A Sequential and Hierarchical Approach for the Feasibility Analysis and the Preliminary Synthesis and Design of Reactive Distillation Processes

Size: px
Start display at page:

Download "A Sequential and Hierarchical Approach for the Feasibility Analysis and the Preliminary Synthesis and Design of Reactive Distillation Processes"

Transcription

1 A Sequential and Hierarchical Approach for the Feasibility Analysis and the Preliminary Synthesis and Design of Reactive Distillation Processes Raphaële Thery, Xuân-Mi Meyer 1, Xavier Joulia Laboratoire de Génie Chimique, UMR-CNRS 5503, INPT-ENSIACET 5 rue Paulin Talabot, Toulouse cedex 01, France Abstract A procedure that combines feasibility analysis, synthesis and design of reactive distillation columns is introduced. The main interest of this methodology lies on a progressive introduction of the process complexity. From minimal information concerning the physicochemical properties of the system, three steps lead to the design of the unit and the specification of its operating conditions. This methodology which provides a reliable initialization point for the optimization of the process has been applied with success to different synthesis. The production of Methyl-Tert-Butyl-Ether (MTBE) is presented here as an example Keywords : reactive distillation, process synthesis, feasibility analysis, process design 1. Introduction Despite the many advantages of Reactive Distillation (RD) processes (Stankiewicz, 2003) the industrial community still hesitates on firmly adopting that multifunctional process, mainly by lack of systematical and universal design tools. In that context, a state of the art on the thermodynamic fundamentals of reactive systems and methods and tools available for the analysis and the design of reactive distillation processes has been drawn up (Thery, 2002). This analysis shows that during the past decades, many studies have been published to provide systematic procedures for the feasibility analysis and the design of RD processes but only few of them propose a systematic procedure that combines feasibility analysis, synthesis and design. The methodology presented in this article contributes to fill this lack. Its application is currently limited to reactive systems where degree of freedom is less than 3. Most of the methodology exploits and enriches approaches found in the literature. Each step is described and our contribution is underlined. The procedure is then illustrated on the production of MTBE. 2. Detailed presentation of the methodology Prerequisite data of the methodology are: a thermodynamic model to describe the phase equilibria, the equilibrium constant of the chemical reaction and specifications concerning the purity of the products, the recovery rate or the yield of the reaction. Figure 1 presents a detailed flow chart of the approach adopted to carry out each step of the procedure and highlights their complementarities. 1 Author to whom correspondence should be addressed : XuanMi.Meyer@ensiacet.fr

2 OF REACTIVE COMPUTATION RESIDU AND CURVE E CURVE ANALYSIS MAPS MAPS OF REACTIVE RESIDU CURVE MAPS Existence of reactive azeotropes? Existence of of reactiveazeotropes? distillation boundaries? Existence of reactive distillation boundaries? Requirement of of a second a second feed feed plate plate?? Requirement of a of pure a stripping pure stripping or rectifying or rectifying section section?? YES NO Yield of the reaction Recovery rates Distillate and bottom molar flowrates Minimum numberofstage Favorable feed composition Bottom and distillate composition Location and size of the reactive zone MODIFIED MODIFIED Yield of the reaction Recoveryrates Distillateand Recovery rates bottom molarflowrates Distillate and bottom molar flowrates Favorable feed composition Bottom and distillate composition SYNTHESIS : BOUNDARY VALUE DESIGN METHOD Confirmation (or rejection) of the feasibility analysis Confirmation ( Minimum reflux Minimum ratio reflux ratio Couple Couple reflux reflux ratio ratio / Number / of theoretical stages stages Location Location of the feed plates Estimation of compositions and temperatures profiles Estimation of composition and temperature profiles DESIGN : SIMULATION WITH A M.E.S.H. MODEL operating parameters taking into account the energy balance Figure 1: Methodology for the design of Reactive Distillation processes 2.1 Feasibility Analysis 2.1.a Construction and analysis of reactive residue curve maps ( rrcm ) To initiate the feasibility analysis, reactive residue curve maps (Ung and Doherty, 1995a,b) are generated and analysed. A reactive residue curve is defined by the locus of the liquid compositions remaining from a simple reactive distillation process and the reactive residue curve map is obtained through the simulation of the reactive distillation process for various initial liquid compositions. A software was developed to generate complete reactive residue curves maps for ternary and quaternary mixtures involving one equilibrium reaction and to display the resulting distillation boundaries. Displaying the singular points of the system (pure component, reactive azeotropes, non reactive azeotropes ) and the distillation boundaries, the reactive residue curve map (rrcm) enables to define the most favourable feed composition and the column structure necessary to obtain the desired product (requirement of a pure separation section or of two feed plates) according to the rules enounced by Bessling et al. (1997) 2.1.b Static Analysis (SA) The second step provides a set of attainable compositions which satisfy the purity and conversion recovery ratio specifications. If non reactive sections are required, the rrcm must be completed by the static analysis (SA) proposed by Giessler et al. (2001). The assumption formulated in this step (infinite liquid and vapor flowrates, infinite number of trays) permits to consider the RD process as the combination of two successive operations. The first one involves only

3 the reaction, but thanks to the coupling between separation and reaction, the reaction yield may exceed the equilibrium. The second operation concerns the separation : because of the infinite flowrates, the composition profile in the column can be represented by the distillation lines. For various reactant ratios, the SA consists in identifying a feasible operation which leads to the best performances characterized by the yield and the recovery rate of the desired product. A separation is assumed to be feasible if : - regarding the separation, the global mass balance is satisfied on the column and if the distillate and the bottom compositions belong to the same distillation line - regarding the reaction, a part of the distillation line lies in the inside the forward reaction region (manifold of compositions favourable to the forward reaction) If pure separation sections are not required, a modified static analysis (msa) has been developed. It consists in the resolution of a set of mass balance and specification equations. Specifications concerning the yield of the reaction, the purity or the recovery ratio of products are inherited from the rrcm analysis. 2.2 Synthesis step: Boundary value design method (BVD) As it lies on many assumptions (total reflux ratio in the case of the analysis of the residue curve maps, infinite liquid and vapor flowrates in the case of the static analysis), the feasibility analysis must be completed by a more rigorous approach. The synthesis step is based upon the boundary value design method, introduced by Barbosa and Doherty (1987b) for entirely reactive columns and extended to hybrid processes by Espinosa et al. (1996). The interesting point of our methodology is that the specifications required for the synthesis (distillate, bottom and feed compositions, structure of the column) are inherited from the previous feasibility analysis. The synthesis provides more precise information concerning the process configuration: minimum reflux ratio, and, for a given reflux ratio, location of the reactive zone, number of theoretical stages, position of the feed plates. In the academic tool developped, a broad range of configurations can be considered : one or two pure separation sections, one or two feed plates, finite or infinite reflux ratio. The concept of minimum reflux defined by Barbosa and Doherty (1987a) and extended to hybrid columns by Thery (2002) has been applied. Within this framework, the Constant Molar Overflow (CMO) assumptions are formulated: all the thermal effect are neglected and composition profiles are deduced from the mass balance equations. The rectifying and stripping composition profiles are calculated considering a RD column, and calculating the mass balance between the top of the column and a rectifying stage and between the bottom of the column and a stripping stage respectively. The obtained profiles necessarily depend on the reflux ratio: the minimum reflux ratio is obtained as soon as we can observe a continuous path from the distillate to the bottom product. A feasible steady-state is found when the rectifying and stripping profiles intersect. As the synthesis step computes the profile stage by stage, the number of stages required in each section of the column can be estimated Design Step: simulation So far, the column configuration has been drawn up from the mass balances only. Thermal phenomena (heat of reaction, thermic loss, heat of mixture ) have been ignored. As their effect can not be excluded from the study, a third step is necessary.

4 The design step involves a simulation tool. Knowing the configuration of the required column which is not modified here, the design step consists in adjusting the operating parameters taking into account the overall complexity of the process. To perform this step, the PROSIM software commercialised by PROSIM S.A is exploited. Given the pressure and the column configuration, the degree of freedom of the MESH model is equal to 2: to saturate this degree of freedom, the purity and the partial flowrate of the desired component (at the top or at the bottom) are fixed. Then, the required reflux ratio and heat duties are deduced from the model resolution. To help the calculations, compositions and temperature profiles estimated during the synthesis step are used as initialization points. At the end of this step, a column structure and the associated operating parameters necessary to achieve the initial specifications are available. 3. Application The procedure is illustrated on the production of MTBE under 11 atm in the presence the (BU) as an inert compound: (MeOH) + (IB) MTBE 3.1. Feasibility analysis Figure 2 presents the rrcm of the MTBE system and the resulting distillation boundaries. This rrcm is represented using the reactive compositions (Ung and Doherty, 1995). Each point of the diagram characterizes an equilibrium mixture: for that reason, no vertex corresponds to pure MTBE because MTBE can not exist alone in an equilibrium mixture. Azeotrope methanol/ Azéotrop N-butane (84.5 C) region D1 N-butane (84.5 C) Region region F1 region F2 D2 (141 C) (75 C) (141 C) B1 B2 (75 C) Figure 2: rrcm and Distillation regions for the MTBE production system with n- butane as an inert Under 11 atm, the system presents three physical azeotropes but only the methanol/nbutane azeotrope, which involves two components which do not react, survives to the reaction. A quaternary reactive azeotrope appears next to the vertex. Another singular point can be noticed on the MeOH/IB edge. This point can not be considered as a reactive azeotrope because the residue curves do not stop on it. However, as the residue curves are heavily curved towards it, an infinite number of stages would be required to pass this point; from a practical point of view, it generates a distillation boundary which strongly influences the feasibility of the RD process. For that reason, it was called pseudo reactive azeotrope by Ung and Doherty (1995). Four distillation regions can be pointed out. If the feed has an excess of methanol (F 1 ), the lightest product, i.e. the azeotrope méthanol/ (D 1 ) can be recovered at the top and a

5 reactive mixture consisting of isobutene, methanol and MTBE at the bottom (B 1 ). If the feed has an excess of isobutene (F 2 ), the reactive pseudo-azeotrope can be recovered at the bottom (B 2 ) and a mixture made up of inert and isobutene at the distillate (D 2 ). In all cases, the recovering of pure MTBE in an entirely reactive process is impossible because it does not appear as a vertex of the reactive composition space. According to the Bessling et al., 1997, a pure separation section is then required to obtain pure MTBE. Consequently, according to the flow chart in figure 1, the Static Analysis is exploited. Table 1 presents the results obtained for the production of MTBE with a feed containing 20% of. Regarding these values, the equimolar feed appears to offer the most favourable conditions to obtain pure MTBE in reasonable quantities. Note that a too important excess of methanol would lead to the preferential recovery of pure methanol at the bottom because the azeotrope methanol/mtbe prevents MTBE to be recovered. Table 1: SA results (production of MTBE : 20% of nbu) Feed molar composition Distillate molar composition Bottom molar composition Reaction * Yield (%) Bottom Bottom MTBE MTBE Recovery ratio Recovery ratio (%) (%) IB MEOH IB MEOH MTBE nbu IB MEOH MTBE nbu 0,10 0,70 0,02 0,30 0,21 0,47 0,00 0,99 0,01 0,00 90,9 3,2 0,20 0,60 0,03 0,37 0,28 0,32 0,00 0,99 0,01 0,00 90,2 0,6 0,30 0,50 0,03 0,36 0,28 0,33 0,00 0,00 0,99 0,00 93,5 39,1 0,35 0,45 0,02 0,28 0,19 0,51 0,00 0,00 0,99 0,00 97,8 78,9 0,38 0,42 0,004 0,16 0,04 0,80 0,00 0,00 1,00 0,00 99,7 97,2 0,40 0,40 0,01 0,01 0,01 0,97 0,00 0,00 1,00 0,00 99,4 99,7 0,45 0,35 0,34 0,02 0,00 0,65 0,00 0,00 1,00 0,00 99,0 99,9 0,50 0,30 0,50 0,01 0,00 0,49 0,00 0,00 0,99 0,01 98,6 99,9 0,60 0,20 0,66 0,01 0,00 0,33 0,00 0,00 0,99 0,01 96,8 99,9 0,70 0,10 0,75 0,00 0,00 0,25 0,00 0,00 0,99 0,01 99,1 99,9 * The reaction yield is calculated according to the default reactant 3.2 Synthesis step Figure 3 present the influence of the reflux ratio on the liquid composition profiles. Here, again, these profiles are represented in the reactive composition space. r < r min r = 2 r > r min r = 3 Reactive Reactive rectifying rectifying profile profile Pure stripping profile Reactive stripping Reactive stripping stage Pure stripping profile (a) (b) r =r min r = 2,65 r = 2,65 zoom Reactive rectifying profile Reactive stripping Pure stripping profile (c) (d) Figure 3: Synthesis Step - influence of the reflux ratio on the composition profiles

6 In that case, the minimum reflux ratio is equal to 2,65. Then, for a reflux ratio equal to 3, the synthesis leads to the following configuration: 18 pure stripping stages, 8 reactive stripping stages and 17 reactive rectifying stages Design Step Applying these concepts to the MTBE production, we obtain a required reflux ratio equal to 7,5 (against 3 predicted by the synthesis step). As shown on figure 4a, the rise in the vapor flowrates on the reactive plates due to the heat of reaction compensates the positive effect of the reflux. Figure 4b shows that to obtain the same performances as those predicted during the synthesis step, it is so necessary to increase the reflux ratio. vapor flowrate(mol/s) 2 1,8 1,6 1,4 1,2 1 0,8 0,6 0,4 0, stage (from top to bottom) (a) Qr=0 Qr=-62,7 Kj/mol kj/mol Figure 4: Design step : (a) influence of the heat of reaction on the vapor flowrates (b) comparison of the profiles obtained through the design and the synthesis steps 4. Conclusion and outlooks A sequential methodology for the design of RD processes has been introduced: it has also been successfully applied to two feed plate column (Thery, 2002). This methodology leads to a reliable initialization point for the optimization of the operating conditions and the process design. Although it does not permit to design process where distillation boundaries can be crossed in a single column process, this methodology can be used to design a reactive column included in wider processes. For the moment, the procedure mainly relies on graphical analysis which restricts its application to a few number of systems: equilibrium systems containing no more than four components. To extend this procedure to multicomponent, multi reactions systems, a substitution of the graphical analysis by mathematic feasibility criteria is investigated. Then, concerning the description of chemical reactions, the extension of the procedure to kinetically controlled reactions is also planed. References Barbosa D, Doherty M.F, 1987a, Chem. Eng. Sci., Vol 43, No 7, pp Barbosa D, Doherty M.F.,1987b, Chem. Eng. Sci., Vol 43, No 9, pp Bessling B., Schembecker G., Simmrock K.H, 1997, Ind. Eng. Chem. Res., 36, Espinosa J., Aguirre P., Pérez G., 1996, Ind. Eng. Chem. Res, Vol.35, pp Giessler S., Danilov R.Y., Pisarenko R.Y., Serafimov L.A., Hasebe S., Hashimoto I., 2001, Comput. Chem. Eng., vol. 25, pp Stankiewicz A, 2003, Chem. Eng. Prog., vol. 42, pp Thery R., 2002, phd Thesis, INPT Toulouse Ung S., Doherty M.F, 1995, Ind. Eng. Chem. Res, 34, pp molar liquid fraction 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, stage (from top to bottom) (b) isobutene methanol synthesis MTBE MTBE methanol isobutene design

PRELIMINARY DESIGN OF REACTIVE DISTILLATION COLUMNS

PRELIMINARY DESIGN OF REACTIVE DISTILLATION COLUMNS PRELIMINARY DESIGN OF REACTIVE DISTILLATION COLUMNS R. THERY, X. M. MEYER, X. JOULIA and M. MEYER Process System Engineering Department, Laboratoire de Génie Chimique INPT-ENSIACET, Toulouse, France A

More information

THERMODYNAMIC INSIGHT ON EXTRACTIVE DISTILLATION WITH ENTRAINER FORMING NEW AZEOTROPES

THERMODYNAMIC INSIGHT ON EXTRACTIVE DISTILLATION WITH ENTRAINER FORMING NEW AZEOTROPES Distillation Absorption 2010 A.. de Haan, H. Kooijman and A. Górak (Editors) All rights reserved by authors as per DA2010 copyright notice THERMODYNAMIC INSIGHT ON EXTRTIVE DISTILLATION WITH ENTRAINER

More information

VAPOUR REACTIVE DISTILLATION PROCESS FOR HYDROGEN

VAPOUR REACTIVE DISTILLATION PROCESS FOR HYDROGEN VAPOUR REACTIVE DISTILLATION PROCESS FOR HYDROGEN PRODUCTION BY HI DECOMPOSITION FROM HI- -H 2 O SOLUTIONS B. BELAISSAOUI, R.THERY, X.M. MEYER 1, M. MEYER, V. GERBAUD and X. JOULIA LGC-Laboratoire de Génie

More information

THERMODYNAMIC ANALYSIS OF MULTICOMPONENT DISTILLATION-REACTION PROCESSES FOR CONCEPTUAL PROCESS DESIGN

THERMODYNAMIC ANALYSIS OF MULTICOMPONENT DISTILLATION-REACTION PROCESSES FOR CONCEPTUAL PROCESS DESIGN THERMODYNAMIC ANALYSIS OF MULTICOMPONENT DISTILLATION-REACTION PROCESSES FOR CONCEPTUAL PROCESS DESIGN Oliver Ryll, Sergej Blagov 1, Hans Hasse Institute of Thermodynamics and Thermal Process Engineering,

More information

Minimum Energy Demand and Split Feasibility for a Class of Reactive Distillation Columns

Minimum Energy Demand and Split Feasibility for a Class of Reactive Distillation Columns Minimum Energy emand and Split easibility for a Class of Reactive istillation Columns Rosa Y. Urdaneta, Jürgen ausa + and olfgang Marquardt * Lehrstuhl für Prozesstechnik RTH Aachen University, Templergraben

More information

Conceptual Design of Reactive Distillation Columns with Non-Reactive Sections

Conceptual Design of Reactive Distillation Columns with Non-Reactive Sections Conceptual esign of Reactive istillation Columns with Non-Reactive Sections R. M. ragomir, M. Jobson epartment of Process Integration, UMIST, PO ox 88, M60 Q, Manchester, UK Abstract Reactive distillation

More information

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author s version

More information

DEVELOPMENT OF A ROBUST ALGORITHM TO COMPUTE REACTIVE AZEOTROPES

DEVELOPMENT OF A ROBUST ALGORITHM TO COMPUTE REACTIVE AZEOTROPES Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 23, No. 03, pp. 395-403, July - September, 2006 DEVELOPMENT OF A ROBUST ALGORITHM TO COMPUTE REACTIVE

More information

Feasibility Study of Heterogeneous Batch Extractive Distillation

Feasibility Study of Heterogeneous Batch Extractive Distillation European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 2005 Elsevier Science B.V. All rights reserved. Feasibility Study of Heterogeneous Batch Extractive

More information

Entrainer Selection Rules for the Separation of Azeotropic and Close-Boiling-Temperature Mixtures by Homogeneous Batch Distillation Process

Entrainer Selection Rules for the Separation of Azeotropic and Close-Boiling-Temperature Mixtures by Homogeneous Batch Distillation Process Ind. Eng. Chem. Res. 2001, 40, 2729-2741 2729 Entrainer Selection Rules for the Separation of Azeotropic and Close-Boiling-Temperature Mixtures by Homogeneous Batch Distillation Process Ivonne Rodríguez-Donis,,

More information

Make distillation boundaries work for you!

Make distillation boundaries work for you! Make distillation boundaries work for you! Michaela Tapp*, Simon T. Holland, Diane Hildebrandt and David Glasser Centre for Optimization, Modeling and Process Synthesis School of Process and Materials

More information

BatchExtractiveDistillationwithLightEntrainer

BatchExtractiveDistillationwithLightEntrainer V. VARGA et al., Batch Extractive Distillation with Light Entrainer, Chem. Biochem. Eng. Q. 20 (1) XXX XXX (2006) 1 BatchExtractiveDistillationwithLightEntrainer V. Varga,*, ** E. Rev,*,+ V. Gerbaud,**

More information

Shortcut Design Method for Columns Separating Azeotropic Mixtures

Shortcut Design Method for Columns Separating Azeotropic Mixtures 3908 Ind. Eng. Chem. Res. 2004, 43, 3908-3923 Shortcut Design Method for Columns Separating Azeotropic Mixtures Guilian Liu, Megan Jobson,*, Robin Smith, and Oliver M. Wahnschafft Department of Process

More information

BOUNDARY VALUE DESIGN METHOD FOR COMPLEX DEMETHANIZER COLUMNS

BOUNDARY VALUE DESIGN METHOD FOR COMPLEX DEMETHANIZER COLUMNS Distillation Absorption 2010 A.B. de Haan, H. Kooijman and A. Górak (Editors) All rights reserved by authors as per DA2010 copyright notice BOUNDARY AUE DESIGN METHOD FOR COMPEX DEMETHANIZER COUMNS Muneeb

More information

Analysis of processing systems involving reaction and distillation: the synthesis of ethyl acetate

Analysis of processing systems involving reaction and distillation: the synthesis of ethyl acetate Analysis of processing systems involving reaction and distillation: the synthesis of ethyl acetate Rui M. Filipe 1, Pedro M. Castro 2, Henrique A. Matos 3, Augusto Q. Novais 2 1 Departamento de Engenharia

More information

A Short Method To Calculate Residue Curve Maps in Multireactive and Multicomponent Systems

A Short Method To Calculate Residue Curve Maps in Multireactive and Multicomponent Systems pubs.acs.org/iecr A Short Method To Calculate Residue Curve Maps in Multireactive and Multicomponent Systems Marcelino Carrera-Rodríguez, Juan Gabriel Segovia-Hernandez,*, and Adrian Bonilla-Petriciolet

More information

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM I-Lung Chien and Kai-Luen Zeng Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei

More information

Synthesis and Design of Reactive Distillation Columns

Synthesis and Design of Reactive Distillation Columns Synthesis and Design of Reactive Distillation Columns thesis submitted to the University of Manchester Institute of Science and Technology for the degree of Doctor of Philosophy by Ramona Manuela DRGOMIR

More information

Steady State Multiplicity and Stability in a Reactive Flash

Steady State Multiplicity and Stability in a Reactive Flash Steady State Multiplicity and Stability in a Reactive Flash Iván E. Rodríguez, Alex Zheng and Michael F. Malone Department of Chemical Engineering University of Massachusetts Amherst, MA 01003 Abstract

More information

Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate

Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate Jongkee Park, Na-Hyun Lee, So-Jin Park, and Jungho Cho, Separation Process Research Center, Korea

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 5 Distillation Lecture - 6 Fractional Distillation: McCabe Thiele

More information

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1 CHAPTER 1 INTRODUCTION The development of the chemical industry over the last two centuries has provided modern civilization with a whole host of products that improve the well-being of the human race.

More information

Distillation is the most widely used separation

Distillation is the most widely used separation Selecting Entrainers for Vivek Julka Madhura Chiplunkar Lionel O Young ClearBay Technology, Inc. This systematic methodology uses residue curve maps to identify and evaluate substances that can facilitate

More information

Optimal structure of reactive and non-reactive stages in reactive distillation processes

Optimal structure of reactive and non-reactive stages in reactive distillation processes Optimal structure of reactive and non-reactive stages in reactive distillation processes Alejandro O. Domancich 1,2, Nélida B. Brignole 1,2, Patricia M. Hoch 2,3 1 LIDeCC - Departamento de Ciencias e Ingeniería

More information

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Outline: Introduction to multicomponent distillation Phase Equilibria in Multicomponent Distillation (Pg. 737) Bubble-point and dew-point calculation

More information

REACTIVE DISTILLATION Experimental and Theoretical Study

REACTIVE DISTILLATION Experimental and Theoretical Study PRODUCTION OF n-propyl ACETATE BY REACTIVE DISTILLATION Experimental and Theoretical Study M. Brehelin 1, F. Forner 2, D. Rouzineau 1, J.-U. Repke 2, X. Meyer 1, M. Meyer 1 and G. Wozny 2 1 Laboratoire

More information

DISTILLATION REGIONS FOR NON-IDEAL TERNARY MIXTURES

DISTILLATION REGIONS FOR NON-IDEAL TERNARY MIXTURES DISTILLATION REGIONS FOR NON-IDEAL TERNARY MIXTURES Lechoslaw J. Krolikowski Institute of Chemical Engineering, Wroclaw University of Technology, Wroclaw, Poland ABSTRACT This work concerns the determination

More information

EXPERIMENTAL COLUMN PROFILE MAPS WITH VARYING DELTA POINTS IN A CONTINUOUS COLUMN FOR THE ACETONE METHANOL ETHANOL SYSTEM

EXPERIMENTAL COLUMN PROFILE MAPS WITH VARYING DELTA POINTS IN A CONTINUOUS COLUMN FOR THE ACETONE METHANOL ETHANOL SYSTEM EXPERIMENTAL COLUMN PROFILE MAPS WITH VARYING DELTA POINTS IN A CONTINUOUS COLUMN FOR THE ACETONE METHANOL ETHANOL SYSTEM Cameron Wilson, Diane Hildebrandt, David Glasser Centre of Process and Materials

More information

THERMAL INTEGRATION OF A DISTILLATION COLUMN THROUGH SIDE-EXCHANGERS

THERMAL INTEGRATION OF A DISTILLATION COLUMN THROUGH SIDE-EXCHANGERS THERMAL INTEGRATION OF A DISTILLATION COLUMN THROUGH SIDE-EXCHANGERS Santanu Bandyopadhyay Energy Systems Engineering and Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Powai,

More information

Finding Rigorous Thermodynamic Model parameters for the Simulation of a Reactive Distillation Column: Case of ETBE Production

Finding Rigorous Thermodynamic Model parameters for the Simulation of a Reactive Distillation Column: Case of ETBE Production Finding Rigorous Thermodynamic Model parameters for the Simulation of a Reactive Distillation Column: Case of ETBE Production Gisela N. Durruty, M. Soledad Diaz, Patricia M. Hoch * Universidad Nacional

More information

Study of arrangements for distillation of quaternary mixtures using less than n-1 columns

Study of arrangements for distillation of quaternary mixtures using less than n-1 columns Instituto Tecnologico de Aguascalientes From the SelectedWorks of Adrian Bonilla-Petriciolet 2008 Study of arrangements for distillation of quaternary mixtures using less than n-1 columns J.G. Segovia-Hernández,

More information

REACTIVE distillation is a separation process that combines

REACTIVE distillation is a separation process that combines Simulation of Reactive Distillation: Comparison of Equilibrium and Nonequilibrium Stage Models Asfaw Gezae Daful Abstract In the present study, two distinctly different approaches are followed for modeling

More information

Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process

Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process Nikhil V. Sancheti Department of Chemical Engineering L.I.T., Nagpur, Maharashtra,

More information

Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive Case

Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive Case F. O. BARROSO-MUÑOZ et al., Thermally Coupled Distillation Systems: Study of, Chem. Biochem. Eng. Q. 21 (2) 115 120 (2007) 115 Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 5 Distillation Lecture - 5 Fractional Distillation Welcome to the

More information

Identifying multiple steady states in the design of reactive distillation processes

Identifying multiple steady states in the design of reactive distillation processes Scholars' Mine Doctoral Dissertations Student Research & Creative Works Fall 2010 Identifying multiple steady states in the design of reactive distillation processes Thomas Karl Mills Follow this and additional

More information

Control Study of Ethyl tert-butyl Ether Reactive Distillation

Control Study of Ethyl tert-butyl Ether Reactive Distillation 3784 Ind. Eng. Chem. Res. 2002, 41, 3784-3796 Control Study of Ethyl tert-butyl Ether Reactive Distillation Muhammad A. Al-Arfaj Department of Chemical Engineering, King Fahd University of Petroleum and

More information

Unit operations are ubiquitous in any chemical process. Equilibrium-Staged Separations using Matlab and Mathematica. ChE class and home problems

Unit operations are ubiquitous in any chemical process. Equilibrium-Staged Separations using Matlab and Mathematica. ChE class and home problems ChE class and home problems The object of this column is to enhance our readers collections of interesting and novel problems in chemical engineering. Problems of the type that can be used to motivate

More information

[Thirumalesh*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Thirumalesh*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY CASE STUDY ON MULTICOMPONENT DISTILLATION AND DISTILLATION COLUMN SEQUENCING Thirumalesh. B.S*, Ramesh.V * Assistant Professor

More information

EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION

EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION Santanu Bandyopadhyay Energy Systems Engineering and Department of Mechanical Engineering, Indian Institute of Technology, Bombay,

More information

Synthesis of Azeotropic Separation Systems by Case-Based Reasoning

Synthesis of Azeotropic Separation Systems by Case-Based Reasoning Synthesis of Azeotropic Separation Systems by Case-Based Reasoning Timo Seuranen 1, Elina Pajula 2, Markku Hurme 1 1 Helsinki University of Technology, Laboratory of Plant Design, P.O. Box 6100, FIN-02015

More information

Prepared for Presentation at the 2004 Annual Meeting, Austin, TX, Nov. 7-12

Prepared for Presentation at the 2004 Annual Meeting, Austin, TX, Nov. 7-12 Investigation of Methyl Acetate Production by Reactive Extraction Christian Rohde, Rolf Marr Department of Chemical Engineering and Environmental Technology University of Technology Graz Inffeldgasse 25,

More information

Heterogeneous Azeotropic Distillation Operational Policies and Control

Heterogeneous Azeotropic Distillation Operational Policies and Control Heterogeneous Azeotropic Distillation Operational Policies and Control Claudia J. G. Vasconcelos * and Maria Regina Wolf-Maciel State University of Campinas, School of Chemical Engineering, Campinas/SP,

More information

DETERMINATION OF OPTIMAL ENERGY EFFICIENT SEPARATION SCHEMES BASED ON DRIVING FORCES

DETERMINATION OF OPTIMAL ENERGY EFFICIENT SEPARATION SCHEMES BASED ON DRIVING FORCES DETERMINATION OF OPTIMAL ENERGY EFFICIENT SEPARATION SCHEMES BASED ON DRIVING FORCES Abstract Erik Bek-Pedersen, Rafiqul Gani CAPEC, Department of Chemical Engineering, Technical University of Denmark,

More information

Effects of Relative Volatility Ranking on Design and Control of Reactive Distillation Systems with Ternary Decomposition Reactions

Effects of Relative Volatility Ranking on Design and Control of Reactive Distillation Systems with Ternary Decomposition Reactions Article Subscriber access provided by NATIONAL TAIWAN UNIV Effects of Relative Volatility Ranking on Design and Control of Reactive Distillation Systems with Ternary Decomposition Reactions Chin-Shih Chen,

More information

Design and Analysis of Divided Wall Column

Design and Analysis of Divided Wall Column Proceedings of the 6th International Conference on Process Systems Engineering (PSE ASIA) 25-27 June 2013, Kuala Lumpur. Design and Analysis of Divided Wall Column M. Shamsuzzoha, a* Hiroya Seki b, Moonyong

More information

Batch extractive distillation of mixture methanol-acetonitrile using aniline as a asolvent

Batch extractive distillation of mixture methanol-acetonitrile using aniline as a asolvent 48 Pol. J. Chem. Polish Tech., Journal Vol. 14, of No. Chemical 3, 2012 Technology, 14, 3, 48 53, 10.2478/v10026-012-0083-4 Batch extractive distillation of mixture methanol-acetonitrile using aniline

More information

Separation of ternary heteroazeotropic mixtures in a closed multivessel batch distillation decanter hybrid

Separation of ternary heteroazeotropic mixtures in a closed multivessel batch distillation decanter hybrid Chemical Engineering and Processing 43 (2004) 291 304 Separation of ternary heteroazeotropic mixtures in a closed multivessel batch distillation decanter hybrid S. Skouras, S. Skogestad Norwegian University

More information

regressing the vapor-liquid equilibrium data in Mathuni et al. and Rodriguez et al., respectively. The phase equilibrium data of the other missing pai

regressing the vapor-liquid equilibrium data in Mathuni et al. and Rodriguez et al., respectively. The phase equilibrium data of the other missing pai Plant-Wide Control of Thermally Coupled Reactive Distillation to Co-Produce Diethyl Carbonate and Propylene Glycol San-Jang Wang, Shueh-Hen Cheng, and Pin-Hao Chiu Abstract Diethyl carbonate is recognized

More information

Azeotropic Distillation Methods. Dr. Stathis Skouras, Gas Processing and LNG RDI Centre Trondheim, Statoil, Norway

Azeotropic Distillation Methods. Dr. Stathis Skouras, Gas Processing and LNG RDI Centre Trondheim, Statoil, Norway Azeotropic Distillation Methods Dr. Stathis Skouras, Gas Processing and LNG RDI Centre Trondheim, Statoil, Norway Schedule Tuesday 1/12/2015: 09.45 12.30: Lecture - Natural Gas Processing 14.00 17.00:

More information

INDUSTRIAL APPLICATION OF A NEW BATCH EXTRACTIVE DISTILLATION OPERATIONAL POLICY

INDUSTRIAL APPLICATION OF A NEW BATCH EXTRACTIVE DISTILLATION OPERATIONAL POLICY INDUSTRIAL APPLICATION OF A NEW BATCH EXTRACTIVE DISTILLATION OPERATIONAL POLICY Lang P. 1, Gy. Kovacs 2, B. Kotai 1, J. Gaal-Szilagyi 2, G. Modla 1 1 BUTE, Department of Process Engineering, H-1521 Budapest

More information

Operation and Control of Reactive Distillation for Synthesis of Methyl Formate

Operation and Control of Reactive Distillation for Synthesis of Methyl Formate Asian Journal of Chemistry; Vol. 25, No. 8 (3), 477-482 http://dx.doi.org/.4233/ajchem.3.37a Operation and Control of Reactive Distillation for Synthesis of Methyl Formate JIE YANG, PENG BAI * and KUN

More information

Design and Control Properties of Arrangements for Distillation of Four Component Mixtures Using Less Than N-1 Columns

Design and Control Properties of Arrangements for Distillation of Four Component Mixtures Using Less Than N-1 Columns D. M. MÉNDEZ-VALENCIA et al., Design and Control Properties of Arrangements, Chem. Biochem. Eng. Q. 22 (3) 273 283 (2008) 273 Design and Control Properties of Arrangements for Distillation of Four Component

More information

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2 Multicomponent Distillation All Rights Reserved. Armando B. Corripio, PhD, P.E., 2013 Contents Multicomponent Distillation... 1 1 Column Specifications... 2 1.1 Key Components and Sequencing Columns...

More information

Performance of esterification system in reaction-distillation column

Performance of esterification system in reaction-distillation column Performance of esterification system in reaction-distillation column Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, 16-20 September 2007 Performance of esterification system

More information

Measurement-based Run-to-run Optimization of a Batch Reaction-distillation System

Measurement-based Run-to-run Optimization of a Batch Reaction-distillation System Measurement-based Run-to-run Optimization of a Batch Reaction-distillation System A. Marchetti a, B. Srinivasan a, D. Bonvin a*, S. Elgue b, L. Prat b and M. Cabassud b a Laboratoire d Automatique Ecole

More information

Feasibility of separation of ternary mixtures by pressure swing batch distillation

Feasibility of separation of ternary mixtures by pressure swing batch distillation 10th nternational Symposium on Process Systems Engineering - PSE2009 Rita Maria de Brito Alves, Claudio Augusto Oller do Nascimento and Evaristo Chalbaud Biscaia Jr. (Editors) 2009 Elsevier B.V. All rights

More information

An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method

An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method Syed Mujahed Ali Rizwan Senior Lecturer in Chemistry Challenger College, Moinabad, Hyderabad. Abstract: In this

More information

Dividing wall columns for heterogeneous azeotropic distillation

Dividing wall columns for heterogeneous azeotropic distillation Dividing wall columns for heterogeneous azeotropic distillation Quang-Khoa Le 1, Ivar J. Halvorsen 2, Oleg Pajalic 3, Sigurd Skogestad 1* 1 Norwegian University of Science and Technology (NTNU), Trondheim,

More information

Optimization of Batch Distillation Involving Hydrolysis System

Optimization of Batch Distillation Involving Hydrolysis System 273 Optimization of Batch Distillation Involving Hydrolysis System Elmahboub A. Edreder 1, Iqbal M. Mujtaba 2, Mansour Emtir 3* 1 Libyan Petroleum Institute, P.O. Box 6431, Tripoli, Libya 2 School of Engineering

More information

Reliable Computation of Reactive Azeotropes

Reliable Computation of Reactive Azeotropes Reliable Computation of Reactive Azeotropes Robert W. Maier, Joan F. Brennecke and Mark A. Stadtherr 1 Department of Chemical Engineering 182 Fitzpatrick Hall University of Notre Dame Notre Dame, IN 46556

More information

Structuring of Reactive Distillation Columns for Non-Ideal Mixtures using MINLP-Techniques

Structuring of Reactive Distillation Columns for Non-Ideal Mixtures using MINLP-Techniques Structuring of Reactive Distillation olumns for Non-Ideal Mixtures using MINLP-Techniques Guido Sand *, Sabine Barmann and Sebastian Engell Process ontrol Laboratory, Dept. of Biochemical and hemical Engineering,

More information

Reflections on the use of the McCabe and Thiele method

Reflections on the use of the McCabe and Thiele method From the Selectedorks of João F Gomes January 2007 Reflections on the use of the McCabe and Thiele method Contact Author Start Your Own Selectedorks Notify Me of New ork Available at: http://works.bepress.com/joao_gomes/42

More information

Data Reconciliation of Streams with Low Concentrations of Sulphur Compounds in Distillation Operation

Data Reconciliation of Streams with Low Concentrations of Sulphur Compounds in Distillation Operation 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Data Reconciliation of Streams with Low Concentrations

More information

On the Synthesis of Distillation Sequences for Mixtures of Water, Hydrogen Chloride and Hydrogen Fluoride P. Pöllmann, SGL GROUP A.J.

On the Synthesis of Distillation Sequences for Mixtures of Water, Hydrogen Chloride and Hydrogen Fluoride P. Pöllmann, SGL GROUP A.J. On the Synthesis of Distillation Sequences for Mixtures of Water, Hydrogen Chloride and Hydrogen Fluoride P. Pöllmann, SGL GROUP A.J. Gerbino, AQSim (Speaker) Problem Statement Given... An aqueous feed

More information

Non-square open-loop dynamic model of methyl acetate production process by using reactive distillation column

Non-square open-loop dynamic model of methyl acetate production process by using reactive distillation column Non-square open-loop dynamic model of methyl acetate production process by using reactive distillation column Ahmad Misfa Kurniawan 1, Renanto Handogo 1,*, Hao-Yeh Lee 2, and Juwari Purwo Sutikno 1 1 Department

More information

RESIDUE CURVE MAPPING

RESIDUE CURVE MAPPING ()pltnuzalloll o/ Desqpi & ~a11c>n in Reactuie Dlsl!llallon 65 CHAPfER V RESIDUE C URVE MAPPING RESIDUE CURVE MAPPING Application11 of residue curve mapping to RD processes have recently been reported,

More information

Aggregate Models based on Improved Group Methods for Simulation and Optimization of Distillation Systems

Aggregate Models based on Improved Group Methods for Simulation and Optimization of Distillation Systems Aggregate Models based on Improved Group Methods for Simulation and Optimization of Distillation Systems Ravindra S. Kamath 1, Ignacio E. Grossmann 1,*, and Lorenz T. Biegler 1 1 Chemical Engineering Department,

More information

Recovery of Aromatics from Pyrolysis Gasoline by Conventional and Energy-Integrated Extractive Distillation

Recovery of Aromatics from Pyrolysis Gasoline by Conventional and Energy-Integrated Extractive Distillation 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Recovery of Aromatics from Pyrolysis Gasoline by Conventional

More information

Vapor-liquid equilibrium

Vapor-liquid equilibrium Vapor-liquid equilibrium From Wikipedia, the free encyclopedia Vapor-liquid equilibrium, abbreviated as VLE by some, is a condition where a liquid and its vapor (gas phase) are in equilibrium with each

More information

DME(10 TPD) Process Simulation Using Aspen Plus Release Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University

DME(10 TPD) Process Simulation Using Aspen Plus Release Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University DME(10 TPD) Process Simulation Using Aspen Plus Release 12.1 Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University Overall Flowsheet for DME Production Unit 18 TO FLARE 17 DA-103

More information

Distillation pinch points and more

Distillation pinch points and more Available online at www.sciencedirect.com Computers and Chemical Engineering 32 (2008) 1350 1372 Distillation pinch points and more Angelo Lucia a,, Amit Amale a, Ross Taylor b a Department of Chemical

More information

CONTROL PROPERTIES ANALYSIS OF ALTERNATE SCHEMES TO THERMALLY COUPLED DISTILLATION SCHEMES

CONTROL PROPERTIES ANALYSIS OF ALTERNATE SCHEMES TO THERMALLY COUPLED DISTILLATION SCHEMES 8th International IFAC Symposium on Dynamics and Control of Process Systems Preprints Vol.1, June 6-8, 2007, Cancún, Mexico CONTROL PROPERTIES ANALYSIS OF ALTERNATE SCHEMES TO THERMALLY COUPLED DISTILLATION

More information

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide Korean J. Chem. Eng., 24(3), 438-444 (2007) SHORT COMMUNICATION Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide Jungho Cho and Dong Min Kim* Department of Chemical

More information

Catalytic Reactive Distillation for the Esterification Process: Experimental and Simulation

Catalytic Reactive Distillation for the Esterification Process: Experimental and Simulation M. Mallaiah et al., Catalytic Reactive Distillation for the Esterification Process, Chem. Biochem. Eng. Q., 3 (3) 293 302 (207) 293 Catalytic Reactive Distillation for the Esterification Process: Experimental

More information

IV Distillation Sequencing

IV Distillation Sequencing IV Distillation Sequencing Outline 1. Basic Concepts of Distillation Sequence Design 2. Choice of Sequence and its Operating Pressure. 3. Performance of Distillation Column (Sieve tray and packed tower)

More information

Novel Control Structures for Heterogeneous Reactive Distillation

Novel Control Structures for Heterogeneous Reactive Distillation A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 69, 2018 Guest Editors: Elisabetta Brunazzi, Eva Sorensen Copyright 2018, AIDIC Servizi S.r.l. ISBN 978-88-95608-66-2; ISSN 2283-9216 The Italian

More information

Multivariable model predictive control design of reactive distillation column for Dimethyl Ether production

Multivariable model predictive control design of reactive distillation column for Dimethyl Ether production IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Multivariable model predictive control design of reactive distillation column for Dimethyl Ether production To cite this article:

More information

Simulation and Analysis of Ordinary Distillation of Close Boiling Hydrocarbons Using ASPEN HYSYS

Simulation and Analysis of Ordinary Distillation of Close Boiling Hydrocarbons Using ASPEN HYSYS International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 16 No. 4 Jun. 2016, pp. 805-813 2016 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Simulation

More information

Comparison of Conventional and Middle Vessel Batch Reactive Distillation Column: Application to Hydrolysis of Methyl Lactate to Lactic Acid

Comparison of Conventional and Middle Vessel Batch Reactive Distillation Column: Application to Hydrolysis of Methyl Lactate to Lactic Acid A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 35, 2013 Guest Editors: Petar Varbanov, Jiří Klemeš, Panos Seferlis, Athanasios I. Papadopoulos, Spyros Voutetakis Copyright 2013, AIDIC Servizi

More information

A novel design of reactive distillation configuration for 2-methoxy-2-methylheptane process

A novel design of reactive distillation configuration for 2-methoxy-2-methylheptane process A novel design of reactive distillation configuration for 2-methoxy-2-methylheptane process Arif Hussain 1, Muhammad Abdul Qyyum 1, Le Quang Minh 1, Hong Jimin 1, and Moonyong Lee 1,* 1 Process System

More information

Phase equilibria properties of binary and ternary systems containing isopropyl ether + isobutanol + benzene at K.

Phase equilibria properties of binary and ternary systems containing isopropyl ether + isobutanol + benzene at K. Phase equilibria properties of binary and ternary systems containing isopropyl ether + isobutanol + benzene at 313.15 K. R.M. Villamañán 1, M.C. Martín 2, C.R. Chamorro 2, M.A. Villamañán 2, J.J. Segovia

More information

This is an author-deposited version published in : Eprints ID : 15859

This is an author-deposited version published in :   Eprints ID : 15859 Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

Esterification of Acetic Acid with Butanol: Operation in a Packed Bed Reactive Distillation Column

Esterification of Acetic Acid with Butanol: Operation in a Packed Bed Reactive Distillation Column E. SERT and F. S. ATALAY, Esterification of Acetic Acid with Butanol:, Chem. Biochem. Eng. Q. 25 (2) 221 227 (211) 221 Esterification of Acetic Acid with Butanol: Operation in a Packed Bed Reactive Distillation

More information

ChemSep Tutorial: Distillation with Hypothetical Components

ChemSep Tutorial: Distillation with Hypothetical Components ChemSep Tutorial: Distillation with Hypothetical Components Harry Kooijman and Ross Taylor Here we use ChemSep to solve a complex multicomponent distillation problem presented in a paper entitled Multistage

More information

EXPERIMENTAL SIMULATION OF DISTILLATION COLUMN PROFILE MAPS. Tshepo Sehole David Modise

EXPERIMENTAL SIMULATION OF DISTILLATION COLUMN PROFILE MAPS. Tshepo Sehole David Modise EXPERIMENTAL SIMULATION OF DISTILLATION COLUMN PROFILE MAPS Tshepo Sehole David Modise A thesis submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg,

More information

Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module -5 Distillation Lecture - 8 Fractional Distillation: Subcooled Reflux,

More information

Author's personal copy

Author's personal copy Computers and Chemical Engineering 33 (2009) 788 793 Contents lists available at ScienceDirect Computers and Chemical Engineering journal homepage: www.elsevier.com/locate/compchemeng Impact of mathematical

More information

VAPOR LIQUID EQUILIBRIUM AND RESIDUE CURVE MAP FOR ACETIC ACID-WATER-ETHYL ACETATE TERNARY SYSTEM

VAPOR LIQUID EQUILIBRIUM AND RESIDUE CURVE MAP FOR ACETIC ACID-WATER-ETHYL ACETATE TERNARY SYSTEM VAPOR LIQUID EQUILIBRIUM AND RESIDUE CURVE MAP FOR ACETIC ACID-WATER-ETHYL ACETATE TERNARY SYSTEM Desai Sunita. S.,Sinhgad College of Engineering, Gadekar Shamla V.,BVDUCOE, Pune, P.L.V.N. Saichandra,

More information

Improvement of separation process of synthesizing MIBK by the isopropanol one-step method

Improvement of separation process of synthesizing MIBK by the isopropanol one-step method Korean J. Chem. Eng., 23(2), 264-270 (2006) SHORT COMMUNICATION Improvement of separation process of synthesizing MIBK by the isopropanol one-step method Zhigang Lei, Jianwei Li, Chengyue Li and Biaohua

More information

AJCHE 2012, Vol. 12, No. 1, Synthesis of Ternary Homogeneous Azeotropic Distillation Sequences: Entrainer Selection

AJCHE 2012, Vol. 12, No. 1, Synthesis of Ternary Homogeneous Azeotropic Distillation Sequences: Entrainer Selection AJCHE 2012, Vol. 12, No. 1, 20 33 Synthesis of Ternary Homogeneous Azeotropic Distillation Sequences: Entrainer Selection Sutijan *,1 Megan Jobson 2 Robin Smith 2 1 Department of Chemical Engineering,

More information

Steady State Design for the Separation of Acetone-Chloroform Maximum Boiling Azeotrope Using Three Different Solvents

Steady State Design for the Separation of Acetone-Chloroform Maximum Boiling Azeotrope Using Three Different Solvents Korean Chem. Eng. Res., 55(4), 490-496 (2017) https://doi.org/10.9713/kcer.2017.55.4.490 PISSN 0304-128X, EISSN 2233-9558 Steady State Design for the Separation of Acetone-Chloroform Maximum Boiling Azeotrope

More information

A Definition for Plantwide Controllability. Process Flexibility

A Definition for Plantwide Controllability. Process Flexibility A Definition for Plantwide Controllability Surya Kiran Chodavarapu and Alex Zheng Department of Chemical Engineering University of Massachusetts Amherst, MA 01003 Abstract Chemical process synthesis typically

More information

Design and Optimization of Thermally Coupled Distillation Schemes for the Separation of Multicomponent Mixtures

Design and Optimization of Thermally Coupled Distillation Schemes for the Separation of Multicomponent Mixtures 724 Ind. Eng. Chem. Res. 2006, 45, 724-732 Design and Optimization of Thermally Coupled Distillation Schemes for the Separation of Multicomponent Mixtures Christopher Jorge Calzon-McConville, Ma. Bibiana

More information

Dynamics and Control of Energy Integrated Distillation Column Networks

Dynamics and Control of Energy Integrated Distillation Column Networks 200 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 30-July 02, 200 ThA4.4 Dynamics and Control of Energy Integrated Distillation Column Networks Sujit S. Jogwar and Prodromos

More information

MULTIOBJECTIVE OPTIMIZATION CONSIDERING ECONOMICS AND ENVIRONMENTAL IMPACT

MULTIOBJECTIVE OPTIMIZATION CONSIDERING ECONOMICS AND ENVIRONMENTAL IMPACT MULTIOBJECTIVE OPTIMIZATION CONSIDERING ECONOMICS AND ENVIRONMENTAL IMPACT Young-il Lim, Pascal Floquet, Xavier Joulia* Laboratoire de Génie Chimique (LGC, UMR-CNRS 5503) INPT-ENSIGC, 8 chemin de la loge,

More information

PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS

PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS Jaime Benitez iwiley- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Preface Nomenclature xiii xv 1. FUNDAMENTALS OF MASS TRANSFER 1

More information

Determination of Design parameter of R.D. Column by using etherification reaction system with Ion exchange resin.

Determination of Design parameter of R.D. Column by using etherification reaction system with Ion exchange resin. Determination of Design parameter of R.D. Column by using etherification reaction system with Ion exchange resin. A.M Patare*, D.K. Chandre.**, Dr. R.S Sapkal $ * Principal & Head, Department of Chemical

More information

Latin American Applied Research an International Journal of Chemical Engineering. 1997, vol. 27, 1-2, (Accepted: March 20, 1996).

Latin American Applied Research an International Journal of Chemical Engineering. 1997, vol. 27, 1-2, (Accepted: March 20, 1996). Latin American Applied Research an International Journal of Chemical Engineering. 1997, vol. 27, 1-2, 51-60 (Accepted: March 20, 1996). NEW METHOD FOR DESIGNING DISTILLATION COLUMNS OF MULTICOMPONENT MIXTURES

More information

Thermodynamic Analysis and Hydrodynamic Behavior of a Reactive Dividing Wall Distillation Column 1. Introduction

Thermodynamic Analysis and Hydrodynamic Behavior of a Reactive Dividing Wall Distillation Column 1. Introduction Thermodynamic Analysis and Hydrodynamic Behavior of a Reactive Dividing Wall Distillation Column Fabricio Omar Barroso-Muñoz, María Dolores López-Ramírez, Jorge Gerardo Díaz-Muñoz, Salvador Hernández,

More information