Hybrid Systems for the Separation of Light Hydrocarbon Mixtures

Size: px
Start display at page:

Download "Hybrid Systems for the Separation of Light Hydrocarbon Mixtures"

Transcription

1 Hybrid Systems for the Separation of Light Hydrocarbon Mixtures RALUCA ISOPESCU, CRISTIANA LUMINITA GIJIU, DANIEL DUMITRU DINCULESCU * University Politehnica of Bucharest, Department of Chemical and Biochemical Engineering, 1-7 Polizu Str., , Bucharest, Romania Hybrid system and thermal coupling were investigated for the separation of light olefin/paraffin (C 2 ) at high purity. The use of ZIF-8 membrane for the separation of propene/propane mixture and the implementation of a divided wall distillation column were proposed. The implementation of such devices in the classical separation configuration scheme leads to an important reduction of energy consumption. The analysis of all separation schemes was performed using Aspen HYSYS TM v7.3 process simulator. The mathematical model for the membrane gas separation was solved using Matlab. Keywords: light hydrocarbons, membrane separation, hybrid system, divided wall distillation column Distillation is the most commonly used method for hydrocarbon mixtures separation in oil refinery and petrochemical industries, but its high energy consumption is an important disadvantage. Light olefin/paraffin mixtures (C 2 ) are the source of many row materials in petrochemical industry: ethene, propene, butane, i-butane, butenes. The separation of these compounds, at high yields and purity, is a quite difficult task, as their relative volatility is low over a large temperature range. The necessity of reducing the energy consumption led to intensive study of thermal coupling possibilities but also to finding an alternative solution for distillation, such as membrane separation. While partially or totally thermal coupling solutions are already in practical use, the membrane separation for light hydrocarbons mixture is still in the stage of membrane synthesizing and characterization. In the present work, hybrid sequences using distillation columns and membrane separation units are investigated by process modeling and simulation. Non-conventional distillation column structures, based on thermal coupling, are also studied, as part of the hybrid system, aiming to reduce at a higher extend the overall energy consumption. The efficiency of partial or totally thermal coupled distillation columns was extensively investigated in recent literature [1-4]. The divided wall distillation column (DWC) was proved to be one of the most efficient structures in terms of energy and cost savings. The DWC is the integration of two thermally coupled distillation columns into one shell (fig. 1) by providing a vertical wall that divides the distillation space into two parts: one part works as the prefractionators, where a sloppy separation is realized, and the other part represents the main column [3, 5, 1]. In the main column the light component (A) is separated as top product, the heavy component (C) is the bottom product while the middle component (B) is evacuated as side stream. This structure, which is already in practical use for some distillation operations, avoids the remixing [5] and allows the separation of the middle component at high purities, which is not possible in a simple distillation column with side-draw. From the thermodynamic point of view, a DWC is equivalent to the totally thermal coupled structure, the so called Petlyuk-configuration (figure 1), if the dividing wall is insulated, and the heat transfer through the wall is neglected [3, 6, 7]. Fig. 1. Three components mixture separation : (a) direct sequence (b) Petlyuk configuration (c) DWC Several applications for hydrocarbon or alcohol mixtures separations, extractive or azeotropic distillation [1, 3, 8-10] using the DWC are reported in literature. More than 90 applications in production scale are known and the advantages are obvious. Depending on the case considered, the energy and investment costs are reduced up to 40% compared to conventional technologies [11]. The membrane processes represent a new approach in hydrocarbon mixture separation. Membrane gas separation equipment have significantly grown in the last years [12] involving mainly non-condensable gases separation. A large potential market for membrane gas separation is the hydrocarbon mixtures separation, such as C 4 fraction [16, 17], C 2 and C 3 fraction [13]. That is why, new membrane types were investigated to cope with oil refinery needs. Zeolitic imidazole framework (ZIF-8) membranes were fabricated and first applied to gasoline vapour recovery [14]. The separation possibility of propene/propane using ZIF-8 membranes was extensively studied [13, 19] proving that the separation is mainly governed by diffusive separation. Some hybrid separation sequence, at laboratory scale, were also investigated for ethene/ethane and propene/propane separation [18] showing that membrane processes can be an alternative for energy intensive hydrocarbon separation and reducing carbon footprint in olefins production units. The present paper intends to analyze some alternative separation schemes for light hydrocarbons mixtures separation, using both membrane units and thermal coupling techniques. * d_dinculescu@chim.upb.ro REV. CHIM. (Bucharest) 66 No

2 Table 1 TYPICAL GAS CATALYTIC CRACKING COMPOSITION (MOL FRACTIONS) Fig. 2 Basic separation flowchart Experimental part Problem formulation A typical catalytic cracking gas composition (table 1) was considered in the analysis of separation schemes [21]. Classical separation flowcharts include, according to the direct separation sequence (the most volatile component separates first), distillation columns assigned for: methane separation as top product (de-methanizer), separation of C 2 fraction (de-ethanizer) separation of C 3 fraction (de-propanizer) and, additional, the distillation columns for the separation of ethene/ethane and propene/ propane mixtures (fig.2). The ethene/ethane separation is not difficult to be performed if the ethene purity is about 95%, as required for further organic syntheses, but becomes difficult if ethene product is aimed for polyethylene production, where a purity of 99.8% is necessary [21]. In both cases, the low temperatures required in the condenser, as well as the high pressures increase the operating costs. The propene/ propane separation is the most difficult task, as the very low relative volatility drastically affects both the minimum reflux ration and number of theoretical trays with increased propene purity demands. The results obtained for a feed of 500 kmol/h at a pressure of 35 bar, considering the direct sequence represent a base for the analysis of further improvement possibilities using membrane separation technique and thermal coupling. The analysis of all separation schemes was performed using the Aspen HYSYS TM v7.3 process simulator. In all simulated cases, the product purity constrains were defined as (mol fractions): ethene > 0.99, ethane > 0.99, propene > 0.99, propane > 0.95 and C 4 fraction > Results and discussions Classical direct sequence separation The simulation of the classical separation sequence (fig. 2) considers some generally accepted operating conditions. The working pressures in the distillation columns were imposed in order to ensure for the top products a feasible condensing temperature. The first column (T100), where methane and hydrogen are separated as overhead gases, works at 34 bar, as mentioned in most technical reports [21] and the top temperature is 99.5 C. For the de-ethanizer (column T101) the working pressure was set at 19 bar [20], which ensures low C 3 losses in the top product. The condensing temperature of the top product is 19.7 o C that is realized by the refrigeration system. The de-propanizer (T102) 260 working conditions were set at a pressure of 18 bar corresponding to a condensing temperature of 45 o C, for which cooling water may be used. The ethene-ethane separation column is defined to produce 99.8 mol % ethene in the top. The working pressure was set to 15 bar when a condensing temperature of the top product is 38.9 C. It is well known that the ethene -ethane separation is the most refrigerant consuming tower for light hydrocarbon separation. In order to keep the reflux ratio at an acceptable value, a column with 48 theoretical trays proved to realize the required separation. According to simulation results, the distillation column assigned for propene-propane separation required a great number of theoretical trays (125 trays), and a reflux ratio of 24. Similar high values are also mentioned in literature [13, 21, 22] and technical reports. Practical cases use a series of two distillation columns building up the required number of theoretical trays [22, 23]. For all distillation columns, the number of theoretical trays was calculated in the frame of Aspen HYSYS v7.3 simulator using a short-cut design option based on Fenske- Underwood-Gilliland equations. The final structure of the columns was reached by successive simulations aiming to ensure the purity requirements with minimum energy consumption. The simulation was carried out using Peng Robinson thermodynamic model recommended for light hydrocarbon distillation. The main results are presented in table 2. Hybrid system option Recently, for gas and vapour separation, the membrane techniques are more and more used mainly for noncondensing gases: nitrogen from air; carbon dioxide from methane; and hydrogen from nitrogen, argon, or methane. The separation of condensable gases such as propene from propane is a most challenging approach as this separation is the most intensive one in petrochemical industries [13]. Recent studies proved that zeolitic-imidazolate frameworks (ZIFs) are new candidates for use in gas and vapour separation [13,14]. Among the varieties of ZIFs, ZIF-8 is the most promising candidate for propene/propane separation. Based on the results published in [19], the simulation of propene/ propane separation using ZIF-8 membrane was carried on using the mathematical model (relations (1)) implemented in Matlab: where: P total permeate rate, kmol/h; REV. CHIM. (Bucharest) 66 No (1)

3 Table 2 MAIN SIMULATION RESULTS FOR THE DIRECT SEPARATION SEQUENCE Fig 3. Hybrid system starting from the direct sequence separation flowchart P ma membrane permeability for δ m membrane thickness, m; A m membrane aria, m 2 ; Π ma membrane permeance for y P molar fraction of A in permeate; x R molar fraction of A in retentate; p R retentate pressure, Pa; p P permeate pressure, Pa; The membrane unit is aimed to replace the distillation column T104 in figure 2, and the separation sequence will become a hybrid one (fig. 3). The use of a membrane unit to replace the distillation column for the propene/propane separation is considered to drastically diminish the energy consumption as neither cooling nor heating utilities are necessary and the membrane feed are already pressurized. As the membrane unit is to be fed with vapour hydrocarbon mixture, the stream containing the C 3 fraction was withdrawn in vapour phase from the distillation column T102 (fig.2). The selection of a partial condenser in column T102 is convenient also from the energy consumption point of view, as it will diminish the thermal duty compared to the classical total condenser option used in the basic separation scheme (2152 kw for C 3 fraction in vapor phase compared with 2749 kw in the basic sequence). The vapour from T102 fed in membrane unit was assimilated with a binary mixture, as it contains mainly propane and propene and only (mol fr.) other components. The permeate flowrate was calculated depending on the maximum permeate concentration (minimum retentate concentration) [24], in order to achieve the desired separation in one membrane unit. The main characteristics of the membrane unit and the efficiency of propenepropane separation are synthesized in table 3. The required membrane surface resulted in the specified working conditions is relatively high, about 4719 m 2, but a series of membrane module can be considered in order to optimize the space requirement. Hybrid system with a DWC Apart from replacing the propene-propane distillation column with a membrane unit, further energy reduction can be realized by using a totally thermal coupled structure, the DWC. In what concerns the thermal coupling in the separation of C 2 hydrocarbon, the main difficulties arise due to the different operating pressures. The general admitted drawback of a DWC is that it must operate at the highest working pressure of the two columns in order to ensure the condensing temperature of the distillate. A higher pressure may diminish the relative volatility compared with the classical scheme, and it will increase the bottom product boiling point compared with the classical two columns sequence, where the heavy REV. CHIM. (Bucharest) 66 No

4 Table 3 CHARACTERISTICS OF THE MEMBRANE UNIT REPLACING T104 IN THE DIRECT SEQUENCE SCHEME component is obtained in a column working at lower pressure. That is why the totally thermal coupling is generally not recommended when the difference in operating pressures between the two classical distillation columns is too large. Analyzing the flowchart (fig. 2), the thermal coupling proposed is the replacing the column T101 and T102 with a DWC to produce C 2 fraction as top product, C 3 fraction as side stream and C 4 fraction as bottom product (fig. 4). The working pressure in T100 (the desub-flowsheet (fig. 5) are automatically converged to the steady-state value during the simulation. For the thermally coupled solution, the side draw must be in vapour phase, as it will be the input in the membrane unit. The vapour side-draw may be technologically more complicated, but this option is nevertheless feasible, and control possibilities can be defined [25]. The working pressure in the DWC was set at 19 bar to cope with condensing temperature of C 2 fraction. In these conditions, a main column with 48 theoretical trays was defined and 25 trays in the pre-fractionator. The trays corresponding to the inter-connecting steams were set so that the number of trays on both sides of the dividing wall to be equal and thus ensure the same pressure drop. The variation of temperature and composition along the DWC trays is presented in figures 6-7. In these figures, the trays are represented in a continuous way. Trays numbered 1 to 25 represent the prefrationator, trays from 26 to 73 correspond to the main column. The feed tray is number 10, while side-draw tray is number 46. As figure 6 shows, the temperature on the left side of the wall (prefractionator trays 1-25) and right side (main column trays 36-60) of the DWC are very close, and in this case the assumption of neglecting the heat transfer through the wall remains valid. The variation of concentrations of the dominant components in fractions C 2 (ethane), C 3 (propene), and C 4 (1-butene), as presented in figure 7, shows an important split between ethane and butene in the pre-fractionator and a high concentration of propene in the range of trays where the side draw is placed (tray 23 in the main column). The purities of the DWC products are: C 2 fraction 99.5% (top), C 3 fraction 99.2 % (side-draw), C 4 fraction 98.8 % (bottom). These values are very close to those realized by the sequence of T101 and T102 distillation columns (table 2) and will ensure the ethene and propene final purity demands. The C 2 fraction will be separated in the distillation column T103 while C 3 fraction is fed to the gas separation membrane unit (fig. 4) The main characteristics for the membrane gas separation unit fed with C 3 fraction obtained as side-draw in the DWC are summarized in table 4. Fig. 4 Thermally coupled separation sequence and membrane unit ethanizer) is 19 bar while the pressure in T102 (the depropanizer) is 18 bar. The pressure difference is acceptable and a DWC was tested as the use of a single condenser and a single reboiler may bring important advantages. Considering that no heat transfer occurs through the dividing wall, the DWC was modelled in HYSYS TM using the thermodynamically equivalent structure with prefractionator and main column (fig. 5) defined in a column sub-flowsheet. The number of theoretical trays in each section, the feed and side draw locations were defined starting from a short-cut design that was further slightly modified [3, 14] to reach the purity specification of the products at a low value for the energy consumption in this complex structure. The internal flows represented in the 262 Fig 5. The prefractionator and main column model used for DWC simulation REV. CHIM. (Bucharest) 66 No

5 Fig 6. Temperature profile in the DWC In this configuration, as the membrane unit feed is at higher temperature then the previous studied case, and as the propene permeance decreases with the temperature [19], the calculated membrane surface was 3810 m 2. For industrial purposes similar membrane surfaces were considered, and reported in literature, as for instance those presented by Chilukuri P. et al. [26]. Fig 7. Composition profile in the DWC Table 4 CHARACTERISTICS OF MEMBRANE UNIT FED WITH C 3 FRACTION FROM THE DWC Energy reduction analysis by thermal coupling and membrane separation unit The comparative analysis of the different separation flowcharts was performed in terms energy consumption. The energy consumptions are synthesized in tables 5 and 6. Data in table 5 present the energy reduction realized by replacing the de-etanizer (T101) and de-propanizer (T102) with a DWC. The results in terms of energy reduction are consistent with other DWC used in hydrocarbon separations reported in literature [1, 3, 5] proving that the DWC is a good solution. As can be noticed, the reflux in the DWC is higher than the reflux in the de-ethanizer, as it must ensure the liquid flow on both sides of the dividing wall, and this is the cause of an increase of refrigeration demand with about 6 % compared with the conventional separation scheme. The energy reduction provided by the reboiler duty decrease is important while the increase of the heavy component boiling point is not significant. Data in table 6 present the energy reduction realized by the hybrid separation sequences compared to the classical direct scheme. The best solution in terms of energy reduction is the hybrid sequence with totally thermal integration of the de-ethanizer and de-propanizer building a DWC. The membrane separation unit used to replaces Table 5 MAIN RESULTS OBTAINED BY THERMAL COUPLING IN A DWC WITH VAPOUR SIDE-DRAW REV. CHIM. (Bucharest) 66 No

6 Table 6 ENERGY CONSUMPTIONS FOR THE ANALYZED SEPARATION SCHEMES one of the most energy intensive separation, propene/ propane, proved to be promising solution. A more complete analyze concerning the capital cost for such a hybrid system would validate the viability of the proposed method. This analyze is not yet possible because commercial membrane units are not available for propene-propane separation, and this is a task for further work. Conclusions The present study proved that the use of a gas separation membrane unit for propene/propane separation is possible and in what concerns the membrane surface requirement the solution is feasible is a series of ZIF-8 membrane is used. In terms of energy consumption the hybrid system proposed is very efficient. The thermal coupling technique and complex distillation columns are also efficient means for lower energy consumptions. Replacing two distillation columns, the de-ethanizer and de-propanizer from the direct separation scheme, by a DWC increases the energy reduction in the C 2 separation process. A hybrid sequence with a DWC may lead to important reduction of energy consumption, over 70%, compared with a classical separation sequence. References 1.PREMKUMAR, R., RANGAIAH, G. P., Chem. Eng. Res. Des., 87,2008, p RONG B.G., Chem. Eng. Res. Des., 89 (8), 2011, p ISOPESCU, R., WOINAROSCHY, A., DRAGHICIU L., Rev. Chim. (Bucharest), 59, no. 7, 2008, p DRAGHICIU, L., ISOPESCU, R., WOINAROSCHY, A., Rev. Chim. (Bucharest), 60, no. 10, 2009, p HERNANDEZ, S., SEGOVIA-HERNANDEZ, J. G., RICO-RAMIREZ, V., Energy 31, 2006, p TAVAN, Y., RIAZI, S. H., NOZOHOURI, M., Energ. Convers. Manage., 79, 2014, p KISS, A.A., SUSZWALAK, D.J.P.C., Sep. & Purif. Technol., 86, 2012, p KISS, A.A., IGNAT, M. R., Applied Energy, 99, 2012, p KISS, A. A., IGNAT, R., FLORES LANDAETA, L., DE HAAN, A.B., Chemical Engineering and Processing: Process Intensification, 67, 2013, p KISS, A. A., IGNAT, M. R., Sep. & Purif. Technol., 98, 2012, p BAKER, R. W., Ind. Eng. Chem. Res., 41, 2002, p LI, J., ZONG, J., HUANG, W.,XU R., ZANG, Q., SHAO, H., GU, X., Ind. Eng. Chem. Res., 53, 2014, p HARA, N., YOSHIMUNE, M., NEGISHI, H., HARAYA, K., HARA, S., YAMAGUCHI T., J. Membr. Sci., 450, 2014, p WOINAROSCHY, A., ISOPESCU, R., Ind. Eng. Chem. Res., 49(19), 2010, p LI, K.H., OLSON, D.H., SEIDEL, J., EMGE, T.J., GONG, H.W., ZENG, H.P., LI, J., J. Am. Chem. Soc. 131, no. 30, 2009, p VOß, H., DIEFENBACHER, A., SCHUCH, G., RICHTER, H., VOIGT, I., NOACK, M., CAROD, J., J. Membr. Sci., 329, 2009, p MORI, N., TOMITA, T., Micropor. Mesopor. Mat., 112, no. 1-3, 2008, p XU, L., RUNGTA, M., BRAYDEN, M.K., MARTINEZ, M.V., STEARS B.A., BARBAY G.A., KOROS W.J., J. Membr. Sci , 2012, p PAN, Y., PI, T., LESTARI, G., LAI, Z., J. Membr. Sci , 2012, p AMARO, C., REQUIÃO, R., EMBIRUÇU, M., International Conference on Modeling, Simulation and Control, 10, 2011, IACSIT Press, Singapore 21.STRÃTULÃ, C., Fracionarea. Principii i metode de calcul, Ed. Tehnicã, Bucuresti NEAGU, M., CURSARU, D. L., Rev. Chim. (Bucharest), 64, no. 8, 2013, p ROMERO, K, Hydrocarbon Processing, April 2012, p DIMA, R., PLE U, V., GÎJIU, C.L., Ingineria separãrilor cu membrane, Ed. Bren, Bucuresti, CHO, Y., KIM, B., KIM, D., HAN, M., LEE, M., J. Proc. Control, 19,2009, p CHILUKURI, P., RADEMAKERS, K., NYMEIJER, van der HAM, L., van den BERG, Ind. Eng. Chem. Res., 46, 2007, p Manuscript received: REV. CHIM. (Bucharest) 66 No

BOUNDARY VALUE DESIGN METHOD FOR COMPLEX DEMETHANIZER COLUMNS

BOUNDARY VALUE DESIGN METHOD FOR COMPLEX DEMETHANIZER COLUMNS Distillation Absorption 2010 A.B. de Haan, H. Kooijman and A. Górak (Editors) All rights reserved by authors as per DA2010 copyright notice BOUNDARY AUE DESIGN METHOD FOR COMPEX DEMETHANIZER COUMNS Muneeb

More information

Design and Analysis of Divided Wall Column

Design and Analysis of Divided Wall Column Proceedings of the 6th International Conference on Process Systems Engineering (PSE ASIA) 25-27 June 2013, Kuala Lumpur. Design and Analysis of Divided Wall Column M. Shamsuzzoha, a* Hiroya Seki b, Moonyong

More information

Experimental evaluation of a modified fully thermally coupled distillation column

Experimental evaluation of a modified fully thermally coupled distillation column Korean J. Chem. Eng., 27(4), 1056-1062 (2010) DOI: 10.1007/s11814-010-0205-8 RAPID COMMUNICATION Experimental evaluation of a modified fully thermally coupled distillation column Kyu Suk Hwang**, Byoung

More information

SIMULATION ANALYSIS OF FULLY THERMALLY COUPLED DISTILLATION COLUMN

SIMULATION ANALYSIS OF FULLY THERMALLY COUPLED DISTILLATION COLUMN Int. J. Chem. Sci.: 14(3), 2016, 1621-1632 ISSN 0972-768X www.sadgurupublications.com SIMULATION ANALYSIS OF FULLY THERMALLY COUPLED DISTILLATION COLUMN ASMITA PRAVIN PATIL * and S. M. JADHAV Chemical

More information

Recovery of Aromatics from Pyrolysis Gasoline by Conventional and Energy-Integrated Extractive Distillation

Recovery of Aromatics from Pyrolysis Gasoline by Conventional and Energy-Integrated Extractive Distillation 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Recovery of Aromatics from Pyrolysis Gasoline by Conventional

More information

Simulation and Analysis of Ordinary Distillation of Close Boiling Hydrocarbons Using ASPEN HYSYS

Simulation and Analysis of Ordinary Distillation of Close Boiling Hydrocarbons Using ASPEN HYSYS International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 16 No. 4 Jun. 2016, pp. 805-813 2016 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Simulation

More information

Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive Case

Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive Case F. O. BARROSO-MUÑOZ et al., Thermally Coupled Distillation Systems: Study of, Chem. Biochem. Eng. Q. 21 (2) 115 120 (2007) 115 Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive

More information

REACTIVE DIVIDING-WALL COLUMNS: TOWARDS ENHANCED PROCESS INTEGRATION

REACTIVE DIVIDING-WALL COLUMNS: TOWARDS ENHANCED PROCESS INTEGRATION Distillation bsorption 1.. de aan,. Kooijman and. Górak (Editors) ll rights reserved by authors as per D1 copyright notice RETIVE DIVIDING-WLL OLUMNS: TOWRDS ENNED PROESS INTEGRTION nton. Kiss, J. J. Pragt,.

More information

Reactive Dividing-Wall Columns How to Get More with Less Resources?

Reactive Dividing-Wall Columns How to Get More with Less Resources? Chem. Eng. Comm., 196:1366 1374, 2009 Copyright # Taylor & Francis Group, LLC ISSN: 0098-6445 print=1563-5201 online DOI: 10.1080/00986440902935507 Reactive Dividing-Wall Columns How to Get More with Less

More information

Dividing wall columns for heterogeneous azeotropic distillation

Dividing wall columns for heterogeneous azeotropic distillation Dividing wall columns for heterogeneous azeotropic distillation Quang-Khoa Le 1, Ivar J. Halvorsen 2, Oleg Pajalic 3, Sigurd Skogestad 1* 1 Norwegian University of Science and Technology (NTNU), Trondheim,

More information

IMPROVED CONTROL STRATEGIES FOR DIVIDING-WALL COLUMNS

IMPROVED CONTROL STRATEGIES FOR DIVIDING-WALL COLUMNS Distillation bsorption 200.. de Haan, H. Kooijman and. Górak (Editors) ll rights reserved by authors as per D200 copyright notice IMPROVED ONTROL STRTEGIES FOR DIVIDING-WLL OLUMNS nton. Kiss, Ruben. van

More information

Wikisheet Dividing Wall Column

Wikisheet Dividing Wall Column Wikisheet Divided Wall Column Dividing Wall Column Conventional Columns System Objective Contribute to energy efficiency program Background, Wikisheets Process Intensification within the PIN-NL program

More information

The most important nomenclature used in this report can be summarized in:

The most important nomenclature used in this report can be summarized in: Notation The most important nomenclature used in this report can be summarized in: V Vapor flow rate V T Vapor flow rate in the top L Liquid flow rate D Distillation product B Bottom product q Liquid fraction

More information

Design and Control Properties of Arrangements for Distillation of Four Component Mixtures Using Less Than N-1 Columns

Design and Control Properties of Arrangements for Distillation of Four Component Mixtures Using Less Than N-1 Columns D. M. MÉNDEZ-VALENCIA et al., Design and Control Properties of Arrangements, Chem. Biochem. Eng. Q. 22 (3) 273 283 (2008) 273 Design and Control Properties of Arrangements for Distillation of Four Component

More information

Rate-based design of integrated distillation sequences

Rate-based design of integrated distillation sequences 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Rate-based design of integrated distillation sequences

More information

regressing the vapor-liquid equilibrium data in Mathuni et al. and Rodriguez et al., respectively. The phase equilibrium data of the other missing pai

regressing the vapor-liquid equilibrium data in Mathuni et al. and Rodriguez et al., respectively. The phase equilibrium data of the other missing pai Plant-Wide Control of Thermally Coupled Reactive Distillation to Co-Produce Diethyl Carbonate and Propylene Glycol San-Jang Wang, Shueh-Hen Cheng, and Pin-Hao Chiu Abstract Diethyl carbonate is recognized

More information

QUESTION 1 The boiling temperature of hydrocarbons making up crude oil depends on the strength of intermolecular forces known as:

QUESTION 1 The boiling temperature of hydrocarbons making up crude oil depends on the strength of intermolecular forces known as: QUESTION 1 The boiling temperature of hydrocarbons making up crude oil depends on the strength of intermolecular forces known as: B C D Hydrogen bonding. Dipole-dipole interactions. Dispersion forces.

More information

The School For Excellence 2018 Unit 3 & 4 Chemistry Topic Notes Page 1

The School For Excellence 2018 Unit 3 & 4 Chemistry Topic Notes Page 1 The term fractional distillation refers to a physical method used to separate various components of crude oil. Fractional distillation uses the different boiling temperatures of each component, or fraction,

More information

Systems Engineering Spring Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant. Date: 2/25/00 Due: 3/3/00

Systems Engineering Spring Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant. Date: 2/25/00 Due: 3/3/00 10.551 Systems Engineering Spring 2000 Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant Date: 2/25/00 Due: 3/3/00 c Paul I. Barton, 14th February 2000 At our Nowhere City

More information

Shortcut Distillation. Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia

Shortcut Distillation. Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia Shortcut Distillation Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia The use of separation column in HYSYS The column utilities in HYSYS can be used to model a wide variety of

More information

Design and Optimization of Thermally Coupled Distillation Schemes for the Separation of Multicomponent Mixtures

Design and Optimization of Thermally Coupled Distillation Schemes for the Separation of Multicomponent Mixtures 724 Ind. Eng. Chem. Res. 2006, 45, 724-732 Design and Optimization of Thermally Coupled Distillation Schemes for the Separation of Multicomponent Mixtures Christopher Jorge Calzon-McConville, Ma. Bibiana

More information

DETERMINATION OF OPTIMAL ENERGY EFFICIENT SEPARATION SCHEMES BASED ON DRIVING FORCES

DETERMINATION OF OPTIMAL ENERGY EFFICIENT SEPARATION SCHEMES BASED ON DRIVING FORCES DETERMINATION OF OPTIMAL ENERGY EFFICIENT SEPARATION SCHEMES BASED ON DRIVING FORCES Abstract Erik Bek-Pedersen, Rafiqul Gani CAPEC, Department of Chemical Engineering, Technical University of Denmark,

More information

Multiple Steady States in Thermally Coupled Distillation Sequences: Revisiting the Design, Energy Optimization, and Control

Multiple Steady States in Thermally Coupled Distillation Sequences: Revisiting the Design, Energy Optimization, and Control pubs.acs.org/iecr Multiple Steady States in Thermally Coupled Distillation Sequences: Revisiting the Design, Energy Optimization, and Control Rauĺ Delgado-Delgado, Fabricio Omar Barroso-Munõz, Juan Gabriel

More information

INDUSTRIAL EXPERIENCE WITH HYBRID DISTILLATION PERVAPORATION OR VAPOR PERMEATION APPLICATIONS

INDUSTRIAL EXPERIENCE WITH HYBRID DISTILLATION PERVAPORATION OR VAPOR PERMEATION APPLICATIONS INDUSTRIAL EXPERIENCE WITH HYBRID DISTILLATION PERVAPORATION OR VAPOR PERMEATION APPLICATIONS Mario Roza, Eva Maus Sulzer Chemtech AG, Winterthur, Switzerland; E-mails: mario.roza@sulzer.com, eva.maus@sulzer.com

More information

CONTROL PROPERTIES ANALYSIS OF ALTERNATE SCHEMES TO THERMALLY COUPLED DISTILLATION SCHEMES

CONTROL PROPERTIES ANALYSIS OF ALTERNATE SCHEMES TO THERMALLY COUPLED DISTILLATION SCHEMES 8th International IFAC Symposium on Dynamics and Control of Process Systems Preprints Vol.1, June 6-8, 2007, Cancún, Mexico CONTROL PROPERTIES ANALYSIS OF ALTERNATE SCHEMES TO THERMALLY COUPLED DISTILLATION

More information

Reduction of Energy Consumption and Greenhouse Gas Emissions in a Plant for the Separation of Amines

Reduction of Energy Consumption and Greenhouse Gas Emissions in a Plant for the Separation of Amines 1462 Chem. Eng. Technol. 28, 31, No. 1, 1462 1469 Dionicio Jantes-Jaramillo 1 Juan Gabriel Segovia- Hernández 1 Salvador Hernández 1 1 Universidad de Guanajuato, Facultad de Química, Guanajuato, Mexico.

More information

Hybrid Separation Scheme for Azeotropic Mixtures Sustainable Design Methodology

Hybrid Separation Scheme for Azeotropic Mixtures Sustainable Design Methodology A publication of CHEMICAL ENGINEERINGTRANSACTIONS VOL. 69, 2018 Guest Editors:Elisabetta Brunazzi, Eva Sorensen Copyright 2018, AIDIC Servizi S.r.l. ISBN978-88-95608-66-2; ISSN 2283-9216 The Italian Association

More information

Specific Problems of Using Unisim Design in the Dynamic Simulation of the Propylene-Propane Distillation Column

Specific Problems of Using Unisim Design in the Dynamic Simulation of the Propylene-Propane Distillation Column Specific Problems of Using Unisim Design in the Dynamic Simulation of the Propylene-Propane Distillation Column CRISTIAN PATRASCIOIU*, MARIAN POPESCU, NICOLAE PARASCHIV Petroleum - Gas University of Ploieºti,

More information

IV Distillation Sequencing

IV Distillation Sequencing IV Distillation Sequencing Outline 1. Basic Concepts of Distillation Sequence Design 2. Choice of Sequence and its Operating Pressure. 3. Performance of Distillation Column (Sieve tray and packed tower)

More information

Simulation of 1,3-butadiene extractive distillation process using N-methyl-2-pyrrolidone solvent

Simulation of 1,3-butadiene extractive distillation process using N-methyl-2-pyrrolidone solvent Korean J. Chem. Eng., 29(11), 1493-1499 (2012) DOI: 10.1007/s11814-012-0075-3 INVITED REVIEW PAPER Simulation of 1,3-butadiene extractive distillation process using N-methyl-2-pyrrolidone solvent YoungHoon

More information

Optimal Designs of Multiple Dividing Wall Columns

Optimal Designs of Multiple Dividing Wall Columns Process optimization 2051 Fernando Israel Gómez- Castro 1,2 Mario Alberto Rodríguez-Ángeles 2 Juan Gabriel Segovia- Hernández 2 Claudia Gutiérrez-Antonio 3 Abel Briones-Ramírez 4 1 Instituto Tecnológico

More information

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 2 Flowsheet Synthesis (Conceptual Design of

More information

Process Classification

Process Classification Process Classification Before writing a material balance (MB) you must first identify the type of process in question. Batch no material (mass) is transferred into or out of the system over the time period

More information

EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION

EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION Santanu Bandyopadhyay Energy Systems Engineering and Department of Mechanical Engineering, Indian Institute of Technology, Bombay,

More information

Distillation is a method of separating mixtures based

Distillation is a method of separating mixtures based Distillation Distillation is a method of separating mixtures based on differences in their volatilities in a boiling liquid mixture. Distillation is a unit operation, or a physical separation process,

More information

Simulation and Design of a Dividing Wall Column with an Analysis of a Vapour Splitting Device

Simulation and Design of a Dividing Wall Column with an Analysis of a Vapour Splitting Device A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 69, 2018 Guest Editors: Elisabetta Brunazzi, Eva Sorensen Copyright 2018, AIDIC Servizi S.r.l. ISBN 978-88-95608-66-2; ISSN 2283-9216 The Italian

More information

Thermodynamic Analysis and Hydrodynamic Behavior of a Reactive Dividing Wall Distillation Column 1. Introduction

Thermodynamic Analysis and Hydrodynamic Behavior of a Reactive Dividing Wall Distillation Column 1. Introduction Thermodynamic Analysis and Hydrodynamic Behavior of a Reactive Dividing Wall Distillation Column Fabricio Omar Barroso-Muñoz, María Dolores López-Ramírez, Jorge Gerardo Díaz-Muñoz, Salvador Hernández,

More information

THERMAL INTEGRATION OF A DISTILLATION COLUMN THROUGH SIDE-EXCHANGERS

THERMAL INTEGRATION OF A DISTILLATION COLUMN THROUGH SIDE-EXCHANGERS THERMAL INTEGRATION OF A DISTILLATION COLUMN THROUGH SIDE-EXCHANGERS Santanu Bandyopadhyay Energy Systems Engineering and Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Powai,

More information

MULTI-LOOP CONTROL STRUCTURE FOR DIVIDING-WALL DISTILLATION COLUMNS. Abstract. Introduction

MULTI-LOOP CONTROL STRUCTURE FOR DIVIDING-WALL DISTILLATION COLUMNS. Abstract. Introduction MULTI-LOOP CONTROL STRUCTURE FOR DIVIDING-WALL DISTILLATION COLUMNS Salvador Tututi-Avila, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, Arturo Jiménez-Gutiérrez,

More information

Steady State Design for the Separation of Acetone-Chloroform Maximum Boiling Azeotrope Using Three Different Solvents

Steady State Design for the Separation of Acetone-Chloroform Maximum Boiling Azeotrope Using Three Different Solvents Korean Chem. Eng. Res., 55(4), 490-496 (2017) https://doi.org/10.9713/kcer.2017.55.4.490 PISSN 0304-128X, EISSN 2233-9558 Steady State Design for the Separation of Acetone-Chloroform Maximum Boiling Azeotrope

More information

A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts of VCM process

A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts of VCM process Korean J. Chem. Eng., 27(3), 970-976 (2010) DOI: 10.1007/s11814-010-0206-7 RAPID COMMUNICATION A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts

More information

ENERGY IMPROVEMENT FOR NGLS DIRECT INDIRECT SEQUENCE FRACTIONATION UNIT

ENERGY IMPROVEMENT FOR NGLS DIRECT INDIRECT SEQUENCE FRACTIONATION UNIT 2015 Conference on Emerging Energy and Process Technology (CONCEPT2015) 15-16 December 2015, A Famosa Resort, Alor Gajah, Melaka ENERGY IMPROVEMENT FOR NGLS DIRECT INDIRECT SEQUENCE FRACTIONATION UNIT

More information

Effect of Two-Liquid Phases on the Dynamic and the Control of Trayed Distillation Columns

Effect of Two-Liquid Phases on the Dynamic and the Control of Trayed Distillation Columns Effect of Two-Liquid Phases on the Dynamic and the Control of Trayed Distillation Columns Gardênia Cordeiro, Karoline Brito, Brenda Guedes, Luis Vasconcelos, Romildo Brito Federal University of Campina

More information

Approximate Design of Fully Thermally Coupled Distillation Columns

Approximate Design of Fully Thermally Coupled Distillation Columns Korean J. Chem. Eng., 19(3), 383-390 (2002) Approximate Design of Fully Thermally Coupled Distillation Columns Young Han Kim, Masaru Nakaiwa* and Kyu Suk Hwang** Dept. of Chem. Eng., Dong-A University,

More information

Simulation and Process Integration of Clean Acetone Plant

Simulation and Process Integration of Clean Acetone Plant 469 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 39, 2014 Guest Editors: Petar Sabev Varbanov, Jiří Jaromír Klemeš, Peng Yen Liew, Jun Yow Yong Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-30-3;

More information

Simulation of CO 2 removal in a split-flow gas sweetening process

Simulation of CO 2 removal in a split-flow gas sweetening process Korean J. Chem. Eng., 28(3), 643-648 (2011) DOI: 10.1007/s11814-010-0446-6 INVITED REVIEW PAPER Simulation of CO 2 removal in a split-flow gas sweetening process Hyung Kun Bae, Sung Young Kim, and Bomsock

More information

Chapter 4. Problem SM.7 Ethylbenzene/Styrene Column

Chapter 4. Problem SM.7 Ethylbenzene/Styrene Column Background Chapter 4. Problem SM.7 Ethylbenzene/Styrene Column In Problem SM.6 of the HYSYS manual, a modified form of successive substitution, called the Wegstein method, was used to close the material

More information

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM I-Lung Chien and Kai-Luen Zeng Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei

More information

Implementation and Operation of a Dividing-Wall Distillation Column

Implementation and Operation of a Dividing-Wall Distillation Column 746 S. Hernández et al. Fabricio Omar Barroso-Muñoz 1 Salvador Hernández 1 Juan Gabriel Segovia- Hernández 1 Héctor Hernández-Escoto 1 Vicente Rico-Ramírez 2 Rosa-Hilda Chávez 3 1 Departamento de Ingeniería

More information

,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han

,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han Jungho Cho, So-Jin Park,, Myung-Jae Choi,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han Department of Chemical Engineering, Dong-Yang University, Kyoungbuk, 750-711, Korea *Department of Chemical Engineering,

More information

Novel Control Structures for Heterogeneous Reactive Distillation

Novel Control Structures for Heterogeneous Reactive Distillation A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 69, 2018 Guest Editors: Elisabetta Brunazzi, Eva Sorensen Copyright 2018, AIDIC Servizi S.r.l. ISBN 978-88-95608-66-2; ISSN 2283-9216 The Italian

More information

Modeling and Simulation of Distillation + Pervaporation Hybrid Unit: Study of IPA - Water Separation

Modeling and Simulation of Distillation + Pervaporation Hybrid Unit: Study of IPA - Water Separation International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.5, pp 190-196, 2017 Modeling and Simulation of Distillation + Pervaporation Hybrid Unit:

More information

Heat Integrated Pressure Swing Distillation for Separating Pyrolysis Products of Phenol Tar

Heat Integrated Pressure Swing Distillation for Separating Pyrolysis Products of Phenol Tar 703 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 61, 2017 Guest Editors: Petar S Varbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří J Klemeš Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-51-8;

More information

General Separation Techniques

General Separation Techniques ecture 2. Basic Separation Concepts (1) [Ch. 1] General Separation Techniques - Separation by phase creation - Separation by phase addition - Separation by barrier - Separation by solid agent - Separation

More information

Distillation. Sep-tek. Ch.11 (continued) Distillation (Multistage with reflux) Sigurd Skogestad. Separation of liquid mixtures by repeated evaporation

Distillation. Sep-tek. Ch.11 (continued) Distillation (Multistage with reflux) Sigurd Skogestad. Separation of liquid mixtures by repeated evaporation Sep-tek. Ch.11 (continued) Distillation (Multistage with reflux) Sigurd Skogestad Distillation Separation of liquid mixtures by repeated evaporation multi-stage with reflux Old name: Rectification Basis:

More information

Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation

Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation Korean J. Chem. Eng., 17(6), 712-718 (2000) Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation Yu-Jung Choi, Tae-In Kwon and Yeong-Koo Yeo Department of Chemical Engineering,

More information

Lecture 6: 3/2/2012 Material Balances

Lecture 6: 3/2/2012 Material Balances Lecture 6: 3/2/2012 Material Balances 1 Chapter 6: Introduction to Material Balance Objectives: 1. Understand the features of process, system, open, closed, steady-state, and unsteady-state systems. 2.

More information

Material Balances Chapter 6: Introduction to Material Balance Objectives:

Material Balances Chapter 6: Introduction to Material Balance Objectives: Material Balances Chapter 6: Introduction to Material Balance Objectives: 1. Understand the features of process, system, open, closed, steady-state, and unsteady-state systems. 2. Express in words what

More information

Study of arrangements for distillation of quaternary mixtures using less than n-1 columns

Study of arrangements for distillation of quaternary mixtures using less than n-1 columns Instituto Tecnologico de Aguascalientes From the SelectedWorks of Adrian Bonilla-Petriciolet 2008 Study of arrangements for distillation of quaternary mixtures using less than n-1 columns J.G. Segovia-Hernández,

More information

Effect of Temperature on Synthesis of ZIF-8 Membranes for Propylene/propane Separation by Counter Diffusion Method

Effect of Temperature on Synthesis of ZIF-8 Membranes for Propylene/propane Separation by Counter Diffusion Method Journal of the Japan Petroleum Institute, 58, (4), 237-244 (2015) 237 [Regular Paper] Effect of Temperature on Synthesis of ZIF-8 Membranes for Propylene/propane Separation by Counter Diffusion Method

More information

Simplified Methodology for the Design and Optimization of Thermally Coupled Reactive Distillation Systems

Simplified Methodology for the Design and Optimization of Thermally Coupled Reactive Distillation Systems pubs.acs.org/iecr Simplified Methodology for the Design and Optimization of Thermally Coupled Reactive Distillation Systems Fernando Israel Goḿez-Castro,, Vicente Rico-Ramírez,*, Juan Gabriel Segovia-Hernańdez,

More information

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide Korean J. Chem. Eng., 24(3), 438-444 (2007) SHORT COMMUNICATION Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide Jungho Cho and Dong Min Kim* Department of Chemical

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 5 Distillation Lecture - 5 Fractional Distillation Welcome to the

More information

An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method

An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method Syed Mujahed Ali Rizwan Senior Lecturer in Chemistry Challenger College, Moinabad, Hyderabad. Abstract: In this

More information

Dynamic Behaviour of Thermally Coupled Distillation Arrangements: Effect of the Interconnection Flowrate

Dynamic Behaviour of Thermally Coupled Distillation Arrangements: Effect of the Interconnection Flowrate Dynamic Behaviour of Thermally Coupled Distillation Arrangements: Effect of the Interconnection Flowrate Erick Yair Miranda-Galindo and Juan Gabriel Segovia - Hernández Abstract Thermally coupled distillation

More information

Novel Procedure for Assessment of Feasible Design Parameters of Dividing-Wall Columns: Application to Non-azeotropic Mixtures

Novel Procedure for Assessment of Feasible Design Parameters of Dividing-Wall Columns: Application to Non-azeotropic Mixtures Novel Procedure for Assessment of Feasible Design Parameters of Dividing-Wall Columns: Application to Non-azeotropic Mixtures Hassiba Benyounes, Khadidja Benyahia, Weifeng Shen, Vincent Gerbaud, Lichun

More information

Modelling the Solubility of Solid Aromatic Compounds in Supercritical Fluids

Modelling the Solubility of Solid Aromatic Compounds in Supercritical Fluids Modelling the Solubility of Solid Aromatic Compounds in Supercritical Fluids VIOREL FEROIU*, OCTAVIAN PARTENIE, DAN GEANA Politehnica University of Bucharest, Department of Applied Physical Chemistry and

More information

Control properties of thermally coupled distillation sequences for different operating conditions

Control properties of thermally coupled distillation sequences for different operating conditions omputers and hemical Engineering 31 (2007) 867 874 Short communication ontrol properties of thermally coupled distillation sequences for different operating conditions Juan Gabriel Segovia-Hernández, Esteban

More information

All rights reserved. Armando B. Corripio, PhD, PE Flash Distillation Flash Drum Variables and Specifications... 2

All rights reserved. Armando B. Corripio, PhD, PE Flash Distillation Flash Drum Variables and Specifications... 2 Flash Distillation All rights reserved. Armando B. Corripio, PhD, PE. 2013 Contents Flash Distillation... 1 1 Flash Drum Variables and Specifications... 2 2 Flash Drum Balances and Equations... 4 2.1 Equilibrium

More information

Approximate Methods Fenske-Underwood-Gilliland (FUG) Method Selection of Two Key Components

Approximate Methods Fenske-Underwood-Gilliland (FUG) Method Selection of Two Key Components Lecture 3. Approximate Multicomponent Methods () [Ch. 9] Approximate Methods Fenske-Underwood-Gilliland (FUG) Method Selection of Two Key Components Column Operating Pressure Fenske Equation for Minimum

More information

Active vapor split control for dividing-wall columns

Active vapor split control for dividing-wall columns Industrial & Engineering Chemistry Research Active vapor split control for dividing-wall columns Journal: Industrial & Engineering Chemistry Research Manuscript ID: ie--.r Manuscript Type: Article Date

More information

Triple Column Pressure-Swing Distillation for Ternary Mixture of Methyl Ethyl Ketone /Isopropanol /Ethanol

Triple Column Pressure-Swing Distillation for Ternary Mixture of Methyl Ethyl Ketone /Isopropanol /Ethanol 649 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 61, 2017 Guest Editors: Petar S Varbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří J Klemeš Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-51-8;

More information

[Thirumalesh*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Thirumalesh*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY CASE STUDY ON MULTICOMPONENT DISTILLATION AND DISTILLATION COLUMN SEQUENCING Thirumalesh. B.S*, Ramesh.V * Assistant Professor

More information

PRACTICAL CONTROL OF DIVIDING-WALL COLUMNS

PRACTICAL CONTROL OF DIVIDING-WALL COLUMNS Distillation Absorption 2010. Strandberg, S. Skogestad and I.. Halvorsen All rights reserved by authors as per DA2010 copyright notice PRACTICAL CONTROL OF DIVIDING-WALL COLUMNS ens Strandberg 1, Sigurd

More information

Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process

Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process Nikhil V. Sancheti Department of Chemical Engineering L.I.T., Nagpur, Maharashtra,

More information

C11.1 Organic Chemistry Quiz Questions & Answers. Parts 1 & 2; all sets Parts 3 & 4; Sets 1 & 2 only

C11.1 Organic Chemistry Quiz Questions & Answers. Parts 1 & 2; all sets Parts 3 & 4; Sets 1 & 2 only C11.1 Organic Chemistry Quiz Questions & Answers Parts 1 & 2; all sets Parts 3 & 4; Sets 1 & 2 only C11.1 Organic Chemistry Part 1 1. Define a mixture. 2. Define crude oil. 3. Define a hydrocarbon. 4.

More information

Placement and Integration of Distillation column Module 06 Lecture 39

Placement and Integration of Distillation column Module 06 Lecture 39 Module 06: Integration and placement of equipment Lecture 39: Placement and Integration of Distillation Column Key word: Pinch Technology, Pinch technology has established that good process integration

More information

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2 Multicomponent Distillation All Rights Reserved. Armando B. Corripio, PhD, P.E., 2013 Contents Multicomponent Distillation... 1 1 Column Specifications... 2 1.1 Key Components and Sequencing Columns...

More information

Theoretical screening of zeolites for membrane separation of propylene/propane mixtures

Theoretical screening of zeolites for membrane separation of propylene/propane mixtures Polyolefins Journal, Vol. 5, No. (08) OI: 0.063/poj.07.478 ORIGINAL PAPER Theoretical screening of zeolites for membrane separation of propylene/propane mixtures Hafez Maghsoudi Chemical Engineering Faculty

More information

DYNAMIC SIMULATOR-BASED APC DESIGN FOR A NAPHTHA REDISTILLATION COLUMN

DYNAMIC SIMULATOR-BASED APC DESIGN FOR A NAPHTHA REDISTILLATION COLUMN HUNGARIAN JOURNAL OF INDUSTRY AND CHEMISTRY Vol. 45(1) pp. 17 22 (2017) hjic.mk.uni-pannon.hu DOI: 10.1515/hjic-2017-0004 DYNAMIC SIMULATOR-BASED APC DESIGN FOR A NAPHTHA REDISTILLATION COLUMN LÁSZLÓ SZABÓ,

More information

Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products and Generalized Petlyuk Arrangements

Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products and Generalized Petlyuk Arrangements 616 Ind. Eng. Chem. Res. 2003, 42, 616-629 Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products and Generalized Petlyuk Arrangements Ivar J. Halvorsen and Sigurd Skogestad*

More information

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1 CHAPTER 1 INTRODUCTION The development of the chemical industry over the last two centuries has provided modern civilization with a whole host of products that improve the well-being of the human race.

More information

Chemical Engineering and Processing: Process Intensification

Chemical Engineering and Processing: Process Intensification Chemical Engineering and Processing 48 (2009) 250 258 Contents lists available at ScienceDirect Chemical Engineering and Processing: Process Intensification journal homepage: www.elsevier.com/locate/cep

More information

A novel design of reactive distillation configuration for 2-methoxy-2-methylheptane process

A novel design of reactive distillation configuration for 2-methoxy-2-methylheptane process A novel design of reactive distillation configuration for 2-methoxy-2-methylheptane process Arif Hussain 1, Muhammad Abdul Qyyum 1, Le Quang Minh 1, Hong Jimin 1, and Moonyong Lee 1,* 1 Process System

More information

A Short Note on Steady State Behaviour of a Petlyuk Distillation Column by Using a Non-Equilibrium Stage Model

A Short Note on Steady State Behaviour of a Petlyuk Distillation Column by Using a Non-Equilibrium Stage Model R&D NOTE A Short Note on Steady State Behaviour of a Petlyuk Distillation Column by Using a Non-Equilibrium Stage Model Erika Fabiola Abad-Zarate, Juan Gabriel Segovia-Hernández*, Salvador Hernández and

More information

A NOVEL PROCESS CONCEPT FOR THE PRODUCTION OF ETHYL LACTATE

A NOVEL PROCESS CONCEPT FOR THE PRODUCTION OF ETHYL LACTATE Distillation Absorption 2010 A.B. de Haan, H. Kooijman and A. Górak (Editors) All rights reserved by authors as per DA2010 copyright notice A NOVEL PROCESS CONCEPT FOR THE PRODUCTION OF ETHYL LACTATE Harvey

More information

Optimal structure of reactive and non-reactive stages in reactive distillation processes

Optimal structure of reactive and non-reactive stages in reactive distillation processes Optimal structure of reactive and non-reactive stages in reactive distillation processes Alejandro O. Domancich 1,2, Nélida B. Brignole 1,2, Patricia M. Hoch 2,3 1 LIDeCC - Departamento de Ciencias e Ingeniería

More information

Cracking. 191 minutes. 186 marks. Page 1 of 27

Cracking. 191 minutes. 186 marks. Page 1 of 27 3.1.6.2 Cracking 191 minutes 186 marks Page 1 of 27 Q1. (a) Gas oil (diesel), kerosine (paraffin), mineral oil (lubricating oil) and petrol (gasoline) are four of the five fractions obtained by the fractional

More information

SIMULATION STUDY OF DIVIDED WALL DISTILLATION COLUMN PROF.B.MUNSHI

SIMULATION STUDY OF DIVIDED WALL DISTILLATION COLUMN PROF.B.MUNSHI SIMULATION STUDY OF DIVIDED WALL DISTILLATION COLUMN Bachelor intechnology In Chemical Engineering By SAURABH ARORA 110CH0386 Under the guidanceof PROF.B.MUNSHI DepartmentofChemicalEngineering National

More information

Journal of Environmental Science, Computer Science and Engineering & Technology

Journal of Environmental Science, Computer Science and Engineering & Technology JECET; March 214-May 214; Vol.3.No.2, 115-134. E-ISSN: 2278 179X Research Article Journal of Environmental Science, Computer Science and Engineering & Technology An International Peer Review E-3 Journal

More information

Heterogeneous Azeotropic Distillation Operational Policies and Control

Heterogeneous Azeotropic Distillation Operational Policies and Control Heterogeneous Azeotropic Distillation Operational Policies and Control Claudia J. G. Vasconcelos * and Maria Regina Wolf-Maciel State University of Campinas, School of Chemical Engineering, Campinas/SP,

More information

1 Which of the compounds shown are in the same homologous series? 1 CH 3 OH 2 CH 3 CH 2 OH 3 CH 3 COOH C 3 CH 2 CH 2 OH

1 Which of the compounds shown are in the same homologous series? 1 CH 3 OH 2 CH 3 CH 2 OH 3 CH 3 COOH C 3 CH 2 CH 2 OH 1 Which of the compounds shown are in the same homologous series? 1 3 2 3 2 3 3 4 3 2 2 1, 2 and 3 1, 2 and 4 1, 3 and 4 2, 3 and 4 2 Which compound is not an alkane, n 2n+2? 3 2 2 3 ( 3 ) 2 3 3 3 ( 3

More information

Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate

Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate Jongkee Park, Na-Hyun Lee, So-Jin Park, and Jungho Cho, Separation Process Research Center, Korea

More information

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author s version

More information

Distillation. Presented by : Nabanita Deka

Distillation. Presented by : Nabanita Deka Distillation OPTIMIZATION FOR MAXIMISATION Presented by : Nabanita Deka LPG department OIL INDIA LIMITED DATED-04.03.2011 Basics of mass transfer Mass transfer : Transfer of material from one homogeneous

More information

ChemSep Tutorial: Distillation with Hypothetical Components

ChemSep Tutorial: Distillation with Hypothetical Components ChemSep Tutorial: Distillation with Hypothetical Components Harry Kooijman and Ross Taylor Here we use ChemSep to solve a complex multicomponent distillation problem presented in a paper entitled Multistage

More information

Effects of Feed Stage on the Product Composition of a Reactive Distillation Process: A Case Study of trans-2-pentene Metathesis

Effects of Feed Stage on the Product Composition of a Reactive Distillation Process: A Case Study of trans-2-pentene Metathesis Journal homepage: http://www.journalijar.com INTERNATIONAL JOURNAL OF ADVANCED RESEARCH RESEARCH ARTICLE Effects of Feed Stage on the Product Composition of a Reactive Distillation Process: A Case Study

More information

Kaibel Column: Modeling, Optimization, and Conceptual Design of Multi-product Dividing Wall Columns

Kaibel Column: Modeling, Optimization, and Conceptual Design of Multi-product Dividing Wall Columns Kaibel Column: Modeling, Optimization, and Conceptual Design of Multi-product Dividing Wall Columns E. Soraya Rawlings a, *, Qi Chen b, Ignacio E. Grossmann b, and Jose A. Caballero c a Departamento de

More information

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Outline: Introduction to multicomponent distillation Phase Equilibria in Multicomponent Distillation (Pg. 737) Bubble-point and dew-point calculation

More information

Organic Chemistry Worksheets

Organic Chemistry Worksheets Highlight the single longest, continuous carbon-carbon chain. Note the alkyl branches that are connected to the root chain. Count the carbons in the root chain, starting from the end closest to the alkyl

More information