Design and Analysis of Divided Wall Column

Size: px
Start display at page:

Download "Design and Analysis of Divided Wall Column"

Transcription

1 Proceedings of the 6th International Conference on Process Systems Engineering (PSE ASIA) June 2013, Kuala Lumpur. Design and Analysis of Divided Wall Column M. Shamsuzzoha, a* Hiroya Seki b, Moonyong Lee c a Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Daharan, Saudi Arabia, mshams@kfupm.edu.sa ( ) b Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Japan c School of Chemical Engineering and Technology, Yeungnam University, Korea Abstract In this study, an efficient design method has been proposed for determining the optimal design structure of the dividing wall column. Preliminary design parameters are fixed on the basis of well-known shortcut method (Fenske-Underwood-Gilliland). The rigorous optimization is used to obtain the optimal design parameters of the divided wall column. Divided wall column has total eight design variables, which affect the energy consumption. The optimal deign could save significant energy consumption in compare to the nominal design based on the shortcut method. The study has been also carried out to investigate the effect of energy supply on product compositions. It is the usual case in the real practice when the column is operated with the energy lower than the optimal energy required during operation. Keywords: divided wall column, Petlyuk column, structure design, shortcut method 1. Introduction It is widely accepted that the distillation is most used separation process and will continue to be an important process for the future because there is currently no other industrially viable alternative. Dividing Wall Columns (DWC) for distillation is currently receiving a lot more attention from industry because of their energy saving capability and capital cost reduction. These reductions occur due to the fact that only one column, reboiler and condenser are needed, as compared to two complete conventional columns when a middle-cut is required. Despite the high potential of the DWC economic benefits, a lack of reliable design methods has prevented their commercial application. In DWCs, the entire separation task occurs in one thermally coupled column shell, which makes much more difficult design structure compared to conventional distillation columns. Accordingly, several studies [1-6] have been conducted to address the DWC design structure. Triantafyllou and Smith [1] proposed a fully thermally couple distillation column (FTCDC) design using a three-column model. The method provides a good basis for investigating the degrees of freedom and the number of trays in an easy manner; however, it requires trial-error steps for matching the compositions of the interlinking streams. Amminudin et al. [3] developed a semi-rigorous method for the initial design of an FTCDC based on the concept of equilibrium stage composition. In their study, the FTCDC was divided into two separate columns to eliminate interlinking and obtain an optimal initial design that could be confirmed through rigorous simulation. Premkumar and Rangaiah [4]

2 398 M. Shamsuzzoha et al. utilized a three-column configuration for the initial design structure of the DWC in their study for the retrofit of a conventional column system to a DWC. The initial structure obtained by a shortcut method was then optimized in a rigorous simulation steps. Recently, Shamsuzzoha and Lee [5,6] proposed an efficient design method for determining the optimal design structure of a dividing wall column. The internal section of the DWC is divided into four separate sections and it matched to the sloppy arrangement with three conventional simple columns. The light and heavy key component mole-fractions are used as the design variables in each column. They found that the structure that gives superior energy efficiency in the shortcut sloppy case also brings superior energy efficiency in the DWC, while the optimal internal flow distribution of the DWC is different from that obtained from the sloppy configuration. It is clear from open literature that there is need of effective design and optimization method of dived wall column. Therefore, the main focus of the present study is to fill this gap and develop a simple procedure to determine the optimal DWC structure. This contains the location of the feed tray in prefractionator, the side-stream product draw tray, vapor and liquid feed stage location to main column, total number of trays in both main and pre-fractionation section, liquid and vapor draw rate. This study is also extended to investigate the effect of energy supply on product compositions. It is the usual case in the real practice when the column is operated with the energy lower than the optimal energy required for operating the column. 2. Divided Wall Column Structure The Petlyuk configuration in Figure 1 represents an arrangement that can separate three or more components using a single reboiler and a single condenser. This configuration has more thermal coupling than the pre-fractionator which increases efficiency. It has greater internal flows with no hold-ups due to not having an intermediate reboiler or condenser. The exchange of vapor and liquid between the columns in Petlyuk configuration poses strict pressure and operability constraints. Figure 2 represents the dividing wall column configuration which is the most compact and allows for both considerable energy and capital saving. There is a partition between the feed and sidedraw sections of the column which provides greater capacity and increased separation efficiency yet still externally resembles a normal side-draw column. This column is thermodynamically identical to the Petlyuk column provided that there is negligible heat transfer across the dividing wall of the column. 3. Design of Divided Wall Column Structure The preliminary design parameters have been fixed on the basis of well-known shortcut Fenske-Underwood-Gilliland method N-N m R-R m = (1) N+1 R+1 where the minimum number of theoretical stages at total reflux (N m ) was estimated by the Fenske equation. Underwood equation has been utilized which gives the minimum reflux for an infinite number of theoretical equilibrium stages (R m ). In this study, the actual reflux ratio (R) was chosen as 1.2R m. The feed tray location was determined by assuming that the relative feed location was constant as the reflux ratio changed from total reflux to a finite value:

3 Design and Analysis of Divided Wall Column 399 N F,m N F = (2) N m where N F,m denotes the feed stage at the total reflux estimated by the Fenske equation as: XD, LK XF, LK ln X X N F,m = ln D, HK F, HK (3) LK HK Figure 1: The Petlyuk Configuration Figure 2: The Dividing Wall Column (DWC) Once the preliminary design parameters are fixed like total number of stages in both prefractionator and main column, feed location and side stage draw location etc. The simulation has been initiated to get the nominal divided wall column parameters. After getting nominal design parameters the rigorous optimization is used to obtain the optimal design parameters of the divided wall column. In these study total six key design variables is utilized to obtain the optimal DWC structure. 4. Simulation Studies In this study, UniSim Design Suite simulation program is used with the Fenske- Underwood equation for the design of column structure. Three different feed mixtures of Benzene, Toluene and p-xylene were considered to check the feasibility of the proposed study and that are: a mixture with low amounts of the intermediate component (F1); an equimolar mixture (F2); and a mixture with high amounts of the intermediate component (F3). The feed condition of ternary mixture is shown in Table 1. It is assumed that the operating pressure is 1050 KPa and the top, side draw and bottom product purity are required as 99.5 mol%, 91 mol% and 92 mol%, respectively. Table 1: Feed Condition of Ternary Mixture Types of Feed F1 F2 F3 Feed A: Benzene A : 0.40 A : 0.33 A : 0.15 Mixture B: Toluene C: p-xylene B : 0.20 C : 0.40 B : 0.33 C : 0.34 B : 0.70 C : 0.15 Feed rate: 100 kmol/h, Pressure: 1050 KPa, Saturated liquid

4 400 M. Shamsuzzoha et al. As discussed earlier shortcut design method is utilized for the preliminary column configuration. The simulation result of the F2 feed mixture is given in Table 2. From the result of the shortcut column in Table 2, the number of tray for the prefractionator column is set as 20 stages and the number of tray for the main column is 63. Table 2: Main Structure of the Equivalent Conventional Column Configuration (F2 Mixture) 1st column 2nd column 3rd column Light Key Benzene: Benzene: Toluene: Heavy Key p-xylene: Toluene: p-xylene: Ext. Reflux Ratio Total Stage No Feed Stage No Rectify Vapor (kmol/h) Rectify Liquid (kmol/h) Stripping Vapor (kmol/h) Stripping Liquid(kmol/h) Reflux ratio (R)= 1.2R m The Petlyuk column configuration was used for the simulation of the DWC because both the column is thermodynamically equivalent. Once the column structure is fixed, the distribution of the internal liquid and vapor flows to the prefractionator and main section is the most significant factor which affects the energy consumption. Furthermore, the internal flow distribution is other important factor to determine the easiness for realization of the DWC structure. The temperature and composition profile of the main column of the DWC is shown in the Figure 3. Although the temperature and composition of the shortcut rigorous 2 nd and 3 rd column profile is not shown here, the similarity in the temperature and composition profiles between the two configurations has been seen. This also implies the validity of the structural similarity between the sloppy and DWC configurations. The effect of internal flow distribution on the energy consumption in DWC has been studied extensively. For getting the optimal energy consumption in divided wall column, the MATLAB program is connected with UniSim for the optimization purpose. The MATLAB optimization tools have been used to find the optimal vapour and liquid split ratio. Figure 3: Temperature and Composition vs. Tray Position from Top for main column

5 Design and Analysis of Divided Wall Column 401 Although it is not shown, it is clear from three different case studies that there is significant difference in the energy consumption in both the nominal and optimal design. It is important to note that minimum energy requirement for specified product is strongly dependents on the vapour and liquid split in the divided wall column. Figure 4 shows the variation in energy consumption as the vapour and liquid flow rate change in the DWC. The significant amount of energy can be saved using proper design approach of the DWC. Reb q Vapor101 out Liquid101 out F2: Feed Mixture: (0.33:0.33:0.34) vapor_flow = kgmole/h liquid_flow = kgmole/h reboiler_duty = 1.511e+003 kw Optimal value vapor_flow = kgmole/h liquid_flow = kgmole/h reboiler_duty = e+003 kw Figure 4: Effect of internal flow distribution on the energy consumption in DWC for F2 5. Operation of the Divided Wall Column This section emphasised on analysis of the effect on product compositions in case of column is operated with the energy lower than the optimal energy required for operating the DWC. The optimal energy required for running the column can be calculated from above procedure as mentioned earlier. The effect of the lowering the energy has been investigated on the side product in the main column and shown in Figure 5. Figure 5 illustrate the composition profile for F2 case when available energy is 20% lower energy than original optimal value. Figure 5: composition profile of the main column of the DWC (for 20% lower energy) The investigation has been carried out to check the purity of the side product of the divided wall column for variation in the wide range of the reboiler duty. Figure 6 clearly shows that there is direct impact of energy on the purity of the side product while top and bottom product purity is almost fixed.

6 Mole Fraction of Toluene as a side product(purity in fraction) 402 M. Shamsuzzoha et al. Conclusions This study emphasizes the design of DWC structure on the basis of shortcut method using the Fenske-Underwood equation. The method utilizes the three conventional column configuration equivalents to the DWC to find the proper structure in a simple manner. The rigorous optimization is used to obtain the optimal design parameters of the divided wall column in an effective way. Extensive simulation studies illustrate that the proposed method is suitable to DWC structure design. The study has been also carried out to investigate the effect of available energy on the side product compositions. It shows that there is direct impact of energy consumption on the purity of the side product while top and bottom product purity is almost constant purity = (Reboiler duty) orignal value of energy % less than orignal value of energy Reboiler duty kw Figure 6: purity verses reboiler duty of the side products in the DWC for F2 case. Acknowledgement The authors would like to acknowledge the support provided by King Abdulaziz City for Science and Technology (KACST) through the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project number 11-ENE as part of the National Science Technology and Innovation Plan. References 1. C. Triantafyllou, and R. Smith, The Design and Optimization of Fully Thermally Coupled Distillation. Trans IChemE, 70 (Part A), , I. J. Halvorsen and S. Skogestad, Shortcut Analysis of Optimal Operation of Petlyuk Distillation, Ind. Eng. Chem. Res, pp , K. A. Amminudin, R. Smith, D. Y. C. Thong, and G. P. Towler, Design and Optimization of Fully Thermally Coupled Distillation Columns: Part 1: Preliminary Design and Optimization Methodology. Trans IChemE, 79 (Part A), , R. Premkumar and G. P. Rangaiah, Retrofitting Conventional Column Systems to Dividing Wall Columns, Chem. Eng. Res. Des., 87, 47, S. H. Lee, M. Shamsuzzoha, M. Han, Y. H. Kim, and M. Y. Lee, Study of Structural Characteristics of a Divided Wall Column Using the Sloppy Distillation Arrangement Korean Journal of Chemical Engineering, 28, , M. Shamsuzzoha, Hiroya Seki and Moonyong Lee, Structural Design by Shortcut Method of the Divided Wall Column, Petrotech-20012, 10 th International Oil & Gas Conference and Exhibition, October 2012, New Delhi, India.

SIMULATION ANALYSIS OF FULLY THERMALLY COUPLED DISTILLATION COLUMN

SIMULATION ANALYSIS OF FULLY THERMALLY COUPLED DISTILLATION COLUMN Int. J. Chem. Sci.: 14(3), 2016, 1621-1632 ISSN 0972-768X www.sadgurupublications.com SIMULATION ANALYSIS OF FULLY THERMALLY COUPLED DISTILLATION COLUMN ASMITA PRAVIN PATIL * and S. M. JADHAV Chemical

More information

Experimental evaluation of a modified fully thermally coupled distillation column

Experimental evaluation of a modified fully thermally coupled distillation column Korean J. Chem. Eng., 27(4), 1056-1062 (2010) DOI: 10.1007/s11814-010-0205-8 RAPID COMMUNICATION Experimental evaluation of a modified fully thermally coupled distillation column Kyu Suk Hwang**, Byoung

More information

BOUNDARY VALUE DESIGN METHOD FOR COMPLEX DEMETHANIZER COLUMNS

BOUNDARY VALUE DESIGN METHOD FOR COMPLEX DEMETHANIZER COLUMNS Distillation Absorption 2010 A.B. de Haan, H. Kooijman and A. Górak (Editors) All rights reserved by authors as per DA2010 copyright notice BOUNDARY AUE DESIGN METHOD FOR COMPEX DEMETHANIZER COUMNS Muneeb

More information

Approximate Design of Fully Thermally Coupled Distillation Columns

Approximate Design of Fully Thermally Coupled Distillation Columns Korean J. Chem. Eng., 19(3), 383-390 (2002) Approximate Design of Fully Thermally Coupled Distillation Columns Young Han Kim, Masaru Nakaiwa* and Kyu Suk Hwang** Dept. of Chem. Eng., Dong-A University,

More information

Dividing wall columns for heterogeneous azeotropic distillation

Dividing wall columns for heterogeneous azeotropic distillation Dividing wall columns for heterogeneous azeotropic distillation Quang-Khoa Le 1, Ivar J. Halvorsen 2, Oleg Pajalic 3, Sigurd Skogestad 1* 1 Norwegian University of Science and Technology (NTNU), Trondheim,

More information

The most important nomenclature used in this report can be summarized in:

The most important nomenclature used in this report can be summarized in: Notation The most important nomenclature used in this report can be summarized in: V Vapor flow rate V T Vapor flow rate in the top L Liquid flow rate D Distillation product B Bottom product q Liquid fraction

More information

Design and Optimization of Thermally Coupled Distillation Schemes for the Separation of Multicomponent Mixtures

Design and Optimization of Thermally Coupled Distillation Schemes for the Separation of Multicomponent Mixtures 724 Ind. Eng. Chem. Res. 2006, 45, 724-732 Design and Optimization of Thermally Coupled Distillation Schemes for the Separation of Multicomponent Mixtures Christopher Jorge Calzon-McConville, Ma. Bibiana

More information

PRACTICAL CONTROL OF DIVIDING-WALL COLUMNS

PRACTICAL CONTROL OF DIVIDING-WALL COLUMNS Distillation Absorption 2010. Strandberg, S. Skogestad and I.. Halvorsen All rights reserved by authors as per DA2010 copyright notice PRACTICAL CONTROL OF DIVIDING-WALL COLUMNS ens Strandberg 1, Sigurd

More information

Novel Procedure for Assessment of Feasible Design Parameters of Dividing-Wall Columns: Application to Non-azeotropic Mixtures

Novel Procedure for Assessment of Feasible Design Parameters of Dividing-Wall Columns: Application to Non-azeotropic Mixtures Novel Procedure for Assessment of Feasible Design Parameters of Dividing-Wall Columns: Application to Non-azeotropic Mixtures Hassiba Benyounes, Khadidja Benyahia, Weifeng Shen, Vincent Gerbaud, Lichun

More information

Recovery of Aromatics from Pyrolysis Gasoline by Conventional and Energy-Integrated Extractive Distillation

Recovery of Aromatics from Pyrolysis Gasoline by Conventional and Energy-Integrated Extractive Distillation 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Recovery of Aromatics from Pyrolysis Gasoline by Conventional

More information

Design and Control Properties of Arrangements for Distillation of Four Component Mixtures Using Less Than N-1 Columns

Design and Control Properties of Arrangements for Distillation of Four Component Mixtures Using Less Than N-1 Columns D. M. MÉNDEZ-VALENCIA et al., Design and Control Properties of Arrangements, Chem. Biochem. Eng. Q. 22 (3) 273 283 (2008) 273 Design and Control Properties of Arrangements for Distillation of Four Component

More information

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2 Multicomponent Distillation All Rights Reserved. Armando B. Corripio, PhD, P.E., 2013 Contents Multicomponent Distillation... 1 1 Column Specifications... 2 1.1 Key Components and Sequencing Columns...

More information

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author s version

More information

Rate-based design of integrated distillation sequences

Rate-based design of integrated distillation sequences 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Rate-based design of integrated distillation sequences

More information

The Study of Structure Design for Dividing Wall Distillation Column

The Study of Structure Design for Dividing Wall Distillation Column Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007, pp. 39-45 r m o Š i m Çm k m d p 712-749 e 214-1 (2006 11o 18p r, 2006 12o 14p }ˆ) The Study of Structure Design for Dividing Wall Distillation Column

More information

Dynamic Behaviour of Thermally Coupled Distillation Arrangements: Effect of the Interconnection Flowrate

Dynamic Behaviour of Thermally Coupled Distillation Arrangements: Effect of the Interconnection Flowrate Dynamic Behaviour of Thermally Coupled Distillation Arrangements: Effect of the Interconnection Flowrate Erick Yair Miranda-Galindo and Juan Gabriel Segovia - Hernández Abstract Thermally coupled distillation

More information

Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products and Generalized Petlyuk Arrangements

Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products and Generalized Petlyuk Arrangements 616 Ind. Eng. Chem. Res. 2003, 42, 616-629 Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products and Generalized Petlyuk Arrangements Ivar J. Halvorsen and Sigurd Skogestad*

More information

Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive Case

Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive Case F. O. BARROSO-MUÑOZ et al., Thermally Coupled Distillation Systems: Study of, Chem. Biochem. Eng. Q. 21 (2) 115 120 (2007) 115 Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive

More information

THERMAL INTEGRATION OF A DISTILLATION COLUMN THROUGH SIDE-EXCHANGERS

THERMAL INTEGRATION OF A DISTILLATION COLUMN THROUGH SIDE-EXCHANGERS THERMAL INTEGRATION OF A DISTILLATION COLUMN THROUGH SIDE-EXCHANGERS Santanu Bandyopadhyay Energy Systems Engineering and Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Powai,

More information

Optimizing Control of Petlyuk Distillation: Understanding the Steady-State Behavior

Optimizing Control of Petlyuk Distillation: Understanding the Steady-State Behavior Optimizing Control of Petlyuk Distillation: Understanding the Steady-State Behavior Ivar J. Halvorsen and Sigurd Skogestad Abstract. Norwegian University of Science and Technology, Department of Chemical

More information

Shortcut Distillation. Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia

Shortcut Distillation. Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia Shortcut Distillation Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia The use of separation column in HYSYS The column utilities in HYSYS can be used to model a wide variety of

More information

IMPROVED CONTROL STRATEGIES FOR DIVIDING-WALL COLUMNS

IMPROVED CONTROL STRATEGIES FOR DIVIDING-WALL COLUMNS Distillation bsorption 200.. de Haan, H. Kooijman and. Górak (Editors) ll rights reserved by authors as per D200 copyright notice IMPROVED ONTROL STRTEGIES FOR DIVIDING-WLL OLUMNS nton. Kiss, Ruben. van

More information

Distillation. Sep-tek. Ch.11 (continued) Distillation (Multistage with reflux) Sigurd Skogestad. Separation of liquid mixtures by repeated evaporation

Distillation. Sep-tek. Ch.11 (continued) Distillation (Multistage with reflux) Sigurd Skogestad. Separation of liquid mixtures by repeated evaporation Sep-tek. Ch.11 (continued) Distillation (Multistage with reflux) Sigurd Skogestad Distillation Separation of liquid mixtures by repeated evaporation multi-stage with reflux Old name: Rectification Basis:

More information

Available online Journal of Scientific and Engineering Research, 2018, 5(2): Research Article

Available online   Journal of Scientific and Engineering Research, 2018, 5(2): Research Article Available online www.jsaer.com, 2018, 5(2):32-39 Research Article ISSN: 2394-2630 CODEN(USA): JSERBR A Shortcut Method for Modeling Multi-Component Distillation in an Existing Column Philomena K. Igbokwe

More information

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide Korean J. Chem. Eng., 24(3), 438-444 (2007) SHORT COMMUNICATION Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide Jungho Cho and Dong Min Kim* Department of Chemical

More information

Multiple Steady States in Thermally Coupled Distillation Sequences: Revisiting the Design, Energy Optimization, and Control

Multiple Steady States in Thermally Coupled Distillation Sequences: Revisiting the Design, Energy Optimization, and Control pubs.acs.org/iecr Multiple Steady States in Thermally Coupled Distillation Sequences: Revisiting the Design, Energy Optimization, and Control Rauĺ Delgado-Delgado, Fabricio Omar Barroso-Munõz, Juan Gabriel

More information

EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION

EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION Santanu Bandyopadhyay Energy Systems Engineering and Department of Mechanical Engineering, Indian Institute of Technology, Bombay,

More information

Chapter 4. Problem SM.7 Ethylbenzene/Styrene Column

Chapter 4. Problem SM.7 Ethylbenzene/Styrene Column Background Chapter 4. Problem SM.7 Ethylbenzene/Styrene Column In Problem SM.6 of the HYSYS manual, a modified form of successive substitution, called the Wegstein method, was used to close the material

More information

Hybrid Systems for the Separation of Light Hydrocarbon Mixtures

Hybrid Systems for the Separation of Light Hydrocarbon Mixtures Hybrid Systems for the Separation of Light Hydrocarbon Mixtures RALUCA ISOPESCU, CRISTIANA LUMINITA GIJIU, DANIEL DUMITRU DINCULESCU * University Politehnica of Bucharest, Department of Chemical and Biochemical

More information

Simulation and Design of a Dividing Wall Column with an Analysis of a Vapour Splitting Device

Simulation and Design of a Dividing Wall Column with an Analysis of a Vapour Splitting Device A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 69, 2018 Guest Editors: Elisabetta Brunazzi, Eva Sorensen Copyright 2018, AIDIC Servizi S.r.l. ISBN 978-88-95608-66-2; ISSN 2283-9216 The Italian

More information

Economic and Controllability Analysis of Energy- Integrated Distillation Schemes THESIS. (Summary of the Ph.D. dissertation)

Economic and Controllability Analysis of Energy- Integrated Distillation Schemes THESIS. (Summary of the Ph.D. dissertation) Economic and Controllability Analysis of Energy- Integrated Distillation Schemes THESIS (Summary of the Ph.D. dissertation) by Mansour Masoud Khalifa Emtir Under the supervision of Professor Dr. Zsolt

More information

CONTROL PROPERTIES ANALYSIS OF ALTERNATE SCHEMES TO THERMALLY COUPLED DISTILLATION SCHEMES

CONTROL PROPERTIES ANALYSIS OF ALTERNATE SCHEMES TO THERMALLY COUPLED DISTILLATION SCHEMES 8th International IFAC Symposium on Dynamics and Control of Process Systems Preprints Vol.1, June 6-8, 2007, Cancún, Mexico CONTROL PROPERTIES ANALYSIS OF ALTERNATE SCHEMES TO THERMALLY COUPLED DISTILLATION

More information

Aggregate Models based on Improved Group Methods for Simulation and Optimization of Distillation Systems

Aggregate Models based on Improved Group Methods for Simulation and Optimization of Distillation Systems Aggregate Models based on Improved Group Methods for Simulation and Optimization of Distillation Systems Ravindra S. Kamath 1, Ignacio E. Grossmann 1,*, and Lorenz T. Biegler 1 1 Chemical Engineering Department,

More information

[Thirumalesh*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Thirumalesh*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY CASE STUDY ON MULTICOMPONENT DISTILLATION AND DISTILLATION COLUMN SEQUENCING Thirumalesh. B.S*, Ramesh.V * Assistant Professor

More information

Optimal Designs of Multiple Dividing Wall Columns

Optimal Designs of Multiple Dividing Wall Columns Process optimization 2051 Fernando Israel Gómez- Castro 1,2 Mario Alberto Rodríguez-Ángeles 2 Juan Gabriel Segovia- Hernández 2 Claudia Gutiérrez-Antonio 3 Abel Briones-Ramírez 4 1 Instituto Tecnológico

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 5 Distillation Lecture - 6 Fractional Distillation: McCabe Thiele

More information

Shortcut Design Method for Columns Separating Azeotropic Mixtures

Shortcut Design Method for Columns Separating Azeotropic Mixtures 3908 Ind. Eng. Chem. Res. 2004, 43, 3908-3923 Shortcut Design Method for Columns Separating Azeotropic Mixtures Guilian Liu, Megan Jobson,*, Robin Smith, and Oliver M. Wahnschafft Department of Process

More information

Wikisheet Dividing Wall Column

Wikisheet Dividing Wall Column Wikisheet Divided Wall Column Dividing Wall Column Conventional Columns System Objective Contribute to energy efficiency program Background, Wikisheets Process Intensification within the PIN-NL program

More information

Conceptual Design of Reactive Distillation Columns with Non-Reactive Sections

Conceptual Design of Reactive Distillation Columns with Non-Reactive Sections Conceptual esign of Reactive istillation Columns with Non-Reactive Sections R. M. ragomir, M. Jobson epartment of Process Integration, UMIST, PO ox 88, M60 Q, Manchester, UK Abstract Reactive distillation

More information

MULTI-LOOP CONTROL STRUCTURE FOR DIVIDING-WALL DISTILLATION COLUMNS. Abstract. Introduction

MULTI-LOOP CONTROL STRUCTURE FOR DIVIDING-WALL DISTILLATION COLUMNS. Abstract. Introduction MULTI-LOOP CONTROL STRUCTURE FOR DIVIDING-WALL DISTILLATION COLUMNS Salvador Tututi-Avila, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, Arturo Jiménez-Gutiérrez,

More information

,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han

,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han Jungho Cho, So-Jin Park,, Myung-Jae Choi,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han Department of Chemical Engineering, Dong-Yang University, Kyoungbuk, 750-711, Korea *Department of Chemical Engineering,

More information

IV Distillation Sequencing

IV Distillation Sequencing IV Distillation Sequencing Outline 1. Basic Concepts of Distillation Sequence Design 2. Choice of Sequence and its Operating Pressure. 3. Performance of Distillation Column (Sieve tray and packed tower)

More information

A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts of VCM process

A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts of VCM process Korean J. Chem. Eng., 27(3), 970-976 (2010) DOI: 10.1007/s11814-010-0206-7 RAPID COMMUNICATION A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 5 Distillation Lecture - 5 Fractional Distillation Welcome to the

More information

A Generalized Ease Of Separation Index for Selection of Optimal Configuration of Ternary Distillation

A Generalized Ease Of Separation Index for Selection of Optimal Configuration of Ternary Distillation A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 69, 2018 Guest Editors: Elisabetta Brunazzi, Eva Sorensen Copyright 2018, AIDIC Servizi S.r.l. ISBN 978-88-95608-66-2; ISSN 2283-9216 The Italian

More information

An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method

An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method Syed Mujahed Ali Rizwan Senior Lecturer in Chemistry Challenger College, Moinabad, Hyderabad. Abstract: In this

More information

Eldridge Research Group

Eldridge Research Group Eldridge Research Group Melissa Donahue Bailee Roach Jeff Weinfeld Colton Andrews Johannes Voggerneiter 1 Modeling of Multiphase Contactors with Computational Fluid Dynamics Dividing Wall Distillation

More information

Placement and Integration of Distillation column Module 06 Lecture 39

Placement and Integration of Distillation column Module 06 Lecture 39 Module 06: Integration and placement of equipment Lecture 39: Placement and Integration of Distillation Column Key word: Pinch Technology, Pinch technology has established that good process integration

More information

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying

More information

Minimum Energy Operation of Petlyuk Distillation Columns - Nonsharp Product Specifications

Minimum Energy Operation of Petlyuk Distillation Columns - Nonsharp Product Specifications Proceedings of the 1 st Annual Gas Processing ymposium H. Alfadala, G.V. Rex Reklaitis and M.M. El-Hawagi (Editors) 2009 Elsevier.V. All rights reserved. Minimum Energy Operation of Petlyuk istillation

More information

Active vapor split control for dividing-wall columns

Active vapor split control for dividing-wall columns Industrial & Engineering Chemistry Research Active vapor split control for dividing-wall columns Journal: Industrial & Engineering Chemistry Research Manuscript ID: ie--.r Manuscript Type: Article Date

More information

Make distillation boundaries work for you!

Make distillation boundaries work for you! Make distillation boundaries work for you! Michaela Tapp*, Simon T. Holland, Diane Hildebrandt and David Glasser Centre for Optimization, Modeling and Process Synthesis School of Process and Materials

More information

regressing the vapor-liquid equilibrium data in Mathuni et al. and Rodriguez et al., respectively. The phase equilibrium data of the other missing pai

regressing the vapor-liquid equilibrium data in Mathuni et al. and Rodriguez et al., respectively. The phase equilibrium data of the other missing pai Plant-Wide Control of Thermally Coupled Reactive Distillation to Co-Produce Diethyl Carbonate and Propylene Glycol San-Jang Wang, Shueh-Hen Cheng, and Pin-Hao Chiu Abstract Diethyl carbonate is recognized

More information

Simplified Methodology for the Design and Optimization of Thermally Coupled Reactive Distillation Systems

Simplified Methodology for the Design and Optimization of Thermally Coupled Reactive Distillation Systems pubs.acs.org/iecr Simplified Methodology for the Design and Optimization of Thermally Coupled Reactive Distillation Systems Fernando Israel Goḿez-Castro,, Vicente Rico-Ramírez,*, Juan Gabriel Segovia-Hernańdez,

More information

Study of arrangements for distillation of quaternary mixtures using less than n-1 columns

Study of arrangements for distillation of quaternary mixtures using less than n-1 columns Instituto Tecnologico de Aguascalientes From the SelectedWorks of Adrian Bonilla-Petriciolet 2008 Study of arrangements for distillation of quaternary mixtures using less than n-1 columns J.G. Segovia-Hernández,

More information

MODELLING OF CRUDE OIL DISTILLATION UNITS FOR RETROFITTING PURPOSES

MODELLING OF CRUDE OIL DISTILLATION UNITS FOR RETROFITTING PURPOSES JICEC05 Jordan International Chemical Engineering Conference V -4 September 005, Amman, Jordan MODELLIG OF CUDE OIL DISTILLATIO UITS FO ETOFITTIG PUPOSES M. Gadalla, *, Z. Olujic, M. Jobson, +,. Smith

More information

Two of the most important

Two of the most important Designing a divided wall column refiner plans the application of divided wall column technology for greater energy efficiency in the distillation of multi-component reformate SŠ POLOVIN, SREĆKO HEREG and

More information

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM I-Lung Chien and Kai-Luen Zeng Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei

More information

Complex Distillation Arrangements : Extending the Petlyuk Ideas

Complex Distillation Arrangements : Extending the Petlyuk Ideas omplex istillation rrangements : Extending the Petlyuk deas tle. hristiansen, Sigurd Skogestad æ and Kristian Lien epartment of hemical Engineering Norwegian University of Science and Technology N 7034

More information

Minimum Energy Consumption in Multicomponent Distillation: III: Generalized Petlyuk Arrangements with more than Three Products

Minimum Energy Consumption in Multicomponent Distillation: III: Generalized Petlyuk Arrangements with more than Three Products Minimum Energy Consumption in Multicomponent istillation: III: Generalized Petlyuk rrangements with more than Three Products Ivar J. Halvorsen and Sigurd Skogestad Norwegian University of Science and Technology,

More information

Structural considerations and modeling in the synthesis of heat integrated thermally coupled distillation sequences

Structural considerations and modeling in the synthesis of heat integrated thermally coupled distillation sequences Structural considerations and modeling in the synthesis of heat integrated thermally coupled distillation sequences José. aballero* ; Ignacio E. Grossmann ** *epartment of hemical Engineering. University

More information

MODULE 5: DISTILLATION

MODULE 5: DISTILLATION MOULE 5: ISTILLATION LECTURE NO. 3 5.2.2. Continuous distillation columns In contrast, continuous columns process a continuous feed stream. No interruptions occur unless there is a problem with the column

More information

Control of Thermally Coupled Distillation Arrangements with Dynamic Estimation of Load Disturbances

Control of Thermally Coupled Distillation Arrangements with Dynamic Estimation of Load Disturbances 546 Ind. Eng. Chem. Res. 2007, 46, 546-558 Control of Thermally Coupled Distillation Arrangements with Dynamic Estimation of Load Disturbances Juan Gabriel Segovia-Hernández,, Salvador Hernández, Ricardo

More information

COMBINATIONS OF MEASUREMENTS AS CONTROLLED VARIABLES: APPLICATION TO A PETLYUK DISTILLATION COLUMN.

COMBINATIONS OF MEASUREMENTS AS CONTROLLED VARIABLES: APPLICATION TO A PETLYUK DISTILLATION COLUMN. COMBINATIONS OF MEASUREMENTS AS CONTROLLED VARIABLES: APPLICATION TO A PETLYUK DISTILLATION COLUMN. V.Alstad, S. Skogestad 1 Department of Chemical Engineering, Norwegian University of Science and Technology,

More information

Maryam Ghadrdan. Optimal Operation of Kaibel Columns. Doctoral thesis for the degree of philosophiae doctor. Trondheim, October 2014

Maryam Ghadrdan. Optimal Operation of Kaibel Columns. Doctoral thesis for the degree of philosophiae doctor. Trondheim, October 2014 Maryam Ghadrdan Optimal Operation of Kaibel Columns Doctoral thesis for the degree of philosophiae doctor Trondheim, October 2014 Norwegian University of Science and Technology ii NTNU Norwegian University

More information

Chemical Engineering and Processing: Process Intensification

Chemical Engineering and Processing: Process Intensification Chemical Engineering and Processing 48 (2009) 250 258 Contents lists available at ScienceDirect Chemical Engineering and Processing: Process Intensification journal homepage: www.elsevier.com/locate/cep

More information

Heterogeneous Azeotropic Distillation Operational Policies and Control

Heterogeneous Azeotropic Distillation Operational Policies and Control Heterogeneous Azeotropic Distillation Operational Policies and Control Claudia J. G. Vasconcelos * and Maria Regina Wolf-Maciel State University of Campinas, School of Chemical Engineering, Campinas/SP,

More information

Control properties of thermally coupled distillation sequences for different operating conditions

Control properties of thermally coupled distillation sequences for different operating conditions omputers and hemical Engineering 31 (2007) 867 874 Short communication ontrol properties of thermally coupled distillation sequences for different operating conditions Juan Gabriel Segovia-Hernández, Esteban

More information

Distillation. This is often given as the definition of relative volatility, it can be calculated directly from vapor-liquid equilibrium data.

Distillation. This is often given as the definition of relative volatility, it can be calculated directly from vapor-liquid equilibrium data. Distillation Distillation may be defined as the separation of the components of a liquid mixture by a process involving partial vaporization. The vapor evolved is usually recovered by condensation. Volatility

More information

Multivariable model predictive control design of reactive distillation column for Dimethyl Ether production

Multivariable model predictive control design of reactive distillation column for Dimethyl Ether production IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Multivariable model predictive control design of reactive distillation column for Dimethyl Ether production To cite this article:

More information

Simulation and Analysis of Ordinary Distillation of Close Boiling Hydrocarbons Using ASPEN HYSYS

Simulation and Analysis of Ordinary Distillation of Close Boiling Hydrocarbons Using ASPEN HYSYS International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 16 No. 4 Jun. 2016, pp. 805-813 2016 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Simulation

More information

Approximate Methods Fenske-Underwood-Gilliland (FUG) Method Selection of Two Key Components

Approximate Methods Fenske-Underwood-Gilliland (FUG) Method Selection of Two Key Components Lecture 3. Approximate Multicomponent Methods () [Ch. 9] Approximate Methods Fenske-Underwood-Gilliland (FUG) Method Selection of Two Key Components Column Operating Pressure Fenske Equation for Minimum

More information

Reduction of Energy Consumption and Greenhouse Gas Emissions in a Plant for the Separation of Amines

Reduction of Energy Consumption and Greenhouse Gas Emissions in a Plant for the Separation of Amines 1462 Chem. Eng. Technol. 28, 31, No. 1, 1462 1469 Dionicio Jantes-Jaramillo 1 Juan Gabriel Segovia- Hernández 1 Salvador Hernández 1 1 Universidad de Guanajuato, Facultad de Química, Guanajuato, Mexico.

More information

A novel design of reactive distillation configuration for 2-methoxy-2-methylheptane process

A novel design of reactive distillation configuration for 2-methoxy-2-methylheptane process A novel design of reactive distillation configuration for 2-methoxy-2-methylheptane process Arif Hussain 1, Muhammad Abdul Qyyum 1, Le Quang Minh 1, Hong Jimin 1, and Moonyong Lee 1,* 1 Process System

More information

Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation

Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation Korean J. Chem. Eng., 17(6), 712-718 (2000) Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation Yu-Jung Choi, Tae-In Kwon and Yeong-Koo Yeo Department of Chemical Engineering,

More information

Distilla l tion n C olum u n

Distilla l tion n C olum u n Distillation Column Distillation: Process in which a liquid or vapour mixture of two or more substances is separated into its component fractions of desired purity, by the application and removal of heat

More information

Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module -5 Distillation Lecture - 8 Fractional Distillation: Subcooled Reflux,

More information

Specific Problems of Using Unisim Design in the Dynamic Simulation of the Propylene-Propane Distillation Column

Specific Problems of Using Unisim Design in the Dynamic Simulation of the Propylene-Propane Distillation Column Specific Problems of Using Unisim Design in the Dynamic Simulation of the Propylene-Propane Distillation Column CRISTIAN PATRASCIOIU*, MARIAN POPESCU, NICOLAE PARASCHIV Petroleum - Gas University of Ploieºti,

More information

Control Study of Ethyl tert-butyl Ether Reactive Distillation

Control Study of Ethyl tert-butyl Ether Reactive Distillation 3784 Ind. Eng. Chem. Res. 2002, 41, 3784-3796 Control Study of Ethyl tert-butyl Ether Reactive Distillation Muhammad A. Al-Arfaj Department of Chemical Engineering, King Fahd University of Petroleum and

More information

Minimum Energy Requirements in Complex Distillation Arrangements

Minimum Energy Requirements in Complex Distillation Arrangements Minimum Energy Requirements in Complex Distillation Arrangements by A thesis submitted for the degree of Dr.Ing. May 2001 Department of Chemical Engineering Norwegian University of Science and Technology

More information

REACTIVE DIVIDING-WALL COLUMNS: TOWARDS ENHANCED PROCESS INTEGRATION

REACTIVE DIVIDING-WALL COLUMNS: TOWARDS ENHANCED PROCESS INTEGRATION Distillation bsorption 1.. de aan,. Kooijman and. Górak (Editors) ll rights reserved by authors as per D1 copyright notice RETIVE DIVIDING-WLL OLUMNS: TOWRDS ENNED PROESS INTEGRTION nton. Kiss, J. J. Pragt,.

More information

SIMULATION STUDY OF DIVIDED WALL DISTILLATION COLUMN PROF.B.MUNSHI

SIMULATION STUDY OF DIVIDED WALL DISTILLATION COLUMN PROF.B.MUNSHI SIMULATION STUDY OF DIVIDED WALL DISTILLATION COLUMN Bachelor intechnology In Chemical Engineering By SAURABH ARORA 110CH0386 Under the guidanceof PROF.B.MUNSHI DepartmentofChemicalEngineering National

More information

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Outline: Introduction to multicomponent distillation Phase Equilibria in Multicomponent Distillation (Pg. 737) Bubble-point and dew-point calculation

More information

01/12/2009. F. Grisafi

01/12/2009. F. Grisafi Multicomponent distillation F. Grisafi 1 Introduction The problem of determining the stage and reflux requirements for multicomponent t distillations is much more complex than for binary mixtures. With

More information

Optimal Synthesis of Energy Efficient Distillation Columns Sequence Using Driving Force Method

Optimal Synthesis of Energy Efficient Distillation Columns Sequence Using Driving Force Method Modern Applied Science; Vol. 9, No. 7; 2015 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education Optimal Synthesis of Energy Efficient Distillation Columns Sequence Using

More information

Performance of Reactive Distillation Columns with Multiple Reactive Sections for the Disproportionation of Trichlorosilane to Silane

Performance of Reactive Distillation Columns with Multiple Reactive Sections for the Disproportionation of Trichlorosilane to Silane 6th International Symposium on Advanced Control of Industrial Processes (AdCONIP) May 8-31, 017. Taipei, Taiwan Performance of Reactive Distillation Columns with Multiple Reactive Sections for the Disproportionation

More information

Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process

Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process Nikhil V. Sancheti Department of Chemical Engineering L.I.T., Nagpur, Maharashtra,

More information

Reactive Dividing-Wall Columns How to Get More with Less Resources?

Reactive Dividing-Wall Columns How to Get More with Less Resources? Chem. Eng. Comm., 196:1366 1374, 2009 Copyright # Taylor & Francis Group, LLC ISSN: 0098-6445 print=1563-5201 online DOI: 10.1080/00986440902935507 Reactive Dividing-Wall Columns How to Get More with Less

More information

Effect of feed on optimal thermodynamic performance of a distillation column

Effect of feed on optimal thermodynamic performance of a distillation column Effect of feed on optimal thermodynamic performance of a distillation column Santanu Bandyopadhyay Energy Systems Engineering, Department of Mechanical Engineering, Indian Institute of Technology, Powai,

More information

Kaibel Column: Modeling, Optimization, and Conceptual Design of Multi-product Dividing Wall Columns

Kaibel Column: Modeling, Optimization, and Conceptual Design of Multi-product Dividing Wall Columns Kaibel Column: Modeling, Optimization, and Conceptual Design of Multi-product Dividing Wall Columns E. Soraya Rawlings a, *, Qi Chen b, Ignacio E. Grossmann b, and Jose A. Caballero c a Departamento de

More information

Efficient Feed Preheat Targeting for Distillation by Feed Splitting

Efficient Feed Preheat Targeting for Distillation by Feed Splitting European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 2005 Elsevier Science B.V. All rights reserved. Efficient Feed Preheat Targeting for Distillation

More information

A Short Note on Steady State Behaviour of a Petlyuk Distillation Column by Using a Non-Equilibrium Stage Model

A Short Note on Steady State Behaviour of a Petlyuk Distillation Column by Using a Non-Equilibrium Stage Model R&D NOTE A Short Note on Steady State Behaviour of a Petlyuk Distillation Column by Using a Non-Equilibrium Stage Model Erika Fabiola Abad-Zarate, Juan Gabriel Segovia-Hernández*, Salvador Hernández and

More information

A Definition for Plantwide Controllability. Process Flexibility

A Definition for Plantwide Controllability. Process Flexibility A Definition for Plantwide Controllability Surya Kiran Chodavarapu and Alex Zheng Department of Chemical Engineering University of Massachusetts Amherst, MA 01003 Abstract Chemical process synthesis typically

More information

THERMODYNAMIC INSIGHT ON EXTRACTIVE DISTILLATION WITH ENTRAINER FORMING NEW AZEOTROPES

THERMODYNAMIC INSIGHT ON EXTRACTIVE DISTILLATION WITH ENTRAINER FORMING NEW AZEOTROPES Distillation Absorption 2010 A.. de Haan, H. Kooijman and A. Górak (Editors) All rights reserved by authors as per DA2010 copyright notice THERMODYNAMIC INSIGHT ON EXTRTIVE DISTILLATION WITH ENTRAINER

More information

Comparison of Conventional and Middle Vessel Batch Reactive Distillation Column: Application to Hydrolysis of Methyl Lactate to Lactic Acid

Comparison of Conventional and Middle Vessel Batch Reactive Distillation Column: Application to Hydrolysis of Methyl Lactate to Lactic Acid A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 35, 2013 Guest Editors: Petar Varbanov, Jiří Klemeš, Panos Seferlis, Athanasios I. Papadopoulos, Spyros Voutetakis Copyright 2013, AIDIC Servizi

More information

Reflections on the use of the McCabe and Thiele method

Reflections on the use of the McCabe and Thiele method From the Selectedorks of João F Gomes January 2007 Reflections on the use of the McCabe and Thiele method Contact Author Start Your Own Selectedorks Notify Me of New ork Available at: http://works.bepress.com/joao_gomes/42

More information

MODULE 5: DISTILLATION

MODULE 5: DISTILLATION MODULE 5: DISTILLATION LECTURE NO. 5 Determination of the stripping section operating line (SOL): The stripping section operating line (SOL) can be obtained from the ROL and q- line without doing any material

More information

ENERGY IMPROVEMENT FOR NGLS DIRECT INDIRECT SEQUENCE FRACTIONATION UNIT

ENERGY IMPROVEMENT FOR NGLS DIRECT INDIRECT SEQUENCE FRACTIONATION UNIT 2015 Conference on Emerging Energy and Process Technology (CONCEPT2015) 15-16 December 2015, A Famosa Resort, Alor Gajah, Melaka ENERGY IMPROVEMENT FOR NGLS DIRECT INDIRECT SEQUENCE FRACTIONATION UNIT

More information

Level 4: General structure of separation system

Level 4: General structure of separation system Level 4: General structure of separation system Cheng-Ching Yu Dept of Chem. Eng. National Taiwan University ccyu@ntu.edu.tw 02-3365-1759 1 Separation Systems Typical reaction/separation structure Remark:

More information

Dynamic Effects of Diabatization in Distillation Columns

Dynamic Effects of Diabatization in Distillation Columns Downloaded from orbit.dtu.dk on: Dec 27, 2018 Dynamic Effects of Diabatization in Distillation Columns Bisgaard, Thomas Publication date: 2012 Document Version Publisher's PDF, also known as Version of

More information