A Practical Method for Evaluating the Neutron Dose

Size: px
Start display at page:

Download "A Practical Method for Evaluating the Neutron Dose"

Transcription

1 Journal of NUCLEAR SCIENCE and TECHNOLOGY, 3[11], p.473~478 (November, 1966) 473 A Practical Method for Evaluating the Neutron Dose Equivalent Rate* Yoshikazu YOSHIDA**, Hatsumi TATSUTA**, Hiroshi RYUFUKU**, Kyoshiro KITANO** and Seiji FUKUDA** Received July 7, 1966 A practical method applicable to field monitoring with survey instruments is presented, which permits evaluation of the dose equivalent rate for neutrons, the spectrum of which is unknown but with energy ranging from epithermal to fast. The detectors employed consist of a BF3 proportional counter with paraffin moderators 6.5 cm and 1.0 cm thick, sheathed in 0.5 mm thick Cd, and a scintillation (ZnS and plastic) counter. The dose equivalent rate D(mrem/hr) of neutrons with a broad spectrum is determined from the equation D=DB+Ds, where DB is the dose equivalent rate determined from the effective neutron flux and the effective neutron energy through the counting rates obtained with the BF3 proportional counter with paraffin moderators, and Ds the dose measured with the scintillation counter, the sensitivity of which is nearly proportional to the dose equivalent rate for neutrons above 2 MeV. The error in evaluating the dose equivalent rate by the present method has been calculated to be at most 60% for typical neutron spectra, in the energy range from epithermal to 10 MeV. I. INTRODUCTION Measurement of the dose equivalent rate of neutrons is very difficult, particularly when the spectrum is unknown but with energy ranging from intermediate to fast, such as in the case of neutrons leaking from nuclear reactors. Detectors(1)~(3) and circuits(4)(5) have been developed that show a response nearly proportional to the tissue-absorbed dose rate; and methods have been devised for evaluating the dose equivalent rate from the neutron flux and the effective energy, using either two different detectors(6), or a detector employed with moderators of several thicknesses(6)~(8). However, these devices are not suitable for intermediate neutrons. More recently, various instruments have been developed to evaluate the dose equivalent rates of neutrons, including those of intermediate energies(9)~(11), but they are not necessarily portable. In this paper is described a practical method for field monitoring in the vicinity of reactors with survey instruments. This is used for evaluating the dose equivalent rate of neutrons, the spectrum of which is unknown but with energy ranging from epithermal to fast. The detectors employed are a BF3 proportional counter with two paraffin moderators, 6.5 and 1.0 cm thick, sheathed in 0.5 mm thick Cd, and a scintillation (ZnS and plastic) counter. The error incurred in evaluating the dose equivalent rate by this method is also discussed for typical neutron spectra, in the energy range from epithermal to 10 MeV.. DETECTORS II The main characteristics of the detectors used are given in Table 1, and Photo. 1 is a photograph of the survey instrument set with these detectors. Figure 1 shows the response curves of the detectors, measured with a 2 MeV Van de Graaff and 20 MeV Linac in the Japan Atomic Energy Research Institutec(12)(13)***. The response of the BF3 proportional counter covered by 6.5 cm-paraffin is nearly constant in the energy range below about 4 MeV, but decreases rapidly beyond this energy level, whereas * A summary of this paper was presented to the First International Congress of the International Radiation Protection Association in Rome, September ** Division of Health Physics and Safety, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki-ken, * The response curve of the ** BF3 counter covered with 6.5 cm-paraffin is revised on the basis of a recent experiment by some of the present authors(14). 19

2 474 J. Nucl. Sci. Technol. Table 1 Description of Detectors with the counter covered by 1.0 cm-paraffin, the response only starts to decrease at about 5 ev. The ratio between the responses of the counter covered by 1.0 cm- and 6.5 cm-paraffin is shown in Fig.2 as a function of neutron energy; it is seen that the ratio decreases with energy between 20 ev and 3 MeV, and is nearly constant below 5 ev and above 3 MeV. Accordingly, if the neutron spectrum is monoenergetic, the energy of the neutrons can be obtained from the counting rate ratio. In the energy range of 2 to 10 MeV, the error in the response of the scintillation counter Photo. 1 Survey Instruments Set, with BF3 Proportional Counter Covered by Paraffin Moderator and Scintillation (ZnS and Plastics) Counter is within +-20% of the curve relating the tissue absorbed dose rate to the energy, shown in Fig. 3(15), and below this range the counting efficiency is impaired. Fig. 1 Responses of the BF3 Proportional Counter Covered with 6.5 cm-paraffin and 1.0 cm-paraffin, (represented by curves marked g1(e) and g2(e)), and Response of Scintillation (ZnS and plastics) Counter (represented by gs(e)) Fig. 2 Ratio between Response of BF3 Proportional Counter Covered by 1.0 cm- and 6.5 cm-paraffin 20

3 Vol.3, No.11 (Nov. 1966) 475 Fig.3 Dose Equivalent Rate per Unit Flux Density as Function of Neutron Energy (from NBS Handbook, 63, 1957.) III. METHOD FOR EVALUATING THE DOSE EQUIVALENT RATE In the present method, for neutrons with energies ranging from epithermal to fast, the dose equivalent rate D=DB+Ds, where DB(mrem/ hr) is the dose equivalent rate mainly for epithermal and intermediate neutrons, determined from the counting rates obtained by paraffin-moderated BF3 proportional counter, and Ds(mrem/hr) is the dose equivalent rate mainly for neutrons in the energy range above about 2 MeV, measured by scintillation counter. 1. Determination of DB For neutrons general, the dose equivalent rate D=Sh(E)p(E)dE (mrem/hr) (1) where h(e): Dose equivalent rate per unit neutron (see Fig.3) p(e)de: Neutron flux density in the energy interval (E, E+dE) (n/cm2,sec). The counting rates N1 and N2(cpm) for the BF3 proportional counter, covered by 6.5 cmand 1.0 cm-paraffin moderators, respectively, are given by Ni=Sgi(E)p(E)dE, (i=1, 2) (2) BF3 proportional counter with 6.5 cm- and 1.0 cm-paraffin moderators respectively (see Fig 2). If the neutron spectrum is monoenergetic, it can be expressed by Dirac's delta function: (E)=p0d(E-E0), where E0 is the p neutron energy. Hence Eq.(2) can be transformed to and Eq.(1) (E0)p0 (i=1, 2), (3) Ni to where the neutron energy E0 is obtained from the equation The function f(e) is shown in Fig.2. In general, the neutron flux density p0=ni/gi(e0) should be determined from N1 rather than N2, because g1(e) is larger than g2(e) and moreover nearly constant in the energy range below about 4 MeV. Hence Eq.(4) is transformed to The present method for evaluating the dose equivalent rate for neutrons with a broad energy spectrum with the use of BF3 proportional counter is based on the method just described for monoenergetic neutrons. In the case of a broad neutron spectrum, if we take Eq.(5) to be the definition of the effective energy Eeff, then (4) (5) (4') So that, as described in Appendix, the approximate dose equivalent rate (5') (6) 21

4 476 J. Nucl. Sci. Technol. The contribution of fast neutrons to N1 and Eeff, and hence to DB is very much smaller than that of the slow neutrons owing to the characteristics of the counter, represented by the curves g1(e) and g2(e) shown in Fig Determination of Ds The dose equivalent rate for the neutrons in the energy range above about 2 MeV is nearly proportional to the counting rate Ns(cpm) of the scintillation counter, because the response gs(e)(cpm/n/cm2,sec) is nearly proportional to h(e) in this energy region, as seen from Figs. 1 and 3. Hence for neutrons mainly in this range above 2 MeV, the dose equivalent rate Ds=K,Ns (mrem/hr), (7) where K is a calibration constant*, and Ns=Sgs(E)p(E)dE. (8) IV. CALCULATION OF ERRORS FOR TYPICAL NEUTRON ENERGY SPECTRA The errors incurred in evaluating the dose equivalent rates by the present method were calculated for the following four typical neutron spectra: (1) The 1/E neutron spectrum expressed by the equation (2) The energy spectrum for thermal fission of 235U, expressed by(16) where K is a constant; (3) Energy spectrum calculated for a homo- Fig.4 Ratio between Dose Equivalent Rate (DB, DB+Ds) obtained by the Present Method and Actual Rate (D), Calculated for a Neutron Spectrum of the form SEmxlev1/edE(Emax<=10MeV) Table 2 Ratio between Dose Equivalent Rates (DB, DB+Ds) obtained by the Present Method and Actual Dose Equivalent (D) calculated for Typical Spectra geneous light water reactor core(17); (4) The energy spectrum of Ra-g-Be neutrons(18). The counting rates of the two kind of detectors used were calculated with Eqs. (2) and (8) respectively. The ratios between the dose equivalent rates calculated by the present technique and those by Eq.(1) were obtained. The results obtained for the 1/E neutron spectrum are shown in Fig.4 and summarized in Table 2. The results prove that: (1) The errors in the approximate dose equi- * K=1.82x10-2mrem/hr,cpm for the neutrons from a RaD-Be source. 22

5 Vol.3, No.11 (Nov. 1966) 477 valent rate for the broader 1/E spectra are within 60%. (2) The values obtained solely with the BF3 proportional counter with paraffin moderator err on the lower side, but the errors are smaller for neutron spectra of lower energy range. (3) The errors incurred by the present method for typical energy spectra are within 60%. V. CONCLUSION The errors incurred in evaluating the dose equivalent rates by the present method were calculated to be at most 60% for the typical spectra in the energy range from epithermal to 10 MeV. The method using survey instruments has been applied to field monitoring around the nuclear reactors and other facilities. It has been shown that this method is useful for radiation protection against neutrons having a broad spectrum such as those leaking from reactors and accelerators. APPENDIX] [ Theoretical Discussion on Evaluation of the Dose Equivalent Rate with Two Detectors (1) Theoretical Derivation of the Method using Two Detectors Equation (1) can be transformed to where the symbol < >n1, specifies averaging with the weight function n1(e)=g1(e)p(e): (9) (10) Now, the ratio g2(e)/g1(e) is a function of neutron energy: From Eqs. (2) and (11), (15) If the effective energy of a neutron spectrum is defined by Eq.(5'), from Eqs. (12), (14) and (15), (16) Using Eq.(16), Eq.(9) can be transformed to (17) Equation (16) is generally satisfied when Eq. (13) holds. (2) Discussion on the Error incurred by the Method using Two Detectors This method introduces some error because Eq.(13) cannot always be satisfied for neutrons having a broad energy spectrum. Taking up to the second power term in Taylor's expansion of F[f-1(R)] with (R- <R>n1), where a0-=f[f-1(<r>n1)] (18) Hence, using Eqs. (13) and (14), the error in <h(e)/g1(e)>n1 is expressed by (19) Then the error in the dose equivalent rate DD is expressed by (11) Since f(e) is a monotonic function, as shown in Fig.2, we derive the relation (12) If the relation <F[f-1(R)]>n1=F[f-1(<R>n1)], (13) is satisfied, from Eqs.(12) and (13), (14) (20) where sr is the standard deviation of R. Equation (20) indicates that the error depends upon both a2 and s2r, and for monoenergetic neutrons, the error is zero because R=<R>n1. The curve of F[f-1(R)]-which is the relation of h(e)/g1(e) and R-is shown in Fig.5; the responses of the BF3 proportional counter, covered with 6.5 cm- and 1.0 cm-paraffin, are 23

6 478 J. Nucl. Sci. Technol. REFERENCES Fig.5 Relation between F[f-1(R)] (=h(e)/ g1(e)) and R(=g1(E)/g2(E)) as a Parameter of Neutron Energy utilized for g1(e) and g2(e), respectively. The neutron energies are shown in Fig.5. From Fig.5 and Eq.(20), it is seen that the error is zero for neutrons of energies up to 10 kev irrespective of the spectrum, since the curve is linear in this region, and it is negative if the range of neutron energy exceeds 10 kev, that is, the estimated values are lower than actual, since the second differential coefficient as is positive*. This agrees with the results calculated in Chap.IV. * If the effective energy Eeff of a neutron spectrum including neutrons of energies above 10 - kev - is under 10 kev, the estimated value is much smaller than actual, because a straight line linking 2 ev and 10 kev is substituted for the curve in Fig.5. (1) HURST, G.S., RITCHIE, R.H., WILSON, H.N.: Rev. Sci. Instr., 22, 981, (1951). (2) SKJOLDEBRAND, R.: J. Nucl. Energy, 1, 299 (1955). (3) DENNIS, J.A., LOOSEMORE, W.R.: AERE-EL/ R-2149, (1957). (4) WAGNER, E.B., HURST, G.S: Rev. Sci. Instr., 29, 153 (1958). (5) HURST, G.S., RITCHIE, R.H.: Health Phys., 8, 117 (1962). (6) WALLACE, R., HANDLOSER, J.S., MOYER, B.J., et al.: A/Conf., 15/P/1882, (1964). (7) DEPANGHER, J.: Nucl. Instr. Mesh., 5, 61 (1959). (8) POHLIT, W., POHLIT, H.: Nukleonik, 2[5], 13 (1960). (9) DENNIS, J.A.: Nucleonics, 20, 76 (1962). ) HANKINS, D.E.: Health Phys., 9, (10 31 (1963). (11) ANDERSSON, I.O., BRAUN, J.: Nukleonik, 6[5], 237 (1964). TATSUTA, (12) H., YOSHIDA, Y., MINAMI, K.: Oyobutsuri, (in Japanese), 32, 367 (1963). (13) TATSUTA, H., KATOH, K., YOSHIDA, Y.: J. Appl. Phys., 4, 321 (1965). (14) RYUFUKU, H., TATSUTA, H., SHIROTANI, T.: "The Sensitivity of a Paraffin Moderated BF3- proportional Counter", to be published. NBS Handbook, 63, (1957). (15) (16) WATT, B.E.: Phys. Rev., 87, 1037 (1952). (17) KATSURAGI, S., MORIGUCHI, K., KUGE, Y.: Fast Neutron Spectrum and Group Constant Code 7044 UGMG, JAERI-1104, p. 28 (1966). HANSON, A.O.: "Fast Neutron (18) Physics", p. 37 (1960), Intersci. Publ., Inc. 24

Recent Activities on Neutron Calibration Fields at FRS of JAERI

Recent Activities on Neutron Calibration Fields at FRS of JAERI Recent Activities on Neutron Calibration Fields at FRS of JAERI Michio Yoshizawa, Yoshihiko Tanimura, Jun Saegusa and Makoto Yoshida Department of Health Physics, Japan Atomic Energy Research Institute

More information

Development of a Dosimetric System using Spectrometric Technique suitable for Operational Radiation Dose Measurements and Evaluation

Development of a Dosimetric System using Spectrometric Technique suitable for Operational Radiation Dose Measurements and Evaluation Development of a Dosimetric System using Spectrometric Technique suitable for Operational Radiation Dose Measurements and Evaluation S. Moriuchi, M.Tsutsumi2 and K. Saito2 Nuclear safety technology Center,

More information

Irradiation Behaviors of Nuclear Grade Graphite in Commercial Reactor, (II)

Irradiation Behaviors of Nuclear Grade Graphite in Commercial Reactor, (II) Journal of NUCLEAR SCIENCE and TECHNOLOGY, 22[3J, pp. 225-232 (March 1985). 225 TECHNICAL REPORT Irradiation Behaviors of Nuclear Grade Graphite in Commercial Reactor, (II) Thermal and Physical Properties

More information

Energy response for high-energy neutrons of multi-functional electronic personal dosemeter

Energy response for high-energy neutrons of multi-functional electronic personal dosemeter Energy response for high-energy neutrons of multi-functional electronic personal dosemeter T. Nunomiya 1, T. Ishikura 1, O. Ueda 1, N. Tsujimura 2,, M. Sasaki 2,, T. Nakamura 1,2 1 Fuji Electric Systems

More information

Measurements of Neutron Capture Cross Sections for 237, 238 Np

Measurements of Neutron Capture Cross Sections for 237, 238 Np Measurements of Neutron Capture Cross Sections for 237, 238 Np H. Harada 1), H. Sakane 1), S. Nakamura 1), K. Furutaka 1), J. Hori 2), T. Fujii 2), H. Yamana 2) 1) Japan Nuclear Cycle Development Institute,

More information

DESIGN OF NEUTRON DOSE RATE METER FOR RADIATION PROTECTION IN THE EQUIVALENT DOSE

DESIGN OF NEUTRON DOSE RATE METER FOR RADIATION PROTECTION IN THE EQUIVALENT DOSE DESIGN OF NEUTRON DOSE RATE METER FOR RADIATION PROTECTION IN THE EQUIVALENT DOSE Hiroo Sato 1 and Yoichi Sakuma 2 1 International University of Health and Welfare, Kitakanemaru 2600-1, Ohtawara 324-8501

More information

Nuclear Data for Emergency Preparedness of Nuclear Power Plants Evaluation of Radioactivity Inventory in PWR using JENDL 3.3

Nuclear Data for Emergency Preparedness of Nuclear Power Plants Evaluation of Radioactivity Inventory in PWR using JENDL 3.3 Nuclear Data for Emergency Preparedness of Nuclear Power Plants Evaluation of Radioactivity Inventory in PWR using JENDL 3.3 Yoshitaka Yoshida, Itsuro Kimura Institute of Nuclear Technology, Institute

More information

Benchmark Test of JENDL High Energy File with MCNP

Benchmark Test of JENDL High Energy File with MCNP Benchmark Test of JENDL High Energy File with MCNP Masayuki WADA, Fujio MAEKAWA, Chikara KONNO Intense Neutron Source Laboratory, Department of Materials Science Japan Atomic Energy Research Institute,

More information

Estimation of Radioactivity and Residual Gamma-ray Dose around a Collimator at 3-GeV Proton Synchrotron Ring of J-PARC Facility

Estimation of Radioactivity and Residual Gamma-ray Dose around a Collimator at 3-GeV Proton Synchrotron Ring of J-PARC Facility Estimation of Radioactivity and Residual Gamma-ray Dose around a Collimator at 3-GeV Proton Synchrotron Ring of J-PARC Facility Y. Nakane 1, H. Nakano 1, T. Abe 2, H. Nakashima 1 1 Center for Proton Accelerator

More information

Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers

Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers Zsolt Révay Institute of Isotopes, Budapest, Hungary Dept. of Nuclear

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

Some Comments to JSSTDL-300

Some Comments to JSSTDL-300 Some Comments to -300 Chikara KONNO Center for Proton Accelerator Facilities Japan Atomic Energy Research Institute Tokai-mura Naka-gun Ibaraki-ken 39-95 JAPAN e-mail : konno@cens.tokai.jaeri.go.jp The

More information

Recent Activities on Neutron Standardization at the Electrotechnical Laboratory

Recent Activities on Neutron Standardization at the Electrotechnical Laboratory Recent Activities on Neutron Standardization at the Electrotechnical Laboratory K. Kudo, N. Takeda, S. Koshikawa and A. Uritani Quantum Radiation Division, National Metrology Institute of Japan (NMIJ)

More information

Neutron and Gamma-ray Emission Double Dierential Cross Sections. *5 Energy Conversion Engineering, Kyushu University, Kasuga-koen, Kasuga-shi 816.

Neutron and Gamma-ray Emission Double Dierential Cross Sections. *5 Energy Conversion Engineering, Kyushu University, Kasuga-koen, Kasuga-shi 816. Neutron and Gamma-ray Emission Double Dierential Cross Sections for the Nuclear Reaction by 1.5 GeV + Incidence Kiminori IGA 1, Kenji ISHIBASHI 1, Nobuhiro SHIGYO 1, Naruhiro MATSUFUJI 1;+1, Tatsushi NAKAMOTO

More information

Integral Benchmark Experiments of the Japanese Evaluated Nuclear Data Library (JENDL)-3.3 for the Fusion Reactor Design

Integral Benchmark Experiments of the Japanese Evaluated Nuclear Data Library (JENDL)-3.3 for the Fusion Reactor Design 1 Integral Benchmark Experiments of the Japanese Evaluated Nuclear Data Library (JENDL)-3.3 for the Fusion Reactor Design T. Nishitani 1), K. Ochiai 1), F. Maekawa 1), K. Shibata 1), M. Wada 2), I. Murata

More information

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose Introduction to Radiological Sciences Neutron Detectors Neutron counting Theory of operation Slow neutrons Fast neutrons Types of detectors Source calibration Survey for Dose 2 Neutrons, what are they?

More information

Received October 7, 1963

Received October 7, 1963 Journal of NUCLEAR SCIENCE and TECHNOLOGY, 1, No.3, 101~109 (1964). 101 Absolute Measurements of Americium-241 Semiconductor of the Disintegration Rates Sources by Using Detectors* Eiji SAKAI**, Hiroyuki

More information

1.E Neutron Energy (MeV)

1.E Neutron Energy (MeV) Proceedings of the Second International Workshop on EGS, 8.-12. August 2000, Tsukuba, Japan KEK Proceedings 200-20, pp.130-134 Measurements of Photoneutron Spectra from Thick Pb Target Bombarded by 1.2

More information

Benchmark Tests of Gamma-Ray Production Data in JENDL-3 for Some Important Nuclides

Benchmark Tests of Gamma-Ray Production Data in JENDL-3 for Some Important Nuclides Journal of NUCLEAR SCIENCE and TECFINOLOGY, 27[9], pp. 844~852 (September 1990). TECHNICAL REPORT Benchmark Tests of Gamma-Ray Production Data in JENDL-3 for Some Important Nuclides CAI Shao-huit, Akira

More information

A Monte Carlo Simulation for Estimating of the Flux in a Novel Neutron Activation System using 252 Cf Source

A Monte Carlo Simulation for Estimating of the Flux in a Novel Neutron Activation System using 252 Cf Source IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 7, Issue 3 Ver. II (May. - Jun. 2015), PP 80-85 www.iosrjournals.org A Monte Carlo Simulation for Estimating of the Flux in a Novel Neutron

More information

Analysis of Environmental Gamma-Ray Intensity Increase Due to Precipitation Using EGS4 Monte Carlo Simulation Code

Analysis of Environmental Gamma-Ray Intensity Increase Due to Precipitation Using EGS4 Monte Carlo Simulation Code Analysis of Environmental Gamma-Ray Intensity Increase Due to Precipitation Using EGS Monte Carlo Simulation Code T. Nishikawa, Y. Tamagawa and M. Miyajima Faculty of Engineering, Fukui University, Bunkyo,

More information

Elastic Recoil Detection Method using DT Neutrons for Hydrogen Isotope Analysis in Fusion Materials. Abstract

Elastic Recoil Detection Method using DT Neutrons for Hydrogen Isotope Analysis in Fusion Materials. Abstract Elastic Recoil Detection Method using DT Neutrons for Hydrogen Isotope Analysis in Fusion Materials Naoyoshi Kubota, Kentaro Ochiai, Keitaro Kondo 2 and Takeo Nishitani. :Japan Atomic Energy Research Institute,

More information

Present status of fusion neutronics activity and comments to neutron diagnostics for TBM

Present status of fusion neutronics activity and comments to neutron diagnostics for TBM CBBI-13: Thirteenth International Workshop on Ceramic Breeder Blanket Interactions 30 Nov 2 Dec 2005 Fess Parker DoubleTree Resort Santa Barbara, CA, USA Present status of fusion neutronics activity and

More information

Experimental Activities in China

Experimental Activities in China Experimental Activities in China (June 2008 YU Hongwei China Nuclear Data Center, China Institute of Atomic Energy The facilities were used for the nuclear data measurements and studies including the China

More information

Radiation Detection. 15 th Annual OSC Readiness Training Program.

Radiation Detection. 15 th Annual OSC Readiness Training Program. Radiation Detection 15 th Annual OSC Readiness Training Program www.oscreadiness.org GM Detectors 15 th Annual OSC Readiness Training Program www.oscreadiness.org 1 A closer look 15 th Annual OSC Readiness

More information

Neutron interactions and dosimetry. Eirik Malinen Einar Waldeland

Neutron interactions and dosimetry. Eirik Malinen Einar Waldeland Neutron interactions and dosimetry Eirik Malinen Einar Waldeland Topics 1. Neutron interactions 1. Scattering 2. Absorption 2. Neutron dosimetry 3. Applications The neutron Uncharged particle, mass close

More information

Neutron Metrology Activities at CIAE (2009~2010)

Neutron Metrology Activities at CIAE (2009~2010) Neutron Metrology Activities at CIAE (2009~2010) Ionizing Radiation Metrology Division China Institute of Atomic Energy (P.O.Box 275(20), Beijing 102413, China) 1. Neutron calibration fields So far the

More information

anti-compton BGO detector

anti-compton BGO detector 1 2 3 Q β - measurements with a total absorption detector composed of through-hole HPGe detector and anti-compton BGO detector 4 5 Hiroaki Hayashi a,1, Michihiro Shibata b, Osamu Suematsu a, Yasuaki Kojima

More information

Simple Experimental Design for Calculation of Neutron Removal Cross Sections K. Groves 1 1) McMaster University, 1280 Main St. W, Hamilton, Canada.

Simple Experimental Design for Calculation of Neutron Removal Cross Sections K. Groves 1 1) McMaster University, 1280 Main St. W, Hamilton, Canada. Simple Experimental Design for Calculation of Neutron Removal Cross Sections K. Groves 1 1) McMaster University, 1280 Main St. W, Hamilton, Canada. (Dated: 5 August 2017) This article proposes an experimental

More information

Effect of Resonance Scattering of Sodium on Resonance Absorption of U-238

Effect of Resonance Scattering of Sodium on Resonance Absorption of U-238 Journal of NUCLEAR SCIENCE and TECHNOLOGY, 4 [12], p. 601~606 (December 1967). 6 01 Effect of Resonance Scattering of Sodium on Resonance Absorption of U-238 Tatsuzo TONE*, Yukio ISHIGURO* and Hideki TAKANO*

More information

Universal curve of the thermal neutron self-shielding factor in foils, wires, spheres and cylinders

Universal curve of the thermal neutron self-shielding factor in foils, wires, spheres and cylinders Journal of Radioanalytical and Nuclear Chemistry, Vol. 261, No. 3 (2004) 637 643 Universal curve of the thermal neutron self-shielding factor in foils, wires, spheres and cylinders E. Martinho, J. Salgado,

More information

High Intrinsic Efficiency Solid State Neutron Detector and Spectrometer

High Intrinsic Efficiency Solid State Neutron Detector and Spectrometer High Intrinsic Efficiency Solid State Neutron Detector and Spectrometer Tom Oakes Steve Bellinger Stuart Jackson Eliot Myers William Miller Ken Shultis Jacob Zier Paul Scott Brian Cooper Don Murphy Ryan

More information

Neutronics Experiments for ITER at JAERI/FNS

Neutronics Experiments for ITER at JAERI/FNS Neutronics Experiments for ITER at JAERI/FNS C. Konno 1), F. Maekawa 1), Y. Kasugai 1), Y. Uno 1), J. Kaneko 1), T. Nishitani 1), M. Wada 2), Y. Ikeda 1), H. Takeuchi 1) 1) Japan Atomic Energy Research

More information

Neutron Spectrum Measurement in a Medical Cyclotron

Neutron Spectrum Measurement in a Medical Cyclotron Neutron Spectrum Measurement in a Medical Cyclotron V. Sathian 1, Deepa. S. 2, U.V. Phadnis 1, P.S. Soni 3 and D.N. Sharma 1 1 Radiation Safety Systems Division, 2 Radiological Physics and Advisory Division

More information

Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center. Michal Mocko

Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center. Michal Mocko Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center Michal Mocko G. Muhrer, F. Tovesson, J. Ullmann International Topical Meeting on Nuclear Research Applications and Utilization

More information

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances Kasufumi TSUJIMOTO Center for Proton Accelerator Facilities, Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

More information

Performance Test of the Electronic Personal Neutron Dosemeter in Neutron Fields Simulating Workplaces of MOX Fuel Fabrication Facilities

Performance Test of the Electronic Personal Neutron Dosemeter in Neutron Fields Simulating Workplaces of MOX Fuel Fabrication Facilities Performance Test of the Electronic Personal Neutron Dosemeter in Neutron Fields Simulating Workplaces of MOX Fuel Fabrication Facilities N. Tsujimura a*, T. Yoshida a, C. Takada a, T. Nunomiya b and K.

More information

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions. 1 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Response measurement of various neutron dose equivalent monitors in MeV neutron fields

Response measurement of various neutron dose equivalent monitors in MeV neutron fields DOI: 10.15669/pnst.4.704 Progress in Nuclear Science and Technology Volume 4 (2014) pp. 704-708 ARTICLE Response measurement of various neutron dose equivalent monitors in 134-387 MeV neutron fields Yoshihiro

More information

5) Measurement of Nuclear Radiation (1)

5) Measurement of Nuclear Radiation (1) 5) Measurement of Nuclear Radiation (1) Registration of interactions between nuclear radiation and matter Universal principle: Measurement of the ionisation Measurement of the ionisation measurement of

More information

A Radiation Monitoring System With Capability of Gamma Imaging and Estimation of Exposure Dose Rate

A Radiation Monitoring System With Capability of Gamma Imaging and Estimation of Exposure Dose Rate IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 49, NO. 3, JUNE 2002 1547 A Radiation Monitoring System With Capability of Gamma Imaging and Estimation of Exposure Dose Rate Wanno Lee, Gyuseong Cho, and Ho

More information

Radioactivity III: Measurement of Half Life.

Radioactivity III: Measurement of Half Life. PHY 192 Half Life Spring 2010 1 Radioactivity III: Measurement of Half Life. Introduction This experiment will once again use the apparatus of the first experiment, this time to measure radiation intensity

More information

Application and Validation of Event Generator in the PHITS Code for the Low-Energy Neutron-Induced Reactions

Application and Validation of Event Generator in the PHITS Code for the Low-Energy Neutron-Induced Reactions Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.931-935 (2011) ARTICLE Application and Validation of Event Generator in the PHITS Code for the Low-Energy Neutron-Induced Reactions Yosuke IWAMOTO

More information

Neutron Induced Nuclear Counter Effect in Hamamatsu Silicon APDs and PIN Diodes

Neutron Induced Nuclear Counter Effect in Hamamatsu Silicon APDs and PIN Diodes Neutron Induced Nuclear Counter Effect in Hamamatsu Silicon APDs and PIN Diodes Rihua Mao, Liyuan Zhang, Ren-yuan Zhu California Institute of Technology Introduction Because of its immunity to magnetic

More information

Fast neutron inelastic scattering Roland Beyer, Forschungszentrum Dresden-Rossendorf

Fast neutron inelastic scattering Roland Beyer, Forschungszentrum Dresden-Rossendorf Fast neutron inelastic scattering Roland Beyer, Forschungszentrum Dresden-Rossendorf Institute of Radiation Physics Roland Beyer www.fzd.de Member of the Leibniz Association Data needs for transmutation

More information

International Nuclear Physics Conference Adelaide, Australia September 13, 2016

International Nuclear Physics Conference Adelaide, Australia September 13, 2016 International Nuclear Physics Conference Adelaide, Australia September 13, 2016 This work was performed under the auspices of the U.S. Department of Energy by under contract DE-AC52-07NA27344. Lawrence

More information

MC simulation of a PGNAA system for on-line cement analysis

MC simulation of a PGNAA system for on-line cement analysis Nuclear Science and Techniques 21 (2010) 221 226 MC simulation of a PGNAA system for on-line cement analysis YANG Jianbo 1 TUO Xianguo 1,* LI Zhe 1 MU Keliang 2 CHENG Yi 1 MOU Yunfeng 3 1 State Key Laboratory

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

ARTICLE. Progress in Nuclear Science and Technology Volume 4 (2014) pp Yoshiko Harima a*, Naohiro Kurosawa b and Yukio Sakamoto c

ARTICLE. Progress in Nuclear Science and Technology Volume 4 (2014) pp Yoshiko Harima a*, Naohiro Kurosawa b and Yukio Sakamoto c DOI: 10.15669/pnst.4.548 Progress in Nuclear Science and Technology Volume 4 (2014) pp. 548-552 ARTICLE Parameter search of geometric-progression formula for gamma-ray isotropic point source buildup factors

More information

CRITICALITY DETECTION METHOD BASED ON FP GAMMA RADIATION MEASUREMENT

CRITICALITY DETECTION METHOD BASED ON FP GAMMA RADIATION MEASUREMENT CRITICALITY DETECTION METHOD BASED ON FP GAMMA RADIATION MEASREMENT Yoshitaka Naito, Kazuo Azekura NAIS Co., inc. Muramatsu 416, Tokaimura, Ibaraki-ken, Japan 319-1112 ynaito@nais.ne.jp azekura@nais.ne.jp

More information

DETERMINATION OF THE HYDROGEN CONTENT OF OIL SAMPLES FROM NIGERIA USING AN Am-Be NEUTRON SOURCE.

DETERMINATION OF THE HYDROGEN CONTENT OF OIL SAMPLES FROM NIGERIA USING AN Am-Be NEUTRON SOURCE. XA9949522 DETERMINATION OF THE HYDROGEN CONTENT OF OIL SAMPLES FROM NIGERIA USING AN Am-Be NEUTRON SOURCE. S.A. JONAH 1 *, I.I. ZAKARI 2 and SB. ELEGBA 1 1 Centre for Energy Research and Training, Ahmadu

More information

Calibration of the GNU and HSREM neutron survey instruments

Calibration of the GNU and HSREM neutron survey instruments Calibration of the GNU and HSREM neutron survey instruments Neutron Users Club Meeting National Physical Laboratory 20 th October 2015 J. S. Eakins 1, L. G. Hager 1, J. W. Leake 2, R. S. Mason 2 and R.

More information

Measurements of Neutron Cross Section of the 243 Am(n,γ) 244 Am Reaction

Measurements of Neutron Cross Section of the 243 Am(n,γ) 244 Am Reaction Measurements of Neutron Cross Section of the (n,γ) 44 Am Reaction Yuichi HATSUKAWA, Nobuo SHINOHARA, Kentaro HATA Nuclear Chemistry Laboratory Tokai-mura, Naka-gun, Ibaraki-ken 319-11 e-mail: hatsu@popsvr.tokai.jaeri.go.jp

More information

Altitude Variation of cosmic-ray neutron energy spectrum and ambient dose equivalent at Mt.Fuji in Japan

Altitude Variation of cosmic-ray neutron energy spectrum and ambient dose equivalent at Mt.Fuji in Japan Altitude Variation of cosmic-ray neutron energy spectrum and ambient dose equivalent at Mt.Fuji in Japan M. Kowatari 1, K. Nagaoka 1, S Satoh 1,Y Ohta 1, J.Abukawa 1 1 Division of Radioactivity Analysis,

More information

Neutron cross section measurement of MA

Neutron cross section measurement of MA Neutron cross section measurement of MA Hideo Harada Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency 2007 Symposium on Nuclear Data Nov. 30, 2007, RICOTTI Convention Center 2007

More information

Reactor radiation skyshine calculations with TRIPOLI-4 code for Baikal-1 experiments

Reactor radiation skyshine calculations with TRIPOLI-4 code for Baikal-1 experiments DOI: 10.15669/pnst.4.303 Progress in Nuclear Science and Technology Volume 4 (2014) pp. 303-307 ARTICLE Reactor radiation skyshine calculations with code for Baikal-1 experiments Yi-Kang Lee * Commissariat

More information

Activities of the neutron standardization. at the Korea Research Institute of Standards and Science (KRISS)

Activities of the neutron standardization. at the Korea Research Institute of Standards and Science (KRISS) Activities of the neutron standardization at the Korea Research Institute of Standards and Science (KRISS) I. Introduction The activities of neutron standardization in KRISS have been continued for last

More information

Coulomb excitation experiments at JAEA (Japan Atomic Energy Institute)

Coulomb excitation experiments at JAEA (Japan Atomic Energy Institute) Japan Atomic Energy Agency GOSIA work shop 2008/4/8-10 Warsaw, Poland Coulomb excitation experiments at JAEA (Japan Atomic Energy Institute) JAEA, Chiba Inst.Tech. a, Kyusyu Univ. b, Hiroshima Univ. c,

More information

An introduction to Neutron Resonance Densitometry (Short Summary)

An introduction to Neutron Resonance Densitometry (Short Summary) An introduction to Neutron Resonance Densitometry (Short Summary) H. Harada 1, M. Koizumi 1, H. Tsuchiya 1, F. Kitatani 1, M. Seya 1 B. Becker 2, J. Heyse 2, S. Kopecky 2, C. Paradela 2, P. Schillebeeckx

More information

He-3 Neutron Detectors

He-3 Neutron Detectors Application He-3 Neutron Detectors General Considerations, Applications: He-3 filled proportional counters are standard neutron detectors and are most suitable for the detection of thermal neutrons. Larger

More information

Experimental Activities in China

Experimental Activities in China Experimental Activities in China Yu Hongwei China Nuclear Data Center China Institute of Atomic Energy WPEC Meeting, June 5-6, 2008 Facilities CIAE: China s first experimental heavy water reactor, the

More information

Dr. Tuncay Bayram. Sinop University Department of Nuclear Energy Engineering Sinop, Turkey.

Dr. Tuncay Bayram. Sinop University Department of Nuclear Energy Engineering Sinop, Turkey. Dr. Tuncay Bayram Sinop University Department of Nuclear Energy Engineering Sinop, Turkey t.bayram@ymail.com 1 About Department of Nuclear Energy Engineering, Sinop University In 2007, Sinop University

More information

1 cm. Cu electrode. Ge crystal. end cap. Dead layer. crystal cup

1 cm. Cu electrode. Ge crystal. end cap. Dead layer. crystal cup Proceedings of the Ninth EGS4 Users' Meeting in Japan, KEK Proceedings 2001-22, p.30-36 APPLICATION OF Ge SEMI-CONDUCTOR DETECTOR TO WHOLE-BODY COUNTER S. Kinase 1 2, H. Noguchi 1 and T. Nakamura 2 1 Japan

More information

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions. 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Measuring dose equivalent in an aviation environment using PIN diodes

Measuring dose equivalent in an aviation environment using PIN diodes Measuring dose equivalent in an aviation environment using PIN diodes Alex Hands Neutron Users Club meeting, NPL Wednesday 4 th November 29 1 Background Cosmic Rays consist primarily of protons and alpha

More information

Reactivity Effect of Fission and Absorption

Reactivity Effect of Fission and Absorption Journal of NUCLEAR SCIENCE and TECHNOLOGY, 1, No. 7, p.246~254 (October, 1964). J. Nucl. Sci. Tech. Space Dependent Reactivity Effect of Fission and Absorption Tohru HAGA* and Iwao KOBAYASHI* Received

More information

Review Paper Continuous Slowing Down Approximation (CS and DA) Ranges of Electrons and Positrons for Carbon, Aluminium and Copper

Review Paper Continuous Slowing Down Approximation (CS and DA) Ranges of Electrons and Positrons for Carbon, Aluminium and Copper Research Journal of Recent Sciences ISSN 2277-22 Vol. 1(6), 7-76, June (212) Res.J.Recent Sci. Review Paper Continuous Slowing Down Approximation (CS and DA) Ranges of Electrons and Positrons for Carbon,

More information

VERIFICATION OF MONTE CARLO CALCULATIONS OF THE NEUTRON FLUX IN THE CAROUSEL CHANNELS OF THE TRIGA MARK II REACTOR, LJUBLJANA

VERIFICATION OF MONTE CARLO CALCULATIONS OF THE NEUTRON FLUX IN THE CAROUSEL CHANNELS OF THE TRIGA MARK II REACTOR, LJUBLJANA International Conference Nuclear Energy for New Europe 2002 Kranjska Gora, Slovenia, September 9-12, 2002 www.drustvo-js.si/gora2002 VERIFATION OF MONTE CARLO CALCULATIONS OF THE NEUTRON FLUX IN THE CAROUSEL

More information

Measurement of activation of helium gas by 238 U beam irradiation at about 11 A MeV

Measurement of activation of helium gas by 238 U beam irradiation at about 11 A MeV Measurement of activation of helium gas by 238 U beam irradiation at about 11 A MeV A. Akashio a, K. Tanaka, H. Imao, and Y. Uwamino RIKEN Nishina Center 2-1 Hirosawa, Wako, Saitama, Japan Abstract. A

More information

Development of Gamma-ray Monitor using CdZnTe Semiconductor Detector

Development of Gamma-ray Monitor using CdZnTe Semiconductor Detector Development of Gamma-ray Monitor using CdZnTe Semiconductor Detector A. H. D. Rasolonjatovo 1, T. Shiomi 1, T. Nakamura 1 Y. Tsudaka 2, H. Fujiwara 2, H. Araki 2, K. Matsuo 2, H. Nishizawa 2 1 Cyclotron

More information

In our recent paper [1], applicability of the self-activation of an NaI scintillator has been studied for the photo-neutron monitoring around

In our recent paper [1], applicability of the self-activation of an NaI scintillator has been studied for the photo-neutron monitoring around Proc. Int. Symp. on Radiation Detectors and Their Uses (ISRD2016) https://doi.org/10.7566/jpscp.11.050002 High Sensitive Neutron-detection by using a Self-activation of Iodine-containing Scintillators

More information

Nuclear Chemistry AP Chemistry Lecture Outline

Nuclear Chemistry AP Chemistry Lecture Outline Nuclear Chemistry AP Chemistry Lecture Outline Name: involve changes with electrons. involve changes in atomic nuclei. Spontaneously-changing nuclei emit and are said to be. Radioactivity nucleons: mass

More information

Characteristics of Filtered Neutron Beam Energy Spectra at Dalat Reactor

Characteristics of Filtered Neutron Beam Energy Spectra at Dalat Reactor World Journal of Nuclear Science and Technology, 2014, 4, 96-102 Published Online April 2014 in SciRes. http://www.scirp.org/journal/wjnst http://dx.doi.org/10.4236/wjnst.2014.42015 Characteristics of

More information

DETECTORS. I. Charged Particle Detectors

DETECTORS. I. Charged Particle Detectors DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

More information

Energy Dependence of Neutron Flux

Energy Dependence of Neutron Flux Energy Dependence of Neutron Flux B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Contents We start the discussion of the energy

More information

Average Neutron Capture Cross Sections of. 151 Eu and 153Eu from 3 to 100 kev

Average Neutron Capture Cross Sections of. 151 Eu and 153Eu from 3 to 100 kev journal of NUCLEAR SCIENCE and TECHNOLOGY, 16[10], pp. 711~719 (October 1979). 711 Average Neutron Capture Cross Sections of 151 Eu and 153Eu from 3 to 100 kev Motoharu MIZUMOTO, Akira ASAMI, Yutaka NAKAJIMA,

More information

Bonner Sphere Spectrometer. Cruzate, J.A.; Carelli, J.L. and Gregori, B.N.

Bonner Sphere Spectrometer. Cruzate, J.A.; Carelli, J.L. and Gregori, B.N. Bonner Sphere Spectrometer Cruzate, J.A.; Carelli, J.L. and Gregori, B.N. Presentado en: Workshop on Uncertainty Assessment in Computational Dosimetry: a Comparison of Approaches. Bologna, Italia, 8-10

More information

Neutron Interactions with Matter

Neutron Interactions with Matter Radioactivity - Radionuclides - Radiation 8 th Multi-Media Training Course with Nuclides.net (Institute Josžef Stefan, Ljubljana, 13th - 15th September 2006) Thursday, 14 th September 2006 Neutron Interactions

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation Higher -o-o-o- Past Paper questions 2000-2010 -o-o-o- 3.6 Radiation 2000 Q29 Radium (Ra) decays to radon (Rn) by the emission of an alpha particle. Some energy is also released by this decay. The decay

More information

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321 Neutron Interactions Part I Rebecca M. Howell, Ph.D. Radiation Physics rhowell@mdanderson.org Y2.5321 Why do we as Medical Physicists care about neutrons? Neutrons in Radiation Therapy Neutron Therapy

More information

Measurements of Reaction Rates in Zone-Type Cores of Fast Critical Assembly Simulating High Conversion Light Water Reactor

Measurements of Reaction Rates in Zone-Type Cores of Fast Critical Assembly Simulating High Conversion Light Water Reactor Journal of Nuclear Science and Technology ISSN: 0022-3131 (Print) 1881-1248 (Online) Journal homepage: https://www.tandfonline.com/loi/tnst20 Measurements of Reaction Rates in Zone-Type Cores of Fast Critical

More information

Use of Gamma Rays from the Decay of 13.8-sec "Be to Calibrate a Germanium Gamma Ray Detector for Measurements up to 8 MeV

Use of Gamma Rays from the Decay of 13.8-sec Be to Calibrate a Germanium Gamma Ray Detector for Measurements up to 8 MeV The submitted manuscript has been authored by a contractor of the U S Government under contract No W-31-109-ENG-38 Accordingly the U S Government retains a nonexclusive, royalty-free license to publish

More information

Journal of Radiation Protection and Research

Journal of Radiation Protection and Research 1) JONG WOON KIM AND YOUNG-OUK LEE: DETAILED ANALYSIS OF THE KAERI ntof FACILITY Journal of Radiation Protection and Research pissn 2508-1888 eissn 2466-2461 http://dx.doi.org/10.14407/jrpr.2016.41.2.141

More information

Introduction to Nuclear Engineering

Introduction to Nuclear Engineering 2016/9/27 Introduction to Nuclear Engineering Kenichi Ishikawa ( ) http://ishiken.free.fr/english/lecture.html ishiken@n.t.u-tokyo.ac.jp 1 References Nuclear Physics basic properties of nuclei nuclear

More information

Response function measurements of an NE102A organic scintillator using an 241 Am-Be source

Response function measurements of an NE102A organic scintillator using an 241 Am-Be source Nuclear Instruments and Methods m Physics Research A 345 (1994) 514-519 North-Holland NCLEAR INSTRMENTS & METHODS IN PHYSICS RESEARCH Section A Response function measurements of an NE12A organic scintillator

More information

The development of new generation electronic personal dosimeters

The development of new generation electronic personal dosimeters T-3-5, P-3b-69 The development of new generation electronic personal dosimeters Kei Aoyama, Yoshiyuki Nagase,T.Suzuki, Shinichi Watanabe, Kazufumi Taniguchi, Kunihiro Muramatsu, Mikio Fujita, and Yutaka

More information

Int. Coaf. Physics of Nuclear Science and Technology

Int. Coaf. Physics of Nuclear Science and Technology BNL-6 5 2 43 Int. Coaf. Physics of Nuclear Science and Technology October S-8, 1998 RADIATION DOSIMETRY AT THE BNL HIGH FLUX BEAM REACTOR* NE Holden', J-P Hu', RN Reciniello* 1. Reactor Division, Brookhaven

More information

Studying Neutron-Induced Reactions for Basic Science and Societal Applications

Studying Neutron-Induced Reactions for Basic Science and Societal Applications Studying Neutron-Induced Reactions for Basic Science and Societal Applications Correlations in Hadronic and Partonic Interactions 2018 A. Couture Yerevan, Armenia 28 September 2018 Operated by Los Alamos

More information

NUCLEAR EMISSIONS FROM TITANIUM HYDRIDE/DEUTERIDE INDUCED BY POWERFUL PICOSECOND LASER BEAM

NUCLEAR EMISSIONS FROM TITANIUM HYDRIDE/DEUTERIDE INDUCED BY POWERFUL PICOSECOND LASER BEAM NUCLEAR EMISSIONS FROM TITANIUM HYDRIDE/DEUTERIDE INDUCED BY POWERFUL PICOSECOND LASER BEAM A. S. ROUSSETSKI P.N. Lebedev Physical Institute Russian Academy of Sciences, 3 Leninsky prospect, 119991 Moscow,

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement Third Edition Glenn F. Knoll Professor of Nuclear Engineering and Radiological Sciences University of Michigan Ann Arbor, Michigan John Wiley & Sons, Inc. New York/Chichester/Weinheim/Brisbane/Toronto/Singapore

More information

Response characteristics of neutron survey instruments. Rick Tanner and David Bartlett, NRPB Hamid Tagziria and David Thomas, NPL

Response characteristics of neutron survey instruments. Rick Tanner and David Bartlett, NRPB Hamid Tagziria and David Thomas, NPL Response characteristics of neutron survey instruments Rick Tanner and David Bartlett, NRPB Hamid Tagziria and David Thomas, NPL DTI National Measurement System Policy Unit Project 3.6.1 Provision of reliable

More information

Ionizing Radiation Metrology at NMIJ/AIST and ENEA-INMRI

Ionizing Radiation Metrology at NMIJ/AIST and ENEA-INMRI Ionizing Radiation Metrology at NMIJ/AIST and ENEA-INMRI Pierino De Felice and Marco Capogni - ENEA C.R. Casaccia Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti (ENEA-INMRI) Roma ITALY Yoshio

More information

A POSITION SENSITIVE ALPHA PARTICLE DETECTOR BASED ON A LYSO CRYSTAL AND A MICRO-PIXEL AVALANCHE PHOTODIODE

A POSITION SENSITIVE ALPHA PARTICLE DETECTOR BASED ON A LYSO CRYSTAL AND A MICRO-PIXEL AVALANCHE PHOTODIODE A POSITION SENSITIVE ALPHA PARTICLE DETECTOR BASED ON A LYSO CRYSTAL AND A MICRO-PIXEL AVALANCHE PHOTODIODE Ahmadov G.S. a,b,c, Ahmadov F.I. b,c, Kopatch Yu.N. a, Telezhnikov S.A. a, Nuriyev S.M. a,b,

More information

Investigation of pulse shapes and time constants for NaI scintillation pulses produced by low energy electrons from beta decay

Investigation of pulse shapes and time constants for NaI scintillation pulses produced by low energy electrons from beta decay 11 November 1999 Ž. Physics Letters B 467 1999 132 136 Investigation of pulse shapes and time constants for NaI scintillation pulses produced by low energy electrons from beta decay N.J.T. Smith a, P.F.

More information

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY ABSORBED DOSE: The amount of energy absorbed, as a result of radiation passing through a material, per unit mass of material. Measured in rads (1 rad

More information

COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS

COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS ANTOANETA ENE 1, I. V. POPESCU 2, T. BÃDICÃ 3, C. BEªLIU 4 1 Department of Physics, Faculty

More information

Nuclear Chemistry. Nuclear Terminology

Nuclear Chemistry. Nuclear Terminology Nuclear Chemistry Up to now, we have been concerned mainly with the electrons in the elements the nucleus has just been a positively charged things that attracts electrons The nucleus may also undergo

More information

Since the beam from the JNC linac is a very high current, low energy beam, energy loss induced in the material irradiated by the beam becomes very lar

Since the beam from the JNC linac is a very high current, low energy beam, energy loss induced in the material irradiated by the beam becomes very lar Proceedings of the Second International Workshop on EGS, 8.-12. August 2000, Tsukuba, Japan KEK Proceedings 200-20, pp.255-263 Beam Dump for High Current Electron Beam at JNC H. Takei and Y. Takeda 1 Japan

More information

Fluence-to-Dose Conversion Coefficients for Muons and Pions Calculated Based on ICRP Publication 103 Using the PHITS Code

Fluence-to-Dose Conversion Coefficients for Muons and Pions Calculated Based on ICRP Publication 103 Using the PHITS Code Progress in NUCLEAR SCIENCE and ECHNOLOGY, Vol. 2, pp.432-436 (20) ARICLE Fluence-to-Dose Conversion Coefficients for Muons and Pions Calculated Based on ICRP Publication 03 Using the PHIS Code atsuhiko

More information

Introduction to neutron rem meters

Introduction to neutron rem meters LA-UR-15-28285 Introduction to neutron rem meters Tom McLean, LANL CSU neutron class Fort Collins, CO Oct. 27-29 2015 Introduction: talk outline Discussion (brief) of neutron remmeters Gas proportional

More information