Irradiation Behaviors of Nuclear Grade Graphite in Commercial Reactor, (II)

Size: px
Start display at page:

Download "Irradiation Behaviors of Nuclear Grade Graphite in Commercial Reactor, (II)"

Transcription

1 Journal of NUCLEAR SCIENCE and TECHNOLOGY, 22[3J, pp (March 1985). 225 TECHNICAL REPORT Irradiation Behaviors of Nuclear Grade Graphite in Commercial Reactor, (II) Thermal and Physical Properties Hideto MATSUO and Tamotsu SAITO Department of Fuels and Materials Research, Tokai Research Establishment, Japan Atomic Energy Research Institute* Received April 26, 1984 Revised September 7, 1984 Thermal conductivity, electrical resistivity and stored energy were measured for Pechiney nuclear grade graphite irradiated in the temperature range 220~400dc up to the maximum neutron fluence 2.2x1020 n/cm2 (5>0.85 MeV) in the environment of a carbon dioxide in a commercial reactor. Thermal conductivity decreased, electrical resistivity and stored energy increased owing to neutron irradiation and their changes were larger for the samples irradiated at lower temperatures. A linear relation between stored energy and fractional change in thermal resistivity was obtained for the irradiated samples and it was found that its proportional constant is about two times of that reported previously. The relation between thermal conductivity and electrical resistivity is discussed for irradiated samples as well. KEYWORDS: graphite, irradiation, radiation effects, co:nmercial reactors, thermal conductivity, thermal resistivity, electrical resistivity, stored energy, neutron beams I. INTRODUCTION An irradiated graphite has significant thermal propoperties that should be carefully considered beforehand in the design and safety analysis of a graphite moderated reactor which operation temperature is low. Stored energy is one of the properties and special attention has been paid to the stored energy of the graphite used in a low temperature reactor since the accident of the Windscale reactor, which was caused owing to the release of stored energy in It has also been reported that stored energy is related to the change in thermal conductivity for the irradiated Pile Grade A graphite(1), however there is no report on the relation for other graphite materials. One of the objectives of the present study is to confirm whether the relation holds for Pechiney nuclear grade graphite or not. It is known that thermal conductivity has a linear relation to electrical resistivity measured at room temperature for unirradiated graphites(2)(3), and one of the authors has already reported the relation of the graphite irradiated to low neutron fluence(4)(5). The other objective of this study is to confirm whether the relation holds for the graphite material irradiated to higher neutron fluence. * Tokai-mura, Ibaraki-ken

2 226 TECHNICAL REPORT (H. Matsuo, T. Saito) J. Nucl. Sci. Technol., This is the second one of a series of papers reporting the results of irradiation behaviors of the nuclear grade graphite. Dimensional changes and thermal expansion were discussed in the first report"). The present paper describes the effect of neutron irradiation on thermal conductivity, electrical resistivity, stored energy, and the relation between those properties for the graphite material irradiated in the commercial reactor. II. EXPERIMENTAL PROCEDURE 1. Sample The properties and forming method of Pechiney nuclear grade graphite used in the present experiment have already been reported in detail in this journal(6). Specimens for the measurements of thermal conductivity and electrical resistivity were cut parallel or perpendicular to the extrusion direction. The size of the specimens was 6.35 mm in diameter and 76.2 mm long. Sample for the measurement of stored energy was prepared by pulverizing an irradiated specimen of 12.7 mm in diameter and 50.8 mm long. The particle was smaller than 100- mesh. 2. Irradiation Irradiation was carried out in the Tokai Nuclear Power Station of Japan Atomic Power Co. (JAPCO) and irradiation conditions for the samples have already been reported in detail in this journal(6). 3. Measurements (1) Thermal Conductivity Kohlrausch method was applied to the measurement of thermal conductivity at 20dc and the schematic diagram is shown in Fig.1. Electrical current passing through a sample during the measurement was adjusted to be 5~20 A, which depended on electrical resistivity, in order to keep the mean temperature of the sample 20dc. Temperatures were measured at three points, one is at the center of the sample and the others were at the two points aparting 30 mm from the center of the sample. The temperature differences between the center and the other two positions were about 8dc and the mean temperature of the sample was controlled to be 20dc. The environment of the sample was in a vacuum of about 0.13 Pa in order to reduce the heat loss from the sample in the radial Fig. 1 Schematic diagram for measurement of thermal conductivity at room temperature 62

3 Vol. 22, No. 3 (Mar. 1985) TECHNICAL REPORT (H. Matsuo, T. Saito) 227 direction. Measurements were carried out three times on one sample and the average of these measured values were taken to be the typical measured value for the sample. 2) Electrical Resistivity Electrical resistivity was measured at room temperature by using a potential drop method. Measurements were carried out three times on one sample, changing the measured positions, and the average value of three measurements was taken. 3) Stored Energy ( Stored energy was obtained from the difference of heat of combustion for an irradiated and an unirradiated samples. The heat of combustion of the samples was measured by using a bombcalorimeter. Some 0.6 g of the sample and 0.2 g of liquid paraffin to promote burning the sample were burned at the same time in the oxygen atmosphere of 2.9 MPa. Measured value for an unirradiated sample was 7, cal/g. Five measurements were done for one irradiated sample, on the average, and the average of three measurements were taken to be the typical measured value for the sample, excluding the maximum and minimum value. III. RESULTS AND DISCUSSION ( 1. Thermal Conductivity Fractional changes in thermal resistivity for parallel and perpendicular cut specimens are presented in Fig.2(a) and (b) as a function of thermal neutron fluence. Thermal resistivity increased owing to neutron irradiation and its rate of increment gradually decreased with neutron fluence. The increment was higher for the samples irradiated at lower temperature. Figure 3 shows the change in anisotropy ratio of thermal conductivity with neutron fluence. While the scattering of the measured values are large, the anisotropy ratios were almost constant up to the maximum neutron fluence for all samples and the changes did not depend on irradiation temperature as well. 2. Electrical Resistivity Figure 4(a) and (b) show the fractional changes in electrical resistivity for parallel and perpendicular cut specimens with neutron fluence. Electrical resistivities showed sharp increments in the early stage of irradiation and then (a) Parallel direction (b) Perpendicular direction 2(a), (b) Change of thermal Fig. conductivity in parallel and perpendicular directions to extrusion as a function of neutron fluence 63

4 228 TECHNICAL REPORT (H. Matsuo, T. Saito) J. Nucl. Sci. Technol., became almost constant values with increase of neutron fluence. The rate of the increment was a little larger for parallel cut specimens than perpendicular ones, however they showed almost a similar tendency with neutron fluence. Changes in anisotropy ratio of electrical resistivity are shown in Fig.5. No change was observed, though the scattering of the measured values is large just like the case of thermal conductivity shown in Fig Stored Energy Stored energy accummulated by neutron irradiation at low temperature is suddenly released when the stored energy is sufficiently high and the release rate of the stored energy exceeds the specific heat of a graphite, and consequently the graphite is spontaneously heated to higher temperatures without external heating. Therefore stored energy has been carefully studied. The experimental results on stored energy are presented in Fig. 6 as a function of neutron fluence. Newgard has reported that stored energy can be expressed using the following semiempirical equation"' : Fig. 3 Change in anisotropy ratio of thermal conductivity as a function of neutron fluence (a) Parallel direction E = A(1-exp (-BF)), (1) where A and B are constants, and F is the neutron fluence in the unit of 1020 n/cm2. The parameters for the above equation were obtained from the present experimental results and they are presented in Table 1. It is obvious from the table that stored energy is larger for the samples irradiated at lower temperatures. (b) Perpendicular direction Fig.4(a), (b) Change of electrical resistivity in parallel and perpendicular directions to extrusion as a function of neutron fluence 64

5 Vol. 22, No. 3 (Mar. 1985) TECHNICAL REPORT (H. Matsuo, T. Saito) Relation between Thermal Conductivity and Electrical Resistivity Electrical resistivity of an unirradiated nuclear grade graphite at room temperature has a linear relation with its thermal resistivity(2)(3). Because phonons contributing to heat conduction, and electrons and holes contributing to electrical conduction are scattered at the crystallite boundaries. Therefore, thermal conductivity, of which measurement method is complex and difficult, is sometimes obtained from electrical resistivity of whose measurement method is very simple and easy. Examination was carried out in the present study in order to clarify whether the relation holds for neutron irradiated graphite or not. Figure 7(a) and (b) show the Fig.5 Change in anisotropy ratio of electrical resistivity as a fundtion of neutron fluence relation between thermal resistivity Fig.6 Stored energy as a function of neutron fluence and electrical resistivity for the samples irradiated in the temperature range Table 1 Parameters in Eq.(1) obtained from 220~400dc up to the maximum neutron present experimental results fluence 2.2x1020 n/cm2, parallel in Fig.7(a) and perpendicular direction to extrusion in 7(b), respectively. A linear relation Fig. holds in the case that the measured values of thermal and electrical resistivites are small, however it does not hold when the values become larger. 1 hese changes are the same for both parallel and perpendicular cut specimens. Two reasons are considered for this. One is that the effect of neutron irradiation on conduction of phonons, electrons and holes are different, resulting in the changes in concentration of electrons and holes and their different scattering mechanism due to defects induced by irradiation in addition to the scattering at crystallite boundaries. The other is that the saturation of changes in the electrical resistivity occurred in the early stage of irradiation compared with the change in thermal conductivity. 5. Relation between Thermal Conductivity and Stored Energy It has been reported that stored energy is related to fractional change of thermal conductivity for neutron irradiated nuclear grade graphite and the relation was used to analyze the kinds of defects formed owing to irradiation(7). 65

6 230 TECHNICAL REPORT (H. Matsuo, T. Saito) J. Nucl. Sci. Technol., Figure 8(a) and (b) show the relation between stored energy and fractional change of thermal resistivity for Pechiney graphite, parallel in Fig.8(a) and perpendicular to the extrusion in Fig.8(b), respectively. A dotted line is the relation for the Pile Grade A (PGA) graphite reported by Bell et al.(1) In those figures the relation was obtained assuming that a linear relation holds, and the proportional constant was obtained by using a least square method, leading to the following relations : (a) Parallel cut specimens E=12.0(K0/K-1) for parallel direction, (2) E=14.2(K0/K-1) for perpendicular direction, (3) E=12.9(K0/K-1) for both directions. (4) The proportional constant depended on the direction which the thermal conductivity was measured. It leads to 12.9 if all data for parallel and perpendicular direction were taken into consideration (b) Perpendicular cut specimens Fig. 7(a), (b) Relation between thermal and electrical resistivity for parallel and perpendicular cut specimens at the same time. These relations do not coincide with the one reported previously(". The proportional constants are approximately two times the value(1). Kelly'(8) estimated the energy of formation of the vacancy Efv from the previous experimental relation(1) E=6.5(K0/K-1), giving Efv~1.3eV for PGA, which does not agree with the present results. It is therefore considered that the present results leads to have an effect on discussion for the formation energy of defects analyzed by Kelly. If the relations are universal, the formation energy of vacancy becomes about two times as large as that reported previously for a nuclear grade graphite irradiated in a similar condition. It is not clear whether the relations are different for all nuclear grade graphites or not At the present time the relations have been obtained only for two kinds of graphite, one is for the PGA graphite and the other is for the Pechiney graphite. While it was clarified in the present study that the anisotropy ratio of thermal conductivity did not change owing to irradiation as shown in Fig.3, the proportional constant may depend on the kind 66

7 Vol. 22, No. 3 (Mar. 1985) TECHNICAL REPORT (H. Matsuo, T. Saito) 231 of graphite in addition to preferred orientation of crystallites. The ratio of the proportional constant is about This value is equal to the anisotropy ratio of thermal conductivity. This means that stored energy is dependent on crystallinity and independent of preferred orientation of crystallites, however change of thermal conductivity depends on porosity varying from graphite to graphite in addition to the crystallinity. Therefore, it seems that it is not preferable to discuss the fundamental formation energy of defect such as that of vacancy in graphite by using the relation between stored energy and fractional change in thermal conductivity for neutron irradiated nuclear grade graphite. (a) Parallel cut specimens IV. SUMMARY Experimental results and discussions on thermal conductivity, electrical resistivity and stored energy are summarized as follows : (b) Perpendicular Cut specimens 8(a), (b) Relation between stored Fig. energy and fractional change in thermal resistivity for parallel and perpendicular cut specimens (1) Thermal resistivity increased owing to neutron irradiation, and the rate of increment being higher for low irradiation temperature became smaller with increasing neutron fluence. The changes were almost similar to both parallel and perpendicular cut specimens. (2) Electrical resistivity showed a rapid increase in the early stage of irradiation and then saturated with increasing neutron fluence. The changes were almost similar in both parallel and perpendicular cut specimens. (3) The anisotropy ratios of thermal conductivity or electrical resistivity did not change owing to neutron irradiation. (4) Stored energy depended strongly on irradiation temperature. It was larger for the samples irradiated at lower temperatures. ) Thermal conductivity has (5a linear relation with electrical resistivity in the early stage of irradiation, however the relation breaks down for heavy irradiation. 67

8 232 TECHNICAL REPORT (H. Matsuo, T. Saito) J. Nucl. Sci. Technol., (6) Stored energy has a linear relation with the fractional change of thermal resistivity. Its proportional constant was approximately two times that obtained previously. REFERENCES (1) BELL, J. C., et al.: Phil. Trans. Roy. Soc., London, A254, 361 (1962). (2) NIGHTINGALE, R. E. : "Nuclear Graphite", 123 (1962), Academic Press, New York. (3) MASON, I. B., KNIBBS, R. H. : AERE-R 3973, (1962). (4) MATSUO, H. : J. Nucl. Mater., 42, 105 (1972). (5) MATSUO, H., HONDA, T.: ibid., 45, 79 (1972/1973). (6) MATSUO, H., SAITO, T. : To be published in J. Nucl. Sci. Technol., 22C4), (1985). (7) NEWGARD, J. J. : J. Appl. Phys., 30, 1449 (1959). (8) KELLY, B. T.: "Chemistry and Physics of Carbon", (Ed. WALKER P. L., Jr.), Vol. 5, 119 (1969), Marcel Dekker, New York. 68

A Practical Method for Evaluating the Neutron Dose

A Practical Method for Evaluating the Neutron Dose Journal of NUCLEAR SCIENCE and TECHNOLOGY, 3[11], p.473~478 (November, 1966) 473 A Practical Method for Evaluating the Neutron Dose Equivalent Rate* Yoshikazu YOSHIDA**, Hatsumi TATSUTA**, Hiroshi RYUFUKU**,

More information

Elastic Recoil Detection Method using DT Neutrons for Hydrogen Isotope Analysis in Fusion Materials. Abstract

Elastic Recoil Detection Method using DT Neutrons for Hydrogen Isotope Analysis in Fusion Materials. Abstract Elastic Recoil Detection Method using DT Neutrons for Hydrogen Isotope Analysis in Fusion Materials Naoyoshi Kubota, Kentaro Ochiai, Keitaro Kondo 2 and Takeo Nishitani. :Japan Atomic Energy Research Institute,

More information

Successful Development of a New Catalyst for Efficiently Collecting Tritium in Nuclear Fusion Reactors

Successful Development of a New Catalyst for Efficiently Collecting Tritium in Nuclear Fusion Reactors January 15, 2015 Japan Atomic Energy Agency Tanaka Precious Metals Tanaka Holdings Co., Ltd. Successful Development of a New Catalyst for Efficiently Collecting Tritium in Nuclear Fusion Reactors World

More information

Magnetic Field Configuration Dependence of Plasma Production and Parallel Transport in a Linear Plasma Device NUMBER )

Magnetic Field Configuration Dependence of Plasma Production and Parallel Transport in a Linear Plasma Device NUMBER ) Magnetic Field Configuration Dependence of Plasma Production and Parallel Transport in a Linear Plasma Device NUMBER ) Daichi HAMADA, Atsushi OKAMOTO, Takaaki FUJITA, Hideki ARIMOTO, Katsuya SATOU and

More information

Safety Assessment on the Storage of Irradiated Graphite Waste Produced from the Decommissioning of KRR-2

Safety Assessment on the Storage of Irradiated Graphite Waste Produced from the Decommissioning of KRR-2 Safety Assessment on the Storage of Irradiated Graphite Waste Produced from the Decommissioning of KRR-2 D.G. Lee, G.H. Jeong, W.Z. Oh, K.W. Lee Korea Atomic Energy Research Institute Korea ABSTRACT Irradiated

More information

Correction of the electric resistivity distribution of Si wafers using selective neutron transmutation doping (SNTD) in MARIA nuclear research reactor

Correction of the electric resistivity distribution of Si wafers using selective neutron transmutation doping (SNTD) in MARIA nuclear research reactor NUKLEONIKA 2012;57(3):363 367 ORIGINAL PAPER Correction of the electric resistivity distribution of Si wafers using selective neutron transmutation doping (SNTD) in MARIA nuclear research reactor Mikołaj

More information

Nuclear Data for Emergency Preparedness of Nuclear Power Plants Evaluation of Radioactivity Inventory in PWR using JENDL 3.3

Nuclear Data for Emergency Preparedness of Nuclear Power Plants Evaluation of Radioactivity Inventory in PWR using JENDL 3.3 Nuclear Data for Emergency Preparedness of Nuclear Power Plants Evaluation of Radioactivity Inventory in PWR using JENDL 3.3 Yoshitaka Yoshida, Itsuro Kimura Institute of Nuclear Technology, Institute

More information

Fluence-to-Dose Conversion Coefficients for Muons and Pions Calculated Based on ICRP Publication 103 Using the PHITS Code

Fluence-to-Dose Conversion Coefficients for Muons and Pions Calculated Based on ICRP Publication 103 Using the PHITS Code Progress in NUCLEAR SCIENCE and ECHNOLOGY, Vol. 2, pp.432-436 (20) ARICLE Fluence-to-Dose Conversion Coefficients for Muons and Pions Calculated Based on ICRP Publication 03 Using the PHIS Code atsuhiko

More information

Energy response for high-energy neutrons of multi-functional electronic personal dosemeter

Energy response for high-energy neutrons of multi-functional electronic personal dosemeter Energy response for high-energy neutrons of multi-functional electronic personal dosemeter T. Nunomiya 1, T. Ishikura 1, O. Ueda 1, N. Tsujimura 2,, M. Sasaki 2,, T. Nakamura 1,2 1 Fuji Electric Systems

More information

Journal of Nuclear Materials

Journal of Nuclear Materials Journal of Nuclear Materials 381 (28) 145 151 Contents lists available at ScienceDirect Journal of Nuclear Materials journal homepage: www.elsevier.com/locate/jnucmat Development of a Young s modulus model

More information

Ignition Regime and Burn Dynamics of D T-Seeded D 3 He Fuel for Fast Ignition Inertial Confinement Fusion

Ignition Regime and Burn Dynamics of D T-Seeded D 3 He Fuel for Fast Ignition Inertial Confinement Fusion Ignition Regime and Burn Dynamics of D T-Seeded D 3 He Fuel for Fast Ignition Inertial Confinement Fusion Y. Nakao, K. Tsukida, K. Shinkoda, Y. Saito Department of Applied Quantum Physics and Nuclear Engineering,

More information

Crystal Structure of Non-stoichiometric Compound Li 2-x TiO 3-y under. Hydrogen Atmosphere

Crystal Structure of Non-stoichiometric Compound Li 2-x TiO 3-y under. Hydrogen Atmosphere Crystal Structure of Non-stoichiometric Compound 2-x -y under Hydrogen Atmosphere Tsuyoshi Hoshino* (1), Masaru Yasumoto (2), Kunihiko Tsuchiya (1), Kimio Hayashi (1), Hidetoshi Nishimura(3), Akihiro Suzuki

More information

D DAVID PUBLISHING. Transport Properties of InAs-InP Solid Solutions. 2. Experiment. 1. Introduction. 3. Results and Discussion

D DAVID PUBLISHING. Transport Properties of InAs-InP Solid Solutions. 2. Experiment. 1. Introduction. 3. Results and Discussion Journal of Electrical Engineering 2 (2014) 207-212 doi: 10.17265/2328-2223/2014.05.002 D DAVID PUBLISHING Nodar Kekelidze 1, 2, 3, Elza Khutsishvili 1, 2, Bella Kvirkvelia 1, 2, 3, David Kekelidze 2, Vugar

More information

ACCUMULATION OF ACTIVATION PRODUCTS IN PB-BI, TANTALUM, AND TUNGSTEN TARGETS OF ADS

ACCUMULATION OF ACTIVATION PRODUCTS IN PB-BI, TANTALUM, AND TUNGSTEN TARGETS OF ADS ACCUMULATION OF ACTIVATION PRODUCTS IN PB-BI, TANTALUM, AND TUNGSTEN TARGETS OF ADS A.S. Gerasimov, G.V. Kiselev, A.I. Volovik State Scientific Centre of the Russian Federation Institute of Theoretical

More information

In-vessel Tritium Inventory in ITER Evaluated by Deuterium Retention of Carbon Dust

In-vessel Tritium Inventory in ITER Evaluated by Deuterium Retention of Carbon Dust FT/P1-19 In-vessel Tritium Inventory in ITER Evaluated by Deuterium Retention of Carbon Dust T. Hino 1), H. Yoshida 1), M. Akiba 2), S. Suzuki 2), Y. Hirohata 1) and Y. Yamauchi 1) 1) Laboratory of Plasma

More information

Nuclear Physics 2. D. atomic energy levels. (1) D. scattered back along the original direction. (1)

Nuclear Physics 2. D. atomic energy levels. (1) D. scattered back along the original direction. (1) Name: Date: Nuclear Physics 2. Which of the following gives the correct number of protons and number of neutrons in the nucleus of B? 5 Number of protons Number of neutrons A. 5 6 B. 5 C. 6 5 D. 5 2. The

More information

Measurements of Neutron Capture Cross Sections for 237, 238 Np

Measurements of Neutron Capture Cross Sections for 237, 238 Np Measurements of Neutron Capture Cross Sections for 237, 238 Np H. Harada 1), H. Sakane 1), S. Nakamura 1), K. Furutaka 1), J. Hori 2), T. Fujii 2), H. Yamana 2) 1) Japan Nuclear Cycle Development Institute,

More information

Recent Activities on Neutron Calibration Fields at FRS of JAERI

Recent Activities on Neutron Calibration Fields at FRS of JAERI Recent Activities on Neutron Calibration Fields at FRS of JAERI Michio Yoshizawa, Yoshihiko Tanimura, Jun Saegusa and Makoto Yoshida Department of Health Physics, Japan Atomic Energy Research Institute

More information

A Method of Knock-on Tail Observation Accounting Temperature Fluctuation Using 6 Li+T/D+T Reaction in Deuterium Plasma

A Method of Knock-on Tail Observation Accounting Temperature Fluctuation Using 6 Li+T/D+T Reaction in Deuterium Plasma A Method of Knock-on Tail Observation Accounting Temperature Fluctuation Using 6 Li+T/D+T Reaction in Deuterium Plasma Yasuko KAWAMOTO and Hideaki MATSUURA Department of Applied Quantum Physics and Nuclear

More information

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT Ito D*, and Saito Y Research Reactor Institute Kyoto University 2-1010 Asashiro-nishi, Kumatori, Sennan,

More information

Effects of Soluble Fission Products on Thermal Conductivities of Nuclear Fuel Pellets

Effects of Soluble Fission Products on Thermal Conductivities of Nuclear Fuel Pellets Journal of NUCLEAR SCIENCE and TECHNOLOGY, 31[8], pp.796~802 (August 1994). Effects of Soluble Fission Products on Thermal Conductivities of Nuclear Fuel Pellets Shinji ISHIMOTO, Mutsumi HIRAIt Kenichi

More information

Naka-Gun, Ibaraki, , Japan

Naka-Gun, Ibaraki, , Japan Examination of Atmospheric Dispersion Model s Performance - Comparison with the Monitoring Data under the Normal Operation of the Tokai Reprocessing Plant - M. Takeyasu 1, M. Nakano 1, N. Miyagawa 1, M.

More information

Benchmark Test of JENDL High Energy File with MCNP

Benchmark Test of JENDL High Energy File with MCNP Benchmark Test of JENDL High Energy File with MCNP Masayuki WADA, Fujio MAEKAWA, Chikara KONNO Intense Neutron Source Laboratory, Department of Materials Science Japan Atomic Energy Research Institute,

More information

Implantation Energy Dependence on Deuterium Retention Behaviors for the Carbon Implanted Tungsten

Implantation Energy Dependence on Deuterium Retention Behaviors for the Carbon Implanted Tungsten J. Plasma Fusion Res. SERIES, Vol. 10 (2013) Implantation Energy Dependence on Deuterium Retention Behaviors for the Carbon Implanted Tungsten Yasuhisa Oya 1) *, Makoto Kobayashi 1), Naoaki Yoshida 2),

More information

Change of Majority-Carrier Concentration in p-type Silicon by 10 MeV Proton Irradiation. Abstract

Change of Majority-Carrier Concentration in p-type Silicon by 10 MeV Proton Irradiation. Abstract Change of Majority-Carrier Concentration in p-type Silicon by 10 MeV Proton Irradiation H. Iwata, S. Kagamihara, H. Matsuura, S. Kawakita 1), T. Oshima ), T. Kamiya ) Osaka Electro-Communication University,

More information

Some Comments to JSSTDL-300

Some Comments to JSSTDL-300 Some Comments to -300 Chikara KONNO Center for Proton Accelerator Facilities Japan Atomic Energy Research Institute Tokai-mura Naka-gun Ibaraki-ken 39-95 JAPAN e-mail : konno@cens.tokai.jaeri.go.jp The

More information

Appendices 193 APPENDIX B SCATTERING EXPERIMENTS

Appendices 193 APPENDIX B SCATTERING EXPERIMENTS Appendices 193 APPENDIX B SCATTERING EXPERIMENTS Scattering experiments are used extensively to probe the properties of atoms, nuclei and elementary particles. As described in Chapter 1, these experiments

More information

Year 11 Physics booklet Topic 1 Atomic structure and radioactivity Name:

Year 11 Physics booklet Topic 1 Atomic structure and radioactivity Name: Year 11 Physics booklet Topic 1 Atomic structure and radioactivity Name: Atomic structure and radioactivity Give a definition for each of these key words: Atom Isotope Proton Neutron Electron Atomic nucleus

More information

Radioactive effluent releases from Rokkasho Reprocessing Plant (1) - Gaseous effluent -

Radioactive effluent releases from Rokkasho Reprocessing Plant (1) - Gaseous effluent - Radioactive effluent releases from Rokkasho Reprocessing Plant (1) - Gaseous effluent - K.Anzai, S.Keta, M.Kano *, N.Ishihara, T.Moriyama, Y.Okamura K.Ogaki, K.Noda a a Reprocessing Business Division,

More information

Characteristics of hydrogen supersonic cluster beam generated by a Laval nozzle

Characteristics of hydrogen supersonic cluster beam generated by a Laval nozzle J. Plasma Fusion Res. SERIES, Vol. 9 (21) Characteristics of hydrogen supersonic cluster beam generated by a Laval nozzle Akiyoshi MURAKAMI, Junichi MIYAZAWA 1), Hayato TSUCHIYA 1), Takanori MURASE 1),

More information

CRITICALITY DETECTION METHOD BASED ON FP GAMMA RADIATION MEASUREMENT

CRITICALITY DETECTION METHOD BASED ON FP GAMMA RADIATION MEASUREMENT CRITICALITY DETECTION METHOD BASED ON FP GAMMA RADIATION MEASREMENT Yoshitaka Naito, Kazuo Azekura NAIS Co., inc. Muramatsu 416, Tokaimura, Ibaraki-ken, Japan 319-1112 ynaito@nais.ne.jp azekura@nais.ne.jp

More information

Atomic configuration of boron pile-up at the Si/SiO 2 interface

Atomic configuration of boron pile-up at the Si/SiO 2 interface Atomic configuration of boron pile-up at the Si/SiO 2 interface Masayuki Furuhashi, a) Tetsuya Hirose, Hiroshi Tsuji, Masayuki Tachi, and Kenji Taniguchi Department of Electronics and Information Systems,

More information

TRANSMUTATION OF CESIUM-135 WITH FAST REACTORS

TRANSMUTATION OF CESIUM-135 WITH FAST REACTORS TRANSMUTATION OF CESIUM-3 WITH FAST REACTORS Shigeo Ohki and Naoyuki Takaki O-arai Engineering Center Japan Nuclear Cycle Development Institute (JNC) 42, Narita-cho, O-arai-machi, Higashi-Ibaraki-gun,

More information

STUDIES OF MATERIAL PROPERTIES UNDER IRRADIATION AT BNL LINEAR ISOTOPE PRODUCER (BLIP) N. Simos, H. Kirk, H. Ludewig; BNL

STUDIES OF MATERIAL PROPERTIES UNDER IRRADIATION AT BNL LINEAR ISOTOPE PRODUCER (BLIP) N. Simos, H. Kirk, H. Ludewig; BNL STUDIES OF MATERIAL PROPERTIES UNDER IRRADIATION AT BNL LINEAR ISOTOPE PRODUCER (BLIP) N. Simos, H. Kirk, H. Ludewig; BNL N. Mokhov, P. Hurh, J. Hylen, J. Misek, Fermilab Overview Materials & High Power

More information

Characterization of Irradiated Doping Profiles. Wolfgang Treberspurg, Thomas Bergauer, Marko Dragicevic, Manfred Krammer, Manfred Valentan

Characterization of Irradiated Doping Profiles. Wolfgang Treberspurg, Thomas Bergauer, Marko Dragicevic, Manfred Krammer, Manfred Valentan Characterization of Irradiated Doping Profiles, Thomas Bergauer, Marko Dragicevic, Manfred Krammer, Manfred Valentan Vienna Conference on Instrumentation (VCI) 14.02.2013 14.02.2013 2 Content: Experimental

More information

Considerations for Measurements in Support of Thermal Scattering Data Evaluations. Ayman I. Hawari

Considerations for Measurements in Support of Thermal Scattering Data Evaluations. Ayman I. Hawari OECD/NEA Meeting: WPEC SG42 Thermal Scattering Kernel S(a,b): Measurement, Evaluation and Application May 13 14, 2017 Paris, France Considerations for Measurements in Support of Thermal Scattering Data

More information

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances Kasufumi TSUJIMOTO Center for Proton Accelerator Facilities, Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

More information

GaN for use in harsh radiation environments

GaN for use in harsh radiation environments 4 th RD50 - Workshop on radiation hard semiconductor devices for very high luminosity colliders GaN for use in harsh radiation environments a (W Cunningham a, J Grant a, M Rahman a, E Gaubas b, J Vaitkus

More information

WHAT WE LEARN FROM THE NUCLEAR DATA IN OKLO NATURAL REACTOR

WHAT WE LEARN FROM THE NUCLEAR DATA IN OKLO NATURAL REACTOR WHAT WE LEARN FROM THE NUCLEAR DATA IN OKLO NATURAL REACTOR Akira Iwamoto Dep. Materials Science, Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 e-mail:iwamoto@hadron01.tokai.jaeri.go.jp

More information

Experience with Moving from Dpa to Changes in Materials Properties

Experience with Moving from Dpa to Changes in Materials Properties Experience with Moving from Dpa to Changes in Materials Properties Meimei Li, Argonne National Laboratory N. V. Mokhov, Fermilab 46 th ICFA Advanced Beam Dynamics Workshop Sept. 27 Oct. 1, 2010 Morschach,

More information

Physics Dept. PHY-503-SEMESTER 112 PROJECT. Measurement of Carbon Concentration in Bulk Hydrocarbon Samples

Physics Dept. PHY-503-SEMESTER 112 PROJECT. Measurement of Carbon Concentration in Bulk Hydrocarbon Samples Physics Dept. PHY-503-SEMESTER 112 PROJECT Measurement of Carbon Concentration in Bulk Hydrocarbon Samples Prepared by: Hasan Mohammed Hasan ID: 201002200 Supervisor: Prof. A.A. Naqvi Coordinator: Prof.

More information

Activities of the neutron standardization. at the Korea Research Institute of Standards and Science (KRISS)

Activities of the neutron standardization. at the Korea Research Institute of Standards and Science (KRISS) Activities of the neutron standardization at the Korea Research Institute of Standards and Science (KRISS) I. Introduction The activities of neutron standardization in KRISS have been continued for last

More information

Estimation of Radioactivity and Residual Gamma-ray Dose around a Collimator at 3-GeV Proton Synchrotron Ring of J-PARC Facility

Estimation of Radioactivity and Residual Gamma-ray Dose around a Collimator at 3-GeV Proton Synchrotron Ring of J-PARC Facility Estimation of Radioactivity and Residual Gamma-ray Dose around a Collimator at 3-GeV Proton Synchrotron Ring of J-PARC Facility Y. Nakane 1, H. Nakano 1, T. Abe 2, H. Nakashima 1 1 Center for Proton Accelerator

More information

An introduction to Neutron Resonance Densitometry (Short Summary)

An introduction to Neutron Resonance Densitometry (Short Summary) An introduction to Neutron Resonance Densitometry (Short Summary) H. Harada 1, M. Koizumi 1, H. Tsuchiya 1, F. Kitatani 1, M. Seya 1 B. Becker 2, J. Heyse 2, S. Kopecky 2, C. Paradela 2, P. Schillebeeckx

More information

anti-compton BGO detector

anti-compton BGO detector 1 2 3 Q β - measurements with a total absorption detector composed of through-hole HPGe detector and anti-compton BGO detector 4 5 Hiroaki Hayashi a,1, Michihiro Shibata b, Osamu Suematsu a, Yasuaki Kojima

More information

Introduction. Neutron Effects NSEU. Neutron Testing Basics User Requirements Conclusions

Introduction. Neutron Effects NSEU. Neutron Testing Basics User Requirements Conclusions Introduction Neutron Effects Displacement Damage NSEU Total Ionizing Dose Neutron Testing Basics User Requirements Conclusions 1 Neutron Effects: Displacement Damage Neutrons lose their energy in semiconducting

More information

Application and Validation of Event Generator in the PHITS Code for the Low-Energy Neutron-Induced Reactions

Application and Validation of Event Generator in the PHITS Code for the Low-Energy Neutron-Induced Reactions Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.931-935 (2011) ARTICLE Application and Validation of Event Generator in the PHITS Code for the Low-Energy Neutron-Induced Reactions Yosuke IWAMOTO

More information

Recent Activities on Neutron Standardization at the Electrotechnical Laboratory

Recent Activities on Neutron Standardization at the Electrotechnical Laboratory Recent Activities on Neutron Standardization at the Electrotechnical Laboratory K. Kudo, N. Takeda, S. Koshikawa and A. Uritani Quantum Radiation Division, National Metrology Institute of Japan (NMIJ)

More information

A Correction Factor for Effects of Scattered X-rays at Calibration of Ionization Chambers in Low Energy X-ray Standard Fields

A Correction Factor for Effects of Scattered X-rays at Calibration of Ionization Chambers in Low Energy X-ray Standard Fields Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 44, No. 2, p. 109 113 (2007) ARTICLE A Correction Factor for Effects of Scattered X-rays at Calibration of Ionization Chambers in Low Energy X-ray Standard

More information

Calculation of Effective Dose Conversion Coefficients for Electrons

Calculation of Effective Dose Conversion Coefficients for Electrons Calculation of Effective Dose Conversion Coefficients for Electrons S. Tsuda 1, A. Endo 1, Y. Yamaguchi 1 and O. Sato 2 1 Department of Health Physics, Japan Atomic Energy Research Institute (JAERI) Tokai-mura,

More information

Structural and Thermal Characterization of Polymorphic Er 2 Si 2 O 7 Asghari Maqsood

Structural and Thermal Characterization of Polymorphic Er 2 Si 2 O 7 Asghari Maqsood Key Engineering Materials Online: 202-05-4 ISSN: 662-9795, Vols. 50-5, pp 255-260 doi:0.4028/www.scientific.net/kem.50-5.255 202 Trans Tech Publications, Switzerland Structural and Thermal Characterization

More information

Author(s) Tatsuzawa, Ryotaro; Takaki, Naoyuki. Citation Physics Procedia (2015), 64:

Author(s) Tatsuzawa, Ryotaro; Takaki, Naoyuki. Citation Physics Procedia (2015), 64: Title Fission Study of Actinide Nuclei Us Reactions Nishio, Katsuhisa; Hirose, Kentaro; Author(s) Hiroyuki; Nishinaka, Ichiro; Orland James; Tsukada, Kazuaki; Chiba, Sat Tatsuzawa, Ryotaro; Takaki, Naoyuki

More information

Measurements of Neutron Cross Section of the 243 Am(n,γ) 244 Am Reaction

Measurements of Neutron Cross Section of the 243 Am(n,γ) 244 Am Reaction Measurements of Neutron Cross Section of the (n,γ) 44 Am Reaction Yuichi HATSUKAWA, Nobuo SHINOHARA, Kentaro HATA Nuclear Chemistry Laboratory Tokai-mura, Naka-gun, Ibaraki-ken 319-11 e-mail: hatsu@popsvr.tokai.jaeri.go.jp

More information

Dead-Time Measurement for Radiation Counters by Variance-to-Mean

Dead-Time Measurement for Radiation Counters by Variance-to-Mean Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 33, No. 11, p. 863-868 (November 1996) TECHNICAL REPORT Dead-Time Measurement for Radiation Counters by Variance-to-Mean Method Kengo HASHIMOTOt, Kei OHYAtt,

More information

Convertible source system of thermal neutron and X-ray at Hokkaido University electron linac facility

Convertible source system of thermal neutron and X-ray at Hokkaido University electron linac facility IL NUOVO CIMENTO 38 C (2015) 187 DOI 10.1393/ncc/i2015-15187-9 Colloquia: UCANS-V Convertible source system of thermal neutron and X-ray at Hokkaido University electron linac facility T. Kamiyama( ), K.

More information

THE ACTIVE PERSONNEL DOSIMETER - APFEL ENTERPRISES SUPERHEATED DROP DETECTOR*

THE ACTIVE PERSONNEL DOSIMETER - APFEL ENTERPRISES SUPERHEATED DROP DETECTOR* SLAC-PUB-5122 Rev March 1991 w THE ACTIVE PERSONNEL DOSIMETER - APFEL ENTERPRISES SUPERHEATED DROP DETECTOR* N. E. Ipe, R. J. Donahue, and D. D. Busick Stanford Linear Accelerator Center Stanford University,

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH STUDIES OF THE RADIATION HARDNESS OF OXYGEN-ENRICHED SILICON DETECTORS

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH STUDIES OF THE RADIATION HARDNESS OF OXYGEN-ENRICHED SILICON DETECTORS EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN EP/98 62 11 Juin 1998 STUDIES OF THE RADIATION HARDNESS OF OXYGEN-ENRICHED SILICON DETECTORS A. Ruzin, G. Casse 1), M. Glaser, F. Lemeilleur CERN, Geneva,

More information

Modelling an Advanced Gas-Cooled Reactor (AGR) Core using ABAQUS

Modelling an Advanced Gas-Cooled Reactor (AGR) Core using ABAQUS Modelling an Advanced Gas-Cooled Reactor (AGR) Core using ABAQUS Derek K. L. Tsang 1, Barry J. Marsden 1 and Graham B. Heys 2 1 Nuclear Graphite Research Group, School of MACE, The University of Manchester,

More information

Estimation of 210 Po Losses from the Solid 209 Bi Target Irradiated in a Thermal Neutron Flux

Estimation of 210 Po Losses from the Solid 209 Bi Target Irradiated in a Thermal Neutron Flux Estimation of 210 Losses from the Solid 209 Bi Target Irradiated in a Thermal Neutron Flux Dmitri PANKRATOV, Sviatoslav IGNATIEV Institute of Physics and wer Engineering (IPPE), Obninsk 249033, RUSSIA

More information

Effects of Water Vapor on Tritium Release Behavior from Solid Breeder Materials

Effects of Water Vapor on Tritium Release Behavior from Solid Breeder Materials Effects of Water Vapor on Tritium Release Behavior from Solid Breeder Materials T. Kinjyo a), M. Nishikawa a), S. Fukada b), M. Enoeda c), N. Yamashita a), T. Koyama a) a) Graduate School of Engineering

More information

P39 A Database for Transmutation of Nuclear Materials on Internet

P39 A Database for Transmutation of Nuclear Materials on Internet P39 A Database for Transmutation of Nuclear Materials on Internet Mitsutane FUJITA, Misako UTSUMI and Tetsuji NODA National Research Institute for Metals 1-2-1, Sengen, Tsukuba, Ibaraki 305 Japan fujita@tamamo.nrim.go.jp

More information

Lab 1. Resolution and Throughput of Ion Beam Lithography

Lab 1. Resolution and Throughput of Ion Beam Lithography 1 ENS/PHY463 Lab 1. Resolution and Throughput of Ion Beam Lithography (SRIM 2008/2013 computer simulation) Objective The objective of this laboratory work is to evaluate the exposure depth, resolution,

More information

Control of the fission chain reaction

Control of the fission chain reaction Control of the fission chain reaction Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 April 8, 2011 NUCS 342 (Lecture 30) April 8, 2011 1 / 29 Outline 1 Fission chain reaction

More information

Measurement of the Westcott Conventionality Thermal Neutron Flux and Suchlike at Irradiation Facilities of the KUR

Measurement of the Westcott Conventionality Thermal Neutron Flux and Suchlike at Irradiation Facilities of the KUR Measurement of e Westcott Conventionality Thermal Neutron Flux and Suchlike at Irradiation Facilities of e KUR Hiroshi CHATANI Research Reactor Institute, Kyoto University Kumatori-cho, Sennan-gun, Osaka

More information

14 MeV Neutron Irradiation Effect on Superconducting Properties of Nb 3 Sn Strand for Fusion Magnet

14 MeV Neutron Irradiation Effect on Superconducting Properties of Nb 3 Sn Strand for Fusion Magnet 1 FTP/P1-22 14 MeV Neutron Irradiation Effect on Superconducting Properties of Sn Strand for Fusion Magnet A. Nishimura 1), T. Takeuchi 2), S. Nishijima 3), N. Koizumi 4), G. Nishijima 2), K. Watanabe

More information

Shielding Design to Obtain Compact

Shielding Design to Obtain Compact Journal of NUCLEAR SCIENCE and TECHNOLOGY, 31[6], pp. 510,-520 (June 1994). Shielding Design to Obtain Compact Marine Reactor Akio YAMAJI and Kiyoshi SAKO Tokai Research Establishment, Japan Atomic Energy

More information

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh).

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh). Surface effect Coulomb effect ~200 MeV 1 B.E. per nucleon for 238 U (BE U ) and 119 Pd (BE Pd )? 2x119xBE Pd 238xBE U =?? K.E. of the fragments 10 11 J/g Burning coal 10 5 J/g Why not spontaneous? Two

More information

Role of the Electron Temperature in the Current Decay during Disruption in JT-60U )

Role of the Electron Temperature in the Current Decay during Disruption in JT-60U ) Role of the Electron Temperature in the Current Decay during Disruption in JT-60U ) Yoshihide SHIBATA, Akihiko ISAYAMA, Go MATSUNAGA, Yasunori KAWANO, Seiji MIYAMOTO 1), Victor LUKASH 2), Rustam KHAYRUTDINOV

More information

The annealing of interstitial carbon atoms in high resistivity n-type silicon after proton irradiation

The annealing of interstitial carbon atoms in high resistivity n-type silicon after proton irradiation ROSE/TN/2002-01 The annealing of interstitial carbon atoms in high resistivity n-type silicon after proton irradiation M. Kuhnke a,, E. Fretwurst b, G. Lindstroem b a Department of Electronic and Computer

More information

Nonthermal and nonequilibrium effects in high-power pulsed ICP and application to surface modification of materials*

Nonthermal and nonequilibrium effects in high-power pulsed ICP and application to surface modification of materials* Pure Appl. Chem., Vol. 74, No. 3, pp. 435 439, 2002. 2002 IUPAC Nonthermal and nonequilibrium effects in high-power pulsed ICP and application to surface modification of materials* T. Ishigaki 1,, N. Okada

More information

Effect of Fission Fragments on the Properties of UO 2 Fuel of Pressurized Water Reactors

Effect of Fission Fragments on the Properties of UO 2 Fuel of Pressurized Water Reactors Effect of Fission Fragments on the Properties of UO 2 Fuel of Pressurized Water Reactors A. I. El-Shanshoury National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo 11762,

More information

1 EX/P4-8. Hydrogen Concentration of Co-deposited Carbon Films Produced in the Vicinity of Local Island Divertor in Large Helical Device

1 EX/P4-8. Hydrogen Concentration of Co-deposited Carbon Films Produced in the Vicinity of Local Island Divertor in Large Helical Device 1 EX/P4-8 Hydrogen Concentration of Co-deposited Carbon Films Produced in the Vicinity of Local Island Divertor in Large Helical Device T. Hino 1,2), T. Hirata 1), N. Ashikawa 2), S. Masuzaki 2), Y. Yamauchi

More information

Reactor radiation skyshine calculations with TRIPOLI-4 code for Baikal-1 experiments

Reactor radiation skyshine calculations with TRIPOLI-4 code for Baikal-1 experiments DOI: 10.15669/pnst.4.303 Progress in Nuclear Science and Technology Volume 4 (2014) pp. 303-307 ARTICLE Reactor radiation skyshine calculations with code for Baikal-1 experiments Yi-Kang Lee * Commissariat

More information

New irradiation zones at the CERN-PS

New irradiation zones at the CERN-PS Nuclear Instruments and Methods in Physics Research A 426 (1999) 72 77 New irradiation zones at the CERN-PS M. Glaser, L. Durieu, F. Lemeilleur *, M. Tavlet, C. Leroy, P. Roy ROSE/RD48 Collaboration CERN,

More information

B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec.

B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2: Fission and Other Neutron Reactions B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Contents Concepts: Fission and other

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012141 TITLE: Transformation of Active Carbon to Onion-like Fullerenes Under Electron Beam Irradiation DISTRIBUTION: Approved

More information

Supplementary Information

Supplementary Information Supplementary Information Direct observation of crystal defects in an organic molecular crystals of copper hexachlorophthalocyanine by STEM-EELS Mitsutaka Haruta*, Hiroki Kurata Institute for hemical Research,

More information

MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT

MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT R. KHAN, M. VILLA, H. BÖCK Vienna University of Technology Atominstitute Stadionallee 2, A-1020, Vienna, Austria ABSTRACT The Atominstitute

More information

The outermost container into which vitrified high level waste or spent fuel rods are to be placed. Made of stainless steel or inert alloy.

The outermost container into which vitrified high level waste or spent fuel rods are to be placed. Made of stainless steel or inert alloy. Glossary of Nuclear Waste Terms Atom The basic component of all matter; it is the smallest part of an element having all the chemical properties of that element. Atoms are made up of protons and neutrons

More information

A Monte Carlo Simulation for Estimating of the Flux in a Novel Neutron Activation System using 252 Cf Source

A Monte Carlo Simulation for Estimating of the Flux in a Novel Neutron Activation System using 252 Cf Source IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 7, Issue 3 Ver. II (May. - Jun. 2015), PP 80-85 www.iosrjournals.org A Monte Carlo Simulation for Estimating of the Flux in a Novel Neutron

More information

High temperature superconductors for fusion magnets - influence of neutron irradiation

High temperature superconductors for fusion magnets - influence of neutron irradiation High temperature superconductors for fusion magnets - influence of neutron irradiation Michal Chudý M.Eisterer, H.W.Weber Outline 1. Superconductors in thermonuclear fusion 2. High temperature superconductors

More information

Invariability of neutron flux in internal and external irradiation sites in MNSRs for both HEU and LEU cores

Invariability of neutron flux in internal and external irradiation sites in MNSRs for both HEU and LEU cores Indian Journal of Pure & Applied Physics Vol. 49, February 2011, pp. 83-90 Invariability of neutron flux in internal and external irradiation sites in MNSRs for both HEU and LEU cores M Albarhoum Department

More information

Correlation between neutrons detected outside the reactor building and fuel melting

Correlation between neutrons detected outside the reactor building and fuel melting Attachment 2-7 Correlation between neutrons detected outside the reactor building and fuel melting 1. Introduction The Fukushima Daiichi Nuclear Power Station (hereinafter referred to as Fukushima Daiichi

More information

Radiation Damage Effects in Solids. Los Alamos National Laboratory. Materials Science & Technology Division

Radiation Damage Effects in Solids. Los Alamos National Laboratory. Materials Science & Technology Division Radiation Damage Effects in Solids Kurt Sickafus Los Alamos National Laboratory Materials Science & Technology Division Los Alamos, NM Acknowledgements: Yuri Osetsky, Stuart Maloy, Roger Smith, Scott Lillard,

More information

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma THE HARRIS SCIENCE REVIEW OF DOSHISHA UNIVERSITY, VOL. 56, No. 1 April 2015 Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

More information

Estimations of Beam-Beam Fusion Reaction Rates in the Deuterium Plasma Experiment on LHD )

Estimations of Beam-Beam Fusion Reaction Rates in the Deuterium Plasma Experiment on LHD ) Estimations of Beam-Beam Fusion Reaction Rates in the Deuterium Plasma Experiment on LHD ) Masayuki HOMMA, Sadayoshi MURAKAMI, Hideo NUGA and Hiroyuki YAMAGUCHI Department of Nuclear Engineering, Kyoto

More information

NUCLEAR PHYSICS: solutions to higher level questions

NUCLEAR PHYSICS: solutions to higher level questions NUCLEAR PHYSICS: solutions to higher level questions 2015 Question 12 (d) (i) What is meant by the term radioactive? (Spontaneous) disintegration of a nucleus with the emission of radiation (ii) Name a

More information

MA/LLFP Transmutation Experiment Options in the Future Monju Core

MA/LLFP Transmutation Experiment Options in the Future Monju Core MA/LLFP Transmutation Experiment Options in the Future Monju Core Akihiro KITANO 1, Hiroshi NISHI 1*, Junichi ISHIBASHI 1 and Mitsuaki YAMAOKA 2 1 International Cooperation and Technology Development Center,

More information

Universal curve of the thermal neutron self-shielding factor in foils, wires, spheres and cylinders

Universal curve of the thermal neutron self-shielding factor in foils, wires, spheres and cylinders Journal of Radioanalytical and Nuclear Chemistry, Vol. 261, No. 3 (2004) 637 643 Universal curve of the thermal neutron self-shielding factor in foils, wires, spheres and cylinders E. Martinho, J. Salgado,

More information

Molecular Dynamics Simulation of Chemical Sputtering of Hydrogen Atom on Layer Structured Graphite

Molecular Dynamics Simulation of Chemical Sputtering of Hydrogen Atom on Layer Structured Graphite 1 TH/7-1 Molecular Dynamics Simulation of Chemical Sputtering of Hydrogen Atom on Layer Structured Graphite A. Ito 1,2), Y. Wang 1), S. Irle 1), K. Morokuma 3), and H. Nakamura 2) 1) Nagoya University,

More information

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE S. S. L. C. EXAMINATION, MARCH/APRIL, » D} V fl MODEL ANSWERS

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE S. S. L. C. EXAMINATION, MARCH/APRIL, » D} V fl MODEL ANSWERS CCE RF CCE RR O %lo ÆË v ÃO y Æ fio» flms ÿ,» fl Ê«fiÀ M, ÊMV fl 560 00 KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALE 560 00 G È.G È.G È.. Æ fioê,» ^È% / HØ È 08 MO : 0. 04. 08

More information

Radiation damage calculation in PHITS

Radiation damage calculation in PHITS Radiation Effects in Superconducting Magnet Materials (RESMM'12), 13 Feb. 15 Feb. 2012 Radiation damage calculation in PHITS Y. Iwamoto 1, K. Niita 2, T. Sawai 1, R.M. Ronningen 3, T. Baumann 3 1 JAEA,

More information

Thermoelectric Properties and Electrical Transport of Graphite Intercalation Compounds

Thermoelectric Properties and Electrical Transport of Graphite Intercalation Compounds Materials Transactions, Vol. 5, No. 7 (9) pp. 167 to 1611 Special Issue on Thermoelectric Conversion Materials V #9 The Thermoelectrics Society of Japan Thermoelectric Properties and Electrical Transport

More information

Influence of Metallic Oxides on Oxidative Stability and Electrical Properties of Fullerene C 60. A. Devečerski 1

Influence of Metallic Oxides on Oxidative Stability and Electrical Properties of Fullerene C 60. A. Devečerski 1 Electrical Properties of Fullerene C 60 A. Devečerski 1 1 Vinca Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro, drak@vin.bg.ac.yu Keywords: C 60 ; fullerenes; metallic oxides; oxidation;

More information

Reactor & Spallation Neutron Sources

Reactor & Spallation Neutron Sources Reactor & Spallation Neutron Sources Oxford School of Neutron Scattering Oxford, 2011-09-06 Ken Andersen ESS Instruments Division ISIS ILL Time evolution: Major neutron sources ILL BENSC (D) SINQ (CH)

More information

Journal of Radiation Protection and Research

Journal of Radiation Protection and Research 1) JONG WOON KIM AND YOUNG-OUK LEE: DETAILED ANALYSIS OF THE KAERI ntof FACILITY Journal of Radiation Protection and Research pissn 2508-1888 eissn 2466-2461 http://dx.doi.org/10.14407/jrpr.2016.41.2.141

More information

JOYO MK-III Performance Test at Low Power and Its Analysis

JOYO MK-III Performance Test at Low Power and Its Analysis PHYSOR 200 -The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments Chicago, Illinois, April 25-29, 200, on CD-ROM, American Nuclear Society, Lagrange Park, IL. (200) JOYO MK-III Performance

More information

Theoretical Analysis of Neutron Double-Differential Cross Section of n + 19 F at 14.2 MeV

Theoretical Analysis of Neutron Double-Differential Cross Section of n + 19 F at 14.2 MeV Commun. Theor. Phys. (Beijing, China) 47 (2007) pp. 102 106 c International Academic Publishers Vol. 47, No. 1, January 15, 2007 Theoretical Analysis of Neutron Double-Differential Cross Section of n +

More information

STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO MEV NEUTRONS ABSTRACT

STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO MEV NEUTRONS ABSTRACT STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO 0.75-14.75 MEV NEUTRONS Jianfu Zhang 1, 2, Xiaoping Ouyang 1, 2, Suizheng Qiu 1, Xichao Ruan 3, Jinlu Ruan 2 1 School of Nuclear Science

More information

Effect of Resonance Scattering of Sodium on Resonance Absorption of U-238

Effect of Resonance Scattering of Sodium on Resonance Absorption of U-238 Journal of NUCLEAR SCIENCE and TECHNOLOGY, 4 [12], p. 601~606 (December 1967). 6 01 Effect of Resonance Scattering of Sodium on Resonance Absorption of U-238 Tatsuzo TONE*, Yukio ISHIGURO* and Hideki TAKANO*

More information