Azeotropic Distillation Methods. Dr. Stathis Skouras, Gas Processing and LNG RDI Centre Trondheim, Statoil, Norway

Size: px
Start display at page:

Download "Azeotropic Distillation Methods. Dr. Stathis Skouras, Gas Processing and LNG RDI Centre Trondheim, Statoil, Norway"

Transcription

1 Azeotropic Distillation Methods Dr. Stathis Skouras, Gas Processing and LNG RDI Centre Trondheim, Statoil, Norway

2 Schedule Tuesday 1/12/2015: : Lecture - Natural Gas Processing : Available for questions/discussion at TTPL Wednesday 2/2/ : Available for questions/discussion at TTPL Thursday 3/12/ : Lecture - Azeotropic distillation methods : Available for questions/discussion at TTPL Friday 4/12/ : : Available for questions/discussion at TTPL 2

3 Outline Introduction Importance and industrial relevance of azeotropic distillation Main part Theory: residue curve maps and distillation curve maps How to make residue curve maps at Aspen Plus Feasibility analysis of azeotropic distillation Azeotropic distillation methods Examples from the Oil & Gas Industry Summary 3

4 Importance and industrial relevance of azeotropic distillation Need for efficient recovery and recycle of organic solvents in chemical industry Distillation is the most common unit operation in recovery processes because of its ability to produce high purity products Most liquid mixtures of organic solvents form azeotropes that complicate the design of recovery processes Azeotropes make separation impossible by normal distillation but can be also utilised to separate mixtures not ordinarily separable by normal distillation Azeotropic mixtures may often be effectively separated by distillation by adding a third component, called entrainer Knowledge of the limitations and possibilities in azeotropic distillation is a topic of great practical and industrial interest 4

5 Terminology The methods and tools presented in this lecture also appply for: Azeotropic mixtures, close boiling systems, low relative volatility systems Original components A and B: The components that form the azeotrope and need to be separated Entrainer: A third component (E or C) added to enhance separation Binary azeotrope: Azeotrope formed by two components Ternary azeotrope: Azeotrope formed by three components Homogeneous azeotrope: Azeotrope where the forming components are miscible Heterogeneous azeotrope: Azeotrope where the forming components are immiscible Minimum boiling azeotrope: Azeotrope with lower boiling point than its constituent components (most common) Maximum boiling azeotrope: Azeotrope with higher boiling point than its constituent components (less common) 5

6 Theory: Residue curve maps (RCM) and distillation curve maps (DCM) For ordinary multicomponent distillation determination of feasible schemes and column design is straightforward McCabe-Thiele method and Fenske-Underwood- Gilliland equations are powerful tools Azeotropic phase equilibrium diagrams such as residue curve maps (RCM) or distillation curve maps (DCM) are sometimes nicknamed the McCabe-Thiele of azeotropic distillation and provide insight and understanding RCM or DCM sketched together with material balance lines and operating lines are used to identify feasible distillation schemes and products 6

7 Residue curves Consider the process of differential (open) distillation (Rayleigh distillation) The component mass balance is written: dx dt i dw ( yi xi) Wdt and by considering the dimensionless time variable ξ (dξ=dv/w) dxi xi yi d Integrating the above equation from any initial composition (x w0 ) will generate a residue curve A (T A ) x W 0 T A < T B < T C The residue curve describes the change of the still pot composition with time (trajectory) C (T C ) Still pot composition trajectory B (T B ) 7

8 Distillation curves Consider the process of continuous distillation at total reflux (45 line at McCabe-Thiele diagram) Starting with a liquid composition at stage n (x i,n ) and by doing repeated phase equilibrium calculations (E-mapping) upwards we get: x y x y E n y i, n i, n x i, n i, n 1 E n 1 y i, n 1 i, n 1 x i, n 1 i, n 2 Total reflux (V = L = R) Y i,n-1 Condenser V, y D L, x D x i,n-1 x i,n Stage n-1 Stage n y i,n... By doing this from any initial composition (x 0 ) the distillation curve can be constructed The distillation curve describes the change of the component composition along the column (trajectory) Reboiler x B 8

9 Singular points in RCM and DCM Pure component vertices and azeotropes are singular points in the RCM and DCM dxi xi yi 0 d The behaviour at the vicinity of singular points depends on the two eigenvalues a) Stable node ( ): Point with the highest boiling point Bottom product in distillation. All residue curves end at this point - Both eigenvalues negative b) Unstable node ( ): Point with the lowest boiling point Top product in distillation. All residue curves start at this point - Both eigenvalues positive c) Saddles ( ): Point with an intermediate boiling point Residue curves move towards and then away from these points One positive and one negative eigenvalue 9

10 Relationship between residue curves and distillation curves Both are pure representations of the VLE and no other information needed to construct them Have the same topological structure and singular points Distillation boundaries exist and split the composition space into distillation regions DO NOT completely coincide to each other BUT provide the same information and can be equally used for feasibility analysis Residue curve Distillation curve 10

11 «Distillation synthesis» in Aspen Plus 11

12 Find azeotropes 12

13 Continue to Aspen Plus Residue Curves 13

14 Residue curves 14

15 Feasibility analysis based on RCM and DCM For a feasible separation the material balances should be fulfilled: D, x D F = D + B F, z F F z F = D x D + B x B Feasibility rules a) The top (x D ) and bottom (x B ) compositions must lie in a straight line through feed (z F ) B, x B x B b) The top (x D ) and bottom (x B ) compositions must lie on the same residue (distillation) curve x D Products x D and x B must lie on the same distillation region 15

16 Feasibility analysis based on RCM and DCM Zeotropic mixture No distillation boundaries Only one distillation region exists No limitations regarding possible products independently of feed location Direct split: The most volatile is taken at the first column Indirect split: The less volatile is taken at the first column F F 16

17 Feasibility analysis based on RCM and DCM Azeotropic mixtures One boundary exists (AzAC AzAB) A Two distillation regions (I and II) Different products for feed in regions I and II AzAC F 1 AzAB Feed F 1 in Area I o AzAC as top product o Component A as bottom product C F 2 B Feed F 2 in Area II AzAC as top product Component B as bottom product 17

18 Azeotropic distillation methods 1) Pressure swing distillation No entrainer required 2) Homogeneous azeotropic (homoazeotropic) distillation 3) Heterogeneous azeotropic (heteroazeotropic) distillation 4) Extractive distillation Entrainer enhanced methods 18

19 1) Pressure swing distillation Principle: Overcome the azeotropic composition by changing the system pressure Key factors: Azeotrope sensitive to pressure changes, recycle ratio which increases costs Application: Tetrahydrofuran/water * * Stichlmair and Fair, Distillation: Principles and practice, Wiley-VCH, (1998) 19

20 2) Homogeneous azeotropic distillation Definition: o Entrainer completely miscible with the original components o Entrainer may (or not) form additional azeotropes with the original components o The distillation is carried out in a sequence of columns F + E E 2 Principle: o The addition of the entrainer results in a residue curve map promising for separation o Both original components must belong to the same distillation region 20

21 Feasibility for homogeneous azeotropic distillation Example Use of intermediate entrainer Original components A and B form a min. Az AB Components A and B belong to the same distillation region F D 1 Original feed (F) is close to the azeotrope Az AB Total feed (F ) is a mix of fresh feed (F) and entrainer (E) Component A is taken as bottom product in Column 1 A AzAB=F D 1 B B Component B is taken as top product in Column 2 Entrainer (E) is recovered as bottom product in Column 2 F F 1 2 Entrainer (E) is recycled to Column 1 Applicability of homoazeotropic distillation is limited Restrictive feasibility rules (intermediate entrainers are rare) Other distillation methods are preferably applied A E 21

22 3) Heterogeneous azeotropic distillation Definition: o Entrainer is immiscible and forms azeotrope with at least one of the original azeotropic components o The distillation is carried out in a combined columndecanter column o Entrainer is recovered and recycled to the first column Principle: o Liquid-liquid immiscibilities are used to overcome azeotropic compositions o Distillation boundaries can be crossed by immiscibility Applicability: o Widely used in the industry o One of the oldest methods of azeotropic distillation 22

23 Classic example: Ethanol/water + benzene (E) 1) Preconcentrator Aqueous feed dilute in EtOH (F1) EtOH-Water azeotrope at top (D1) Pure water at bottom (B1) 2) Azeotropic column Ternary heterogeneous azeotrope (A12E) at top Splits in two liquid phases in a decanter Benzene-rich phase is recycled at the top Pure EtOH is taken at bottom (B2) Benzene 3) Entrainer recovery column Aqueous phase from decanter is column feed Pure water is taken at the bottom (B3) Top product (D3) is close to the EtOH-water azeotrope + some benzene left A12E H 2 O EtOH 23

24 4) Extractive distillation Definition: o Heavy entrainer is used with high boiling point o Distillation is carried out in a two-feed column with a heavy entrainer added continously at the top o Entrainer is recovered in a second column Principle: o The entrainer alters the relative volatility of the original components o The entrainer has a substantial higher affinity to one of the original components and extracts it downwards the azeotropic column Applicability: o Most widely used method in the industry 24

25 Feasibility and synthesis for extractive distillation Pure component 1 (D1) is taken as top product from extractive column Entrainer extracts component 2 at the bottom (B1) Entrainer recovery column separates entrainer from component 2 Pure entrainer (E) is recovered at bottom (B2) and used as reflux in extractive column Rectifying section Rectifying section Binary feed (1 & 2) F Bottom section Bottom section 25

26 Examples from Oil & Gas CRAIER plant at Kårstø A common azeotrope in oil and gas industry is the ethane / CO 2 azeotrope CO 2 has a volatility between methane and ethane CO 2 distributes between natural gas and NGL in a gas processing plant CO 2 C1 C2 C3 * Anette Kornberg, Equation of State for the System CO2 and Ethane, Project report, NTNU, Dec

27 CO 2 Removal and Increased Ethane Recovery (CRAIER) 27

28 CRAIER column Az C 2 /CO 2 ~ 50 mol% CO 2 C 2 + CO 2 (+ C1) ~ 20 mol% CO 2 C 2 product (pure) 28

29 Examples from Oil & Gas Ryan Holmes process Invented by Jim Ryan and Art Holmes* Cryogenic distillation process for the removal of CO 2 from natural gas Suitable for removing high CO 2 contents from natural gas Uses extractive distillation to break the CO 2 / C2 azeotrope Uses Natural Gas Liquid (NGL) as entrainer, which is an internal product of the process Various configurations with 2, 3 and 4 columns * A. S. Holmes, J. M. Ryan, Cryogenic distillation separation of acid gases from methane, US patent,

30 Added entrainer De-C1 column Extractive column Entrainer recovery column CO 2 /C 2+ C 2+ C 4+ Entrainer (C4+) recycle 30

31 MTBE Production and Separation Unit Azeo C4-MeOH + water (E) Feed C3 C5+ MTBE methanol MeOHwater 31

32 Process description Feed to 1 st separation column C3 C4 (with excess isobutylene) C5+ Water Methanol First Column (Distillation Column) Bottom: MTBE Top: C4 methanol azeotrope Second Column (Extraction Column) Addition of water countercurrent to flow Methanol has more affinity for water pass to aqueous phase Top: Raffinate (C3,C4,C5+) Bottom: Methanol/Water Third Column (Distillation Column) Top: methanol Bottom: Water 32

33 Summary Separation of azeotropic mixtures is a topic of great practical and industrial interest Azeotropic mixtures are impossible to separate by ordinary distillation, but may be effectively be separated by adding a third component, called entrainer Residue curve maps (RCM) and distillation curve maps (DCM) are representations of the thermodynamic behavior (VLE and VLLE) of azeotropic mixtures RCM and DCM are used to identify feasible distillation schemes 33

34 Summary Homogeneous azeotropic distillation o Only few RCM and DCM lead to feasible schemes o Limiting use in the industry Heteroazeotropic distillation o Ordinary distillation combined with a decanter is used o Liquid-liquid immiscibilities are used to overcome azeotropic compositions o Method widely used in the industry Extractive distillation o Heavy entrainer used that extracts one of the original components and enhances separation o Broad range of feasible entrainers (no liquid-liquid immiscibility required) o The most widely used method in the industry 34

35 Presenters name: Dr. Stathis Skouras Presenters title: Principal Researcher Tel:

Separation of ternary heteroazeotropic mixtures in a closed multivessel batch distillation decanter hybrid

Separation of ternary heteroazeotropic mixtures in a closed multivessel batch distillation decanter hybrid Chemical Engineering and Processing 43 (2004) 291 304 Separation of ternary heteroazeotropic mixtures in a closed multivessel batch distillation decanter hybrid S. Skouras, S. Skogestad Norwegian University

More information

Azeotropic distillation Example 1

Azeotropic distillation Example 1 Azeotropic distillation Example 1 Separate water from iso-butanol. The phase behavior for this mixture is interesting. There is a minimum boiling azeotrope formed as well as a liquid-liquid phase separation

More information

On the Synthesis of Distillation Sequences for Mixtures of Water, Hydrogen Chloride and Hydrogen Fluoride P. Pöllmann, SGL GROUP A.J.

On the Synthesis of Distillation Sequences for Mixtures of Water, Hydrogen Chloride and Hydrogen Fluoride P. Pöllmann, SGL GROUP A.J. On the Synthesis of Distillation Sequences for Mixtures of Water, Hydrogen Chloride and Hydrogen Fluoride P. Pöllmann, SGL GROUP A.J. Gerbino, AQSim (Speaker) Problem Statement Given... An aqueous feed

More information

Shortcut Design Method for Columns Separating Azeotropic Mixtures

Shortcut Design Method for Columns Separating Azeotropic Mixtures 3908 Ind. Eng. Chem. Res. 2004, 43, 3908-3923 Shortcut Design Method for Columns Separating Azeotropic Mixtures Guilian Liu, Megan Jobson,*, Robin Smith, and Oliver M. Wahnschafft Department of Process

More information

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Outline: Introduction to multicomponent distillation Phase Equilibria in Multicomponent Distillation (Pg. 737) Bubble-point and dew-point calculation

More information

Separation Trains Azeotropes. S,S&L Chapter 9.5 Terry A. Ring Chemical Engineering University of Utah

Separation Trains Azeotropes. S,S&L Chapter 9.5 Terry A. Ring Chemical Engineering University of Utah Separation Trains Azeotropes S,S&L Chapter 9.5 Terry A. Ring Chemical Engineering University of Utah Distillation Recycle Loops Closing Recycle Loops Matrix Mathematics Without Recycle Loop [P] x = y Straight

More information

Make distillation boundaries work for you!

Make distillation boundaries work for you! Make distillation boundaries work for you! Michaela Tapp*, Simon T. Holland, Diane Hildebrandt and David Glasser Centre for Optimization, Modeling and Process Synthesis School of Process and Materials

More information

Dividing wall columns for heterogeneous azeotropic distillation

Dividing wall columns for heterogeneous azeotropic distillation Dividing wall columns for heterogeneous azeotropic distillation Quang-Khoa Le 1, Ivar J. Halvorsen 2, Oleg Pajalic 3, Sigurd Skogestad 1* 1 Norwegian University of Science and Technology (NTNU), Trondheim,

More information

VAPOR LIQUID EQUILIBRIUM AND RESIDUE CURVE MAP FOR ACETIC ACID-WATER-ETHYL ACETATE TERNARY SYSTEM

VAPOR LIQUID EQUILIBRIUM AND RESIDUE CURVE MAP FOR ACETIC ACID-WATER-ETHYL ACETATE TERNARY SYSTEM VAPOR LIQUID EQUILIBRIUM AND RESIDUE CURVE MAP FOR ACETIC ACID-WATER-ETHYL ACETATE TERNARY SYSTEM Desai Sunita. S.,Sinhgad College of Engineering, Gadekar Shamla V.,BVDUCOE, Pune, P.L.V.N. Saichandra,

More information

Distillation is the most widely used separation

Distillation is the most widely used separation Selecting Entrainers for Vivek Julka Madhura Chiplunkar Lionel O Young ClearBay Technology, Inc. This systematic methodology uses residue curve maps to identify and evaluate substances that can facilitate

More information

New Algorithm for the Determination of Product Sequences of Batch Azeotropic and Pressure Swing Distillation

New Algorithm for the Determination of Product Sequences of Batch Azeotropic and Pressure Swing Distillation New Algorithm for the Determination of Product Sequences of Batch Azeotropic and Pressure Swing Distillation Laszlo Hegely, Peter Lang* Dept. of Building Services and Process Engineering, Budapest University

More information

Feasibility of separation of ternary mixtures by pressure swing batch distillation

Feasibility of separation of ternary mixtures by pressure swing batch distillation 10th nternational Symposium on Process Systems Engineering - PSE2009 Rita Maria de Brito Alves, Claudio Augusto Oller do Nascimento and Evaristo Chalbaud Biscaia Jr. (Editors) 2009 Elsevier B.V. All rights

More information

Entrainer Selection Rules for the Separation of Azeotropic and Close-Boiling-Temperature Mixtures by Homogeneous Batch Distillation Process

Entrainer Selection Rules for the Separation of Azeotropic and Close-Boiling-Temperature Mixtures by Homogeneous Batch Distillation Process Ind. Eng. Chem. Res. 2001, 40, 2729-2741 2729 Entrainer Selection Rules for the Separation of Azeotropic and Close-Boiling-Temperature Mixtures by Homogeneous Batch Distillation Process Ivonne Rodríguez-Donis,,

More information

Heterogeneous Azeotropic Distillation Operational Policies and Control

Heterogeneous Azeotropic Distillation Operational Policies and Control Heterogeneous Azeotropic Distillation Operational Policies and Control Claudia J. G. Vasconcelos * and Maria Regina Wolf-Maciel State University of Campinas, School of Chemical Engineering, Campinas/SP,

More information

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2 Multicomponent Distillation All Rights Reserved. Armando B. Corripio, PhD, P.E., 2013 Contents Multicomponent Distillation... 1 1 Column Specifications... 2 1.1 Key Components and Sequencing Columns...

More information

BatchExtractiveDistillationwithLightEntrainer

BatchExtractiveDistillationwithLightEntrainer V. VARGA et al., Batch Extractive Distillation with Light Entrainer, Chem. Biochem. Eng. Q. 20 (1) XXX XXX (2006) 1 BatchExtractiveDistillationwithLightEntrainer V. Varga,*, ** E. Rev,*,+ V. Gerbaud,**

More information

Distillation is a method of separating mixtures based

Distillation is a method of separating mixtures based Distillation Distillation is a method of separating mixtures based on differences in their volatilities in a boiling liquid mixture. Distillation is a unit operation, or a physical separation process,

More information

AJCHE 2012, Vol. 12, No. 1, Synthesis of Ternary Homogeneous Azeotropic Distillation Sequences: Entrainer Selection

AJCHE 2012, Vol. 12, No. 1, Synthesis of Ternary Homogeneous Azeotropic Distillation Sequences: Entrainer Selection AJCHE 2012, Vol. 12, No. 1, 20 33 Synthesis of Ternary Homogeneous Azeotropic Distillation Sequences: Entrainer Selection Sutijan *,1 Megan Jobson 2 Robin Smith 2 1 Department of Chemical Engineering,

More information

An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method

An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method Syed Mujahed Ali Rizwan Senior Lecturer in Chemistry Challenger College, Moinabad, Hyderabad. Abstract: In this

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 5 Distillation Lecture - 5 Fractional Distillation Welcome to the

More information

Level 4: General structure of separation system

Level 4: General structure of separation system Level 4: General structure of separation system Cheng-Ching Yu Dept of Chem. Eng. National Taiwan University ccyu@ntu.edu.tw 02-3365-1759 1 Separation Systems Typical reaction/separation structure Remark:

More information

DETERMINATION OF OPTIMAL ENERGY EFFICIENT SEPARATION SCHEMES BASED ON DRIVING FORCES

DETERMINATION OF OPTIMAL ENERGY EFFICIENT SEPARATION SCHEMES BASED ON DRIVING FORCES DETERMINATION OF OPTIMAL ENERGY EFFICIENT SEPARATION SCHEMES BASED ON DRIVING FORCES Abstract Erik Bek-Pedersen, Rafiqul Gani CAPEC, Department of Chemical Engineering, Technical University of Denmark,

More information

Prof. Dr. Peter Mizsey

Prof. Dr. Peter Mizsey BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF CHEMICAL ENGINEERING RESEARCH GROUP OF TECHNICAL CHEMISTRY OF HUNGARIAN ACADEMY OF SCIENCES Separation of Non-ideal Quaternary Mixtures with

More information

Minimum Energy Demand and Split Feasibility for a Class of Reactive Distillation Columns

Minimum Energy Demand and Split Feasibility for a Class of Reactive Distillation Columns Minimum Energy emand and Split easibility for a Class of Reactive istillation Columns Rosa Y. Urdaneta, Jürgen ausa + and olfgang Marquardt * Lehrstuhl für Prozesstechnik RTH Aachen University, Templergraben

More information

THERMODYNAMIC INSIGHT ON EXTRACTIVE DISTILLATION WITH ENTRAINER FORMING NEW AZEOTROPES

THERMODYNAMIC INSIGHT ON EXTRACTIVE DISTILLATION WITH ENTRAINER FORMING NEW AZEOTROPES Distillation Absorption 2010 A.. de Haan, H. Kooijman and A. Górak (Editors) All rights reserved by authors as per DA2010 copyright notice THERMODYNAMIC INSIGHT ON EXTRTIVE DISTILLATION WITH ENTRAINER

More information

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM I-Lung Chien and Kai-Luen Zeng Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei

More information

Feasibility Study of Heterogeneous Batch Extractive Distillation

Feasibility Study of Heterogeneous Batch Extractive Distillation European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 2005 Elsevier Science B.V. All rights reserved. Feasibility Study of Heterogeneous Batch Extractive

More information

Phase Separation Degree of Freedom Analysis. Binary Vapor-Liquid Systems. Azeotropic Systems. - Gibbs phase rule F C P 2 -General analysis

Phase Separation Degree of Freedom Analysis. Binary Vapor-Liquid Systems. Azeotropic Systems. - Gibbs phase rule F C P 2 -General analysis Lecture 5. Single Equilibrium Stages (1) Phase Separation [Ch. 4] Degree of Freedom Analysis - Gibbs phase rule F CP2 -General analysis Binary Vapor-Liquid Systems - Examples of binary system - Phase equilibrium

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 5 Distillation Lecture - 6 Fractional Distillation: McCabe Thiele

More information

EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION

EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION Santanu Bandyopadhyay Energy Systems Engineering and Department of Mechanical Engineering, Indian Institute of Technology, Bombay,

More information

Synthesis of Azeotropic Separation Systems by Case-Based Reasoning

Synthesis of Azeotropic Separation Systems by Case-Based Reasoning Synthesis of Azeotropic Separation Systems by Case-Based Reasoning Timo Seuranen 1, Elina Pajula 2, Markku Hurme 1 1 Helsinki University of Technology, Laboratory of Plant Design, P.O. Box 6100, FIN-02015

More information

THERMODYNAMIC ANALYSIS OF MULTICOMPONENT DISTILLATION-REACTION PROCESSES FOR CONCEPTUAL PROCESS DESIGN

THERMODYNAMIC ANALYSIS OF MULTICOMPONENT DISTILLATION-REACTION PROCESSES FOR CONCEPTUAL PROCESS DESIGN THERMODYNAMIC ANALYSIS OF MULTICOMPONENT DISTILLATION-REACTION PROCESSES FOR CONCEPTUAL PROCESS DESIGN Oliver Ryll, Sergej Blagov 1, Hans Hasse Institute of Thermodynamics and Thermal Process Engineering,

More information

Absorption/Stripping

Absorption/Stripping Absorption/Stripping Gas-liquid separation processes (Ch. 10) Cooling (condenser) Feed A+B Distillation(Ch.11) Absorption (Ch.10) Stripping (Ch.10) B COUNTER-CURRENT MULTISTAGE CONTACT OF GAS AND LIQUID

More information

EXPERIMENTAL SIMULATION OF DISTILLATION COLUMN PROFILE MAPS. Tshepo Sehole David Modise

EXPERIMENTAL SIMULATION OF DISTILLATION COLUMN PROFILE MAPS. Tshepo Sehole David Modise EXPERIMENTAL SIMULATION OF DISTILLATION COLUMN PROFILE MAPS Tshepo Sehole David Modise A thesis submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg,

More information

Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive Case

Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive Case F. O. BARROSO-MUÑOZ et al., Thermally Coupled Distillation Systems: Study of, Chem. Biochem. Eng. Q. 21 (2) 115 120 (2007) 115 Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive

More information

Triple Column Pressure-Swing Distillation for Ternary Mixture of Methyl Ethyl Ketone /Isopropanol /Ethanol

Triple Column Pressure-Swing Distillation for Ternary Mixture of Methyl Ethyl Ketone /Isopropanol /Ethanol 649 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 61, 2017 Guest Editors: Petar S Varbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří J Klemeš Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-51-8;

More information

Azeotropic phase equilibrium diagrams: a survey

Azeotropic phase equilibrium diagrams: a survey Chemical Engineering Science 58 (2003) 903 953 Review Azeotropic phase equilibrium diagrams: a survey V. N. Kiva, E. K. Hilmen 2, S. Skogestad Department of Chemical Engineering, Norwegian University of

More information

Vapor-liquid equilibrium

Vapor-liquid equilibrium Vapor-liquid equilibrium From Wikipedia, the free encyclopedia Vapor-liquid equilibrium, abbreviated as VLE by some, is a condition where a liquid and its vapor (gas phase) are in equilibrium with each

More information

Lecture 29.Manufacture of Ethanol from Molasses

Lecture 29.Manufacture of Ethanol from Molasses Lecture 29.Manufacture of Ethanol from Molasses 29.1 Introduction Ethanol is a volatile, flammable, clear, colourless liquid. Ethanol is a good solvent. It is also used as a germicide, beverage, antifreeze,

More information

ENTRAINER-ENHANCED REACTIVE DISTILLATION

ENTRAINER-ENHANCED REACTIVE DISTILLATION ENTRAINER-ENHANCED REACTIVE DISTILLATION Alexandre C. DIMIAN, Florin OMOTA and Alfred BLIEK Department of Chemical Engineering, University of Amsterdam, Nieuwe Achtergracht 66, 08 WV Amsterdam, The Netherlands

More information

EXPERIMENTAL SIMULATION OF DISTILLATION COLUMN PROFILE MAPS. Tshepo Sehole David Modise

EXPERIMENTAL SIMULATION OF DISTILLATION COLUMN PROFILE MAPS. Tshepo Sehole David Modise EXPERIMENTAL SIMULATION OF DISTILLATION COLUMN PROFILE MAPS Tshepo Sehole David Modise A thesis submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg,

More information

DISTILLATION REGIONS FOR NON-IDEAL TERNARY MIXTURES

DISTILLATION REGIONS FOR NON-IDEAL TERNARY MIXTURES DISTILLATION REGIONS FOR NON-IDEAL TERNARY MIXTURES Lechoslaw J. Krolikowski Institute of Chemical Engineering, Wroclaw University of Technology, Wroclaw, Poland ABSTRACT This work concerns the determination

More information

BOUNDARY VALUE DESIGN METHOD FOR COMPLEX DEMETHANIZER COLUMNS

BOUNDARY VALUE DESIGN METHOD FOR COMPLEX DEMETHANIZER COLUMNS Distillation Absorption 2010 A.B. de Haan, H. Kooijman and A. Górak (Editors) All rights reserved by authors as per DA2010 copyright notice BOUNDARY AUE DESIGN METHOD FOR COMPEX DEMETHANIZER COUMNS Muneeb

More information

Batch extractive distillation of mixture methanol-acetonitrile using aniline as a asolvent

Batch extractive distillation of mixture methanol-acetonitrile using aniline as a asolvent 48 Pol. J. Chem. Polish Tech., Journal Vol. 14, of No. Chemical 3, 2012 Technology, 14, 3, 48 53, 10.2478/v10026-012-0083-4 Batch extractive distillation of mixture methanol-acetonitrile using aniline

More information

SIMULATION ANALYSIS OF FULLY THERMALLY COUPLED DISTILLATION COLUMN

SIMULATION ANALYSIS OF FULLY THERMALLY COUPLED DISTILLATION COLUMN Int. J. Chem. Sci.: 14(3), 2016, 1621-1632 ISSN 0972-768X www.sadgurupublications.com SIMULATION ANALYSIS OF FULLY THERMALLY COUPLED DISTILLATION COLUMN ASMITA PRAVIN PATIL * and S. M. JADHAV Chemical

More information

Rate-based design of integrated distillation sequences

Rate-based design of integrated distillation sequences 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Rate-based design of integrated distillation sequences

More information

Simulation of Ethanol Dehydration Using Cyclohexane as an Entrainer

Simulation of Ethanol Dehydration Using Cyclohexane as an Entrainer Simulation of Ethanol Dehydration Using Cyclohexane as an Entrainer 2013 년 9 월 23 일 ( 월 ) 공주대학교화학공학부조정호 Limit of Distillation by Azeotrope 1.0 Ethanol / Water System Distillation range is restricted by

More information

Solving mass transfer problems on the computer using Mathcad

Solving mass transfer problems on the computer using Mathcad Solving mass transfer problems on the computer using Mathcad E. N. Bart, J. Kisutcza NJIT, Department of Chemical Engineering, University Heights, Newark NJ 712-1982 Tel 973 596 2998, e-mail: Bart@NJIT.edu

More information

EXPERIMENTAL COLUMN PROFILE MAPS WITH VARYING DELTA POINTS IN A CONTINUOUS COLUMN FOR THE ACETONE METHANOL ETHANOL SYSTEM

EXPERIMENTAL COLUMN PROFILE MAPS WITH VARYING DELTA POINTS IN A CONTINUOUS COLUMN FOR THE ACETONE METHANOL ETHANOL SYSTEM EXPERIMENTAL COLUMN PROFILE MAPS WITH VARYING DELTA POINTS IN A CONTINUOUS COLUMN FOR THE ACETONE METHANOL ETHANOL SYSTEM Cameron Wilson, Diane Hildebrandt, David Glasser Centre of Process and Materials

More information

Steady State Design for the Separation of Acetone-Chloroform Maximum Boiling Azeotrope Using Three Different Solvents

Steady State Design for the Separation of Acetone-Chloroform Maximum Boiling Azeotrope Using Three Different Solvents Korean Chem. Eng. Res., 55(4), 490-496 (2017) https://doi.org/10.9713/kcer.2017.55.4.490 PISSN 0304-128X, EISSN 2233-9558 Steady State Design for the Separation of Acetone-Chloroform Maximum Boiling Azeotrope

More information

LIQUID-LIQUID EQUILIBRIUM FOR THE DESIGN OF EXTRACTION COLUMN

LIQUID-LIQUID EQUILIBRIUM FOR THE DESIGN OF EXTRACTION COLUMN LIQUID-LIQUID EQUILIBRIUM FOR THE DESIGN OF EXTRACTION COLUMN Magdah Abdelbasit Nory Salih Faculty of Engineering, Red sea University, Port Sudan- SUDAN ABSTRACT Liquid-Liquid Extraction is a mass transfer

More information

The solvent selection expert system for azeotropic and extractive distillation

The solvent selection expert system for azeotropic and extractive distillation The solvent selection expert system for azeotropic and extractive distillation by Zuyin Yang A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical

More information

"Multiple Steady States in Heterogeneous Azeotropic Distillation"

Multiple Steady States in Heterogeneous Azeotropic Distillation TECHNICAL MEMORANDUM NO. CIT-CDS 94-012 July 1994 "Multiple Steady States in Heterogeneous Azeotropic Distillation" Nikolaos Bekiaris, George A. Meski and Manfred Morari Control and Dynamical Systems California

More information

Gilliland Correlation for Actual Reflux Ratio and Theoretical Stages Feed-Stage Location

Gilliland Correlation for Actual Reflux Ratio and Theoretical Stages Feed-Stage Location Lecture 4. Approximate Multicomponent Methods (2) [Ch. 9] Minimum Reflux - In binary systems - In multicomponent systems - Underwood equation Gilliland Correlation for Actual Reflux Ratio and Theoretical

More information

Simulation and Analysis of Ordinary Distillation of Close Boiling Hydrocarbons Using ASPEN HYSYS

Simulation and Analysis of Ordinary Distillation of Close Boiling Hydrocarbons Using ASPEN HYSYS International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 16 No. 4 Jun. 2016, pp. 805-813 2016 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Simulation

More information

Distillation. Presented by : Nabanita Deka

Distillation. Presented by : Nabanita Deka Distillation OPTIMIZATION FOR MAXIMISATION Presented by : Nabanita Deka LPG department OIL INDIA LIMITED DATED-04.03.2011 Basics of mass transfer Mass transfer : Transfer of material from one homogeneous

More information

Systems Engineering Spring Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant. Date: 2/25/00 Due: 3/3/00

Systems Engineering Spring Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant. Date: 2/25/00 Due: 3/3/00 10.551 Systems Engineering Spring 2000 Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant Date: 2/25/00 Due: 3/3/00 c Paul I. Barton, 14th February 2000 At our Nowhere City

More information

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author s version

More information

See section and the dew and bubble point calculations in example 11.9.

See section and the dew and bubble point calculations in example 11.9. Solution 1.1 See section 11.3.2 and the dew and bubble point calculations in example 11.9. This type of problem is best solved using a spread-sheet, see the solution to problem 11.2. Solution 11.2 This

More information

The most important nomenclature used in this report can be summarized in:

The most important nomenclature used in this report can be summarized in: Notation The most important nomenclature used in this report can be summarized in: V Vapor flow rate V T Vapor flow rate in the top L Liquid flow rate D Distillation product B Bottom product q Liquid fraction

More information

Distillation. Senior Design CHE 396 Andreas Linninger. Innovative Solutions. Michael Redel Alycia Novoa Tanya Goldina Michelle Englert

Distillation. Senior Design CHE 396 Andreas Linninger. Innovative Solutions. Michael Redel Alycia Novoa Tanya Goldina Michelle Englert Distillation Senior Design CHE 396 Andreas Linninger Innovative Solutions Michael Redel Alycia Novoa Tanya Goldina Michelle Englert Table of Contents Introduction 3 Flowsheet 4 Limitations 5 Applicability

More information

By Simon Thornhill Holland. A thesis submitted for the degree of Doctor of Philosophy

By Simon Thornhill Holland. A thesis submitted for the degree of Doctor of Philosophy Column Profile Maps: A Tool for the Design and Analysis of Complex Distillation Systems By Simon Thornhill Holland A thesis submitted for the degree of Doctor of Philosophy To The Department of Chemical

More information

CH2351 Chemical Engineering Thermodynamics II Unit I, II Phase Equilibria. Dr. M. Subramanian

CH2351 Chemical Engineering Thermodynamics II Unit I, II   Phase Equilibria.   Dr. M. Subramanian CH2351 Chemical Engineering Thermodynamics II Unit I, II Phase Equilibria Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

Comparison of Conventional Extractive Distillation and Heat Integrated Extractive Distillation for Separating Tetrahydrofuran/Ethanol/Water

Comparison of Conventional Extractive Distillation and Heat Integrated Extractive Distillation for Separating Tetrahydrofuran/Ethanol/Water 751 A publication of CHEMICAL ENGINEERINGTRANSACTIONS VOL. 61, 2017 Guest Editors:Petar SVarbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří JKlemeš Copyright 2017, AIDIC ServiziS.r.l. ISBN978-88-95608-51-8;

More information

A New Batch Extractive Distillation Operational Policy for Methanol Recovery

A New Batch Extractive Distillation Operational Policy for Methanol Recovery A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 35, 2013 Guest Editors: Petar Varbanov, Jiří Klemeš, Panos Seferlis, Athanasios I. Papadopoulos, Spyros Voutetakis Copyright 2013, AIDIC Servizi

More information

On the Topology of Ternary VLE Diagrams: Elementary Cells

On the Topology of Ternary VLE Diagrams: Elementary Cells On the Topology of Ternary VLE Diagrams: Elementary Cells E. K. Hilmen, V. N. Kiva Λ and S. Skogestad y Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim,

More information

Pressure Swing Distillation with Aspen Plus V8.0

Pressure Swing Distillation with Aspen Plus V8.0 Pressure Swing Distillation with Aspen Plus V8.0 1. Lesson Objectives Aspen Plus property analysis RadFrac distillation modeling Design Specs NQ Curves Tear streams Understand and overcome azeotrope Select

More information

PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS

PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS Jaime Benitez iwiley- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Preface Nomenclature xiii xv 1. FUNDAMENTALS OF MASS TRANSFER 1

More information

Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process

Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process Nikhil V. Sancheti Department of Chemical Engineering L.I.T., Nagpur, Maharashtra,

More information

Approximate Methods Fenske-Underwood-Gilliland (FUG) Method Selection of Two Key Components

Approximate Methods Fenske-Underwood-Gilliland (FUG) Method Selection of Two Key Components Lecture 3. Approximate Multicomponent Methods () [Ch. 9] Approximate Methods Fenske-Underwood-Gilliland (FUG) Method Selection of Two Key Components Column Operating Pressure Fenske Equation for Minimum

More information

Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products and Generalized Petlyuk Arrangements

Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products and Generalized Petlyuk Arrangements 616 Ind. Eng. Chem. Res. 2003, 42, 616-629 Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products and Generalized Petlyuk Arrangements Ivar J. Halvorsen and Sigurd Skogestad*

More information

RESIDUE CURVE MAPPING

RESIDUE CURVE MAPPING ()pltnuzalloll o/ Desqpi & ~a11c>n in Reactuie Dlsl!llallon 65 CHAPfER V RESIDUE C URVE MAPPING RESIDUE CURVE MAPPING Application11 of residue curve mapping to RD processes have recently been reported,

More information

Distillation. Sep-tek. Ch.11 (continued) Distillation (Multistage with reflux) Sigurd Skogestad. Separation of liquid mixtures by repeated evaporation

Distillation. Sep-tek. Ch.11 (continued) Distillation (Multistage with reflux) Sigurd Skogestad. Separation of liquid mixtures by repeated evaporation Sep-tek. Ch.11 (continued) Distillation (Multistage with reflux) Sigurd Skogestad Distillation Separation of liquid mixtures by repeated evaporation multi-stage with reflux Old name: Rectification Basis:

More information

Practical residue curve map analysis applied to solvent recovery in non ideal. binary mixtures by batch distillation processes

Practical residue curve map analysis applied to solvent recovery in non ideal. binary mixtures by batch distillation processes Practical residue curve map analysis applied to solvent recovery in non ideal binary mixtures by batch distillation processes Gerbaud Vincent 1, Joulia Xavier 1, Rodriguez-Donis Ivonne 2, Baudouin Olivier

More information

ERT 313 BIOSEPARATION ENGINEERING EXTRACTION. Prepared by: Miss Hairul Nazirah Abdul Halim

ERT 313 BIOSEPARATION ENGINEERING EXTRACTION. Prepared by: Miss Hairul Nazirah Abdul Halim ERT 313 BIOSEPARATION ENGINEERING EXTRACTION Prepared by: Miss Hairul Nazirah Abdul Halim Definition of Extraction Liquid-Liquid extraction is a mass transfer operation in which a liquid solution (the

More information

DEVELOPMENT OF A ROBUST ALGORITHM TO COMPUTE REACTIVE AZEOTROPES

DEVELOPMENT OF A ROBUST ALGORITHM TO COMPUTE REACTIVE AZEOTROPES Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 23, No. 03, pp. 395-403, July - September, 2006 DEVELOPMENT OF A ROBUST ALGORITHM TO COMPUTE REACTIVE

More information

Effect of Li-Br salt on azeotropic mixture of formic acid-water by extractive distillation

Effect of Li-Br salt on azeotropic mixture of formic acid-water by extractive distillation Effect of Li-Br salt on azeotropic mixture of formic acid-water by extractive distillation Prajapati Chintan K 1, Prof R.P.Bhatt 2 1 Student, Chemical engineering, L.D.College of engineering Ahmedabad,

More information

MODULE 5: DISTILLATION

MODULE 5: DISTILLATION MOULE 5: ISTILLATION LECTURE NO. 3 5.2.2. Continuous distillation columns In contrast, continuous columns process a continuous feed stream. No interruptions occur unless there is a problem with the column

More information

Liquid-liquid extraction

Liquid-liquid extraction Liquid-liquid extraction Basic principles In liquid-liquid extraction, a soluble component (the solute) moves from one liquid phase to another. The two liquid phases must be either immiscible, or partially

More information

Distillation. This is often given as the definition of relative volatility, it can be calculated directly from vapor-liquid equilibrium data.

Distillation. This is often given as the definition of relative volatility, it can be calculated directly from vapor-liquid equilibrium data. Distillation Distillation may be defined as the separation of the components of a liquid mixture by a process involving partial vaporization. The vapor evolved is usually recovered by condensation. Volatility

More information

Synthesis of separation processes by using case-based reasoning

Synthesis of separation processes by using case-based reasoning Computers and Chemical Engineering 25 (2001) 775 782 www.elsevier.com/locate/compchemeng Synthesis of separation processes by using case-based reasoning Elina Pajula *, Timo Seuranen, Tuomas Koiranen,

More information

Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module -5 Distillation Lecture - 8 Fractional Distillation: Subcooled Reflux,

More information

A Sequential and Hierarchical Approach for the Feasibility Analysis and the Preliminary Synthesis and Design of Reactive Distillation Processes

A Sequential and Hierarchical Approach for the Feasibility Analysis and the Preliminary Synthesis and Design of Reactive Distillation Processes A Sequential and Hierarchical Approach for the Feasibility Analysis and the Preliminary Synthesis and Design of Reactive Distillation Processes Raphaële Thery, Xuân-Mi Meyer 1, Xavier Joulia Laboratoire

More information

This is an author-deposited version published in : Eprints ID : 15859

This is an author-deposited version published in :   Eprints ID : 15859 Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

IMPROVEMENT OF BATCH DISTILLATION SEPARATION OF AZEOTROPIC MIXTURES

IMPROVEMENT OF BATCH DISTILLATION SEPARATION OF AZEOTROPIC MIXTURES BUDAPET UNIVERITY OF TECHNOLOGY AND ECONOMIC DOCTORAL COUNCIL OF THE FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF BUILDING ERVICE AND PROCE ENGINEERING László Hégely IMPROVEMENT OF BATCH DITILLATION

More information

METHYL ACETATE REACTIVE DISTILLATION PROCESS MODELING, SIMULATION AND OPTIMIZATION USING ASPEN PLUS

METHYL ACETATE REACTIVE DISTILLATION PROCESS MODELING, SIMULATION AND OPTIMIZATION USING ASPEN PLUS METHYL ACETATE REACTIVE DISTILLATION PROCESS MODELING, SIMULATION AND OPTIMIZATION USING ASPEN PLUS Abdulwahab GIWA Department of Chemical Engineering, Faculty of Engineering, Middle East Technical University,

More information

Chapter 2 Equilibria, Bubble Points, Dewpoints, Flash Calculations, and Activity Coefficients

Chapter 2 Equilibria, Bubble Points, Dewpoints, Flash Calculations, and Activity Coefficients Chapter 2 Equilibria, Bubble Points, Dewpoints, Flash Calculations, and Activity Coefficients 2.1 Vapour Pressure Calculations The basis for all phase equilibrium calculations are the vapour pressures

More information

Optimization study on the azeotropic distillation process for isopropyl alcohol dehydration

Optimization study on the azeotropic distillation process for isopropyl alcohol dehydration Korean J. Chem. Eng., 23(1), 1-7 (2006) Optimization study on the azeotropic distillation process for isopropyl alcohol dehydration Jungho Cho and Jong-Ki Jeon*, Department of Chemi Engineering, Dong Yang

More information

Unit operations are ubiquitous in any chemical process. Equilibrium-Staged Separations using Matlab and Mathematica. ChE class and home problems

Unit operations are ubiquitous in any chemical process. Equilibrium-Staged Separations using Matlab and Mathematica. ChE class and home problems ChE class and home problems The object of this column is to enhance our readers collections of interesting and novel problems in chemical engineering. Problems of the type that can be used to motivate

More information

Hsiao-Ping Huang, Hao-Yeh Lee, and Tang-Kai GauI-Lung Chien

Hsiao-Ping Huang, Hao-Yeh Lee, and Tang-Kai GauI-Lung Chien Article Subscriber access provided by NATIONAL TAIWAN UNIV Design and Control of Acetic Acid Dehydration Column with p-xylene or m-xylene Feed Impurity. 1. Importance of Feed Tray Location on the Process

More information

PRESSURE SWING BATCH DISTILLATION FOR HOMOGENOUS AZEOTROPIC SEPARATION

PRESSURE SWING BATCH DISTILLATION FOR HOMOGENOUS AZEOTROPIC SEPARATION PRESSURE SWING BATCH DISTILLATION FOR HOMOGENOUS AZEOTROPIC SEPARATION Jens-Uwe Repke 1, Andreas Klein 1, David Bogle 2,Günter Wozny 1 1 Technical University Berlin, Department of Process- and Plant Dynamics,

More information

This is an author-deposited version published in: Eprints ID: 11119

This is an author-deposited version published in:   Eprints ID: 11119 Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation

Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation Korean J. Chem. Eng., 17(6), 712-718 (2000) Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation Yu-Jung Choi, Tae-In Kwon and Yeong-Koo Yeo Department of Chemical Engineering,

More information

Distillation Course MSO2015

Distillation Course MSO2015 Distillation Course MSO2015 Distillation Distillation is a process in which a liquid or vapour mixture of two or more substances is separated into its component fractions of desired purity, by the application

More information

INDUSTRIAL EXPERIENCE WITH HYBRID DISTILLATION PERVAPORATION OR VAPOR PERMEATION APPLICATIONS

INDUSTRIAL EXPERIENCE WITH HYBRID DISTILLATION PERVAPORATION OR VAPOR PERMEATION APPLICATIONS INDUSTRIAL EXPERIENCE WITH HYBRID DISTILLATION PERVAPORATION OR VAPOR PERMEATION APPLICATIONS Mario Roza, Eva Maus Sulzer Chemtech AG, Winterthur, Switzerland; E-mails: mario.roza@sulzer.com, eva.maus@sulzer.com

More information

Design and Control Properties of Arrangements for Distillation of Four Component Mixtures Using Less Than N-1 Columns

Design and Control Properties of Arrangements for Distillation of Four Component Mixtures Using Less Than N-1 Columns D. M. MÉNDEZ-VALENCIA et al., Design and Control Properties of Arrangements, Chem. Biochem. Eng. Q. 22 (3) 273 283 (2008) 273 Design and Control Properties of Arrangements for Distillation of Four Component

More information

Basic Concepts in Distillation

Basic Concepts in Distillation 1 Basic Concepts in Distillation 1.1 INTRODUCTION Distillation is a thermal separation method for separating mixtures of two or more substances into its component fractions of desired purity, based on

More information

A case study on separation of IPA-water mixture by extractive distillation using aspen plus

A case study on separation of IPA-water mixture by extractive distillation using aspen plus Research Article International Journal of Advanced Technology and Engineering Exploration, Vol 3(24) ISSN (Print): 2394-5443 ISSN (Online): 2394-7454 http://dx.doi.org/10.19101/ijatee.2016.324004 A case

More information

Effect of the Temperature in the Decanter on Total Annual Cost of the Separation Process for Binary Heterogeneous Azeotropic Mixture

Effect of the Temperature in the Decanter on Total Annual Cost of the Separation Process for Binary Heterogeneous Azeotropic Mixture 1603 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 61, 2017 Guest Editors: Petar S Varbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří J Klemeš Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-51-8;

More information

Minimum Energy Requirements in Complex Distillation Arrangements

Minimum Energy Requirements in Complex Distillation Arrangements Minimum Energy Requirements in Complex Distillation Arrangements by A thesis submitted for the degree of Dr.Ing. May 2001 Department of Chemical Engineering Norwegian University of Science and Technology

More information