lin, Aiqin Wang, Botao Qiao, Xiaoyan Liu, Xiaofeng Yang, Xiaodong Wang, Jinxia Liang,

More information

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Strategic use of CuAlO 2 as a sustained release catalyst for

More information

Carbon Dioxide Conversion to Methanol over Size-selected Cu 4 Clusters at Low Pressures

Carbon Dioxide Conversion to Methanol over Size-selected Cu 4 Clusters at Low Pressures Carbon Dioxide Conversion to Methanol over Size-selected Cu 4 Clusters at Low Pressures Cong Liu a,, Bing Yang a,, Eric Tyo a, Soenke Seifert b, Janae DeBartolo b, Bernd von Issendorff c, Peter Zapol a,

More information

Structure-Property Relationships of Porous Materials for Carbon Dioxide Separation and Capture

Structure-Property Relationships of Porous Materials for Carbon Dioxide Separation and Capture Supporting Information Structure-Property Relationships of Porous Materials for Carbon Dioxide Separation and Capture Christopher E. Wilmer, 1 Omar K. Farha, 2 Youn-Sang Bae, 3,a Joseph T. Hupp, 2 and

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/6/eaap9360/dc1 Supplementary Materials for Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode

More information

Supplementary information

Supplementary information Supplementary information Identification of Active Zr-WO x Clusters on a ZrO 2 Support for Solid Acid Catalysts Wu Zhou 1, Elizabeth I. Ross-Medgaarden 2, William V. Knowles 3, Michael S. Wong 3, Israel

More information

Supporting Information for. Size-Dependent Oxidation State and CO Oxidation Activity of Tin

Supporting Information for. Size-Dependent Oxidation State and CO Oxidation Activity of Tin Supporting Information for Size-Dependent Oxidation State and CO Oxidation Activity of Tin Oxide Clusters Yusuke Inomata, Ken Albrecht,, Kimihisa Yamamoto *,, Laboratory for Chemistry and Life Science,

More information

Hydrogen Titanium Oxide Hydrate: Excellent Performance. on Degradation of Methyl Blue in Aqueous Solutions

Hydrogen Titanium Oxide Hydrate: Excellent Performance. on Degradation of Methyl Blue in Aqueous Solutions Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supplementary information Hydrogen Titanium Oxide Hydrate: Excellent Performance on Degradation

More information