Highlights of the Career of Robert G. Bergman

Size: px
Start display at page:

Download "Highlights of the Career of Robert G. Bergman"

Transcription

1 ighlights of the Career of obert G. Bergman Vy M. Dong MacMillan Group Meeting May 17, 2002 Career Sketch of obert G. Bergman 1963 B.S. Carleton College 1966 h.d. in Chemistry from University of Wisconsin, advisor: Jerome A. Berson ostdoctoral Fellow at Columbia University with onald Breslow 1968 to 1977 rofessor, California Institute of Technology 1977 to present rofessor, University of California, Berkeley Trained as an organic chemist Ventured into organometallic chemistry (1970's) Synthesis and chemistry of several types of organotransition metal complexes and the understanding of their mechanisms

2 Selected Topics for Discussion from the Career of Bergman I. Bergman Cyclization a. Significance in chemistry and biology II. Activation of C- Bonds a. Stoichiometric eactions: ighlights on study of mechanism, kinetics and selectivity III. Chemo- and enantioselective reactions of metal heteroatom bonds with organic molecules a. Zirconocene Imido Complexes with Allenes: Study of selectivity and mechanism I. The Bergman Cyclization

3 Bergman Cyclization In the pursuit of physical organic chemistry and theoretically interesting molecules adical 1,4 dehydrobenzene: important molecule in field of reactive intermediates and aromaticity D 200 o C D D D gas phase Evidence for the structure of the molecule D! = 14 kcal/mol! = 32 kcal/mol D CCl 4 Cl heat heat Cl Bergman,. G. Acc. Chem. es. 1973, 6, 25. Bergman Cyclization and the Mechanism of DA Damage Base Base 1) 2 Base 2) Base Base reduction Bergman cylization is the reaction nature uses to generate lethal fragents to DA!

4 Bergman Cyclization and the Mechanism of DA Damage Base Base Base 1) 2 2) Base Base reduction Bergman cylization is the reaction nature uses to generate lethal fragents to DA! icolaou, K. C. et al. ACIEE 1991, 30, Structures of the Enediyne Anticancer Antibiotics DA cleaving molecules MeSSS calicheamicin C 2 Me Me neocarzinostatin chromaphore dynemicin A 1980's: Attracted much attention due to their unique molecular structure and fascinating mode of action

5 Calicheamicin's Mode of Action C 2 Me 1) ucleophilic attack C 2 Me S S -sugar 2) Conjugate addition S -sugar MeS glutathione C 2 Me DA Bergman Cyclization C 2 Me DA cleavage S -sugar S -sugar II. The Activation of C- Bonds of ydrocarbons

6 Structures of the Enediyne Anticancer Antibiotics DA cleaving molecules MeSSS calicheamicin C 2 Me Me neocarzinostatin chromaphore dynemicin A 1980's: Attracted much attention due to their unique molecular structure and fascinating mode of action II. The Activation of C- Bonds of ydrocarbons

7 Selective Transformations of C- Bonds of Alkanes a "holy grail" in synthetic organic chemistry Importance most ubiquitous chemical linkage in nature fundamental understanding of chemical reactivity abundant and inexpensive Challenges lack of reactivity: C- bond energy: kcal/mol C- bond acidity: pka = free radical reaction, super acids (George lah, obel prize) lack of selectivity: ability to selectively attack one type of C- bond over another ability to convert the alkane into a functionalized product without having the product undergo an even faster reaction than the alkane C 4 C 3 C 2 2 Intriguing otential Solution use of transition metal chemistry ndtsen, B.A.; Bergman,.G.; Mobley, T.A.; eterson, T.. Acc. Chem. es. 1995,28,154 Background on C- Activation Goal: A soluble complex capable of intermolecular oxidative addition M - -M- (formal 2 e- oxidation of the metal) Many examples of intramolecular C- oxidative addition were known for over a decade: (h 3 ) 3 Cl (h 3 ) 2 (Cl) h 2 orthometallation L 2 t C 2 CMe 3 C 2 CMe 3 -CMe 3 L 2 t C 3 C 3 Bergman,.G. Science 1984, 223, 902

8 First Examples of ydrocarbon Activation early 1980's by Bergman Me3 M hv - 2 [Cp*M(Me 3 )] Me3 M M = h, = c-hexyl, n-propyl, neopentyl C C hv -C [Cp*C] C = c-hexyl, n-propyl, neopentyl The 16-electron Cp*ML fragments believed to be responsible for hydrocarbon oxidative addition were not directly observable. Janowicz, A..; Bergman.G., JACS,1982,104,352. Mechanistic Studies Me 3 c-c6 12 C 6 D o C c-c 6 12 Me 3 D C6 D 5 thermally induced C- activation first order in the loss of cyclohexane selective for intermolecular process Me 2 C2 not observed Janowicz, A..; Bergman.G., JACS,1983,105,3929.

9 Free Energy Diagram Selectivity in C- Activation!!G!G 1 M + +'!G 2 M '!G o =!G 1 -!G 2 -!!G M ' Kinetic Selectivity versus Thermodynamic selectivity elative Kinetic Selectivities For Different Types of C- bonds C C hv -C [Cp*(Me 3 )] ' C General trends observed: > normal alkanes smaller cycloalkanes > larger cycloalkanes > This latter observation provided one of the strongest arguments against primary C- bonds > secondary C- bonds > tertiary C- bonds

10 Thermodynamic Selectivities Toward C- Bond Activation Me 3 hv pentane Me 3 Me o C Me 3 Me 3 Me 3 Strong preference for less hindered primary bonds over more hindered primary bonds and preference for primary over secondary bonds Suggests that a combination of protolysis followed by thermal equilibratin will allow exclusive functionalization of primary linear alkanes Wax, M.J.; Stryker, J.M.; buchanan, J.M.; Kovac, C.A.; Bergman,.G. JACS, 1984, 106, 1121 Functionalization of the ydrido Alkyl Insertion roducts Treatment with reagents such as ZnBr 2, 2 2, Br 2, BF 4 or 2 results in reductive elimination of. Solution was to replace the hydride ligand with bromide: Me 3 n-pentyl CBr 3 Me 3 Br neopentyl FS 3 D 1-deuteriopentane gcl 2 neopentyl bromide > 98% M yield Br 2 -g-cl Me 3 Cl Br Janowicz, A..; Bergman,.G. JACS, 1983, 105, 3929

11 Stereochemistry of xidative Addition of C- Bonds Examination of the rearrangement of a gem-dimethylcyclopropane adduct h *Cp Me3 h *Cp Me3 S h *Cp Me3 h *Cp Me3 Inversion of the carbon center was effected by way of isomerization to an alkane sigma complex which rearranged to a second complex before reinserting into the C- bond Mobley, T. A.; Bergman,.G. JACS, 1995, 117, 7822 ecent Example of C- Activation with Asymmetric Induction hv h Me 2 h Me 2 1:1 Me 2 hv 150 o C benzene Me 2 only Differences reflect kinetic selectivities due to the greater steric demands of the cyclohexane ring Mobley, T.A.; Bergman,.G. JACS, 1998, 120, 3253

12

13

14 Annulation of omatic Imines via Directed C- Activation Bn X n x = C 2, n = 0,1 1) 5 mol% (h 3 ) 3 hcl or 150 o C, toluene n 3 2) 1 Cl (aq) X 50 to 79% yields 1 1 X n 3 71% yield, 4 h 59% yield, 16 h 50% yield, 22 h 50% yield, 3 h 50% 1:1 ratio 48 h 65% yield, 8 h Thalji,.K.; Ahrendt,.G.; Bergman,.G.; and Ellman, J.A. JACS, 2002,123,9692 utlook on the Activation and Functionalization of C- Bonds In past decade, chemistry of the catalytic functionalization of C bonds has rapidly expanded C-/ olefin, C-/acetylene, C-/C/olefin couplings ydroacylations of olefins and acetylenes to provide ketones Transition metal-catalyzed aldol and Michael additon reactions (enantioselective and diastereoselective). Kakiuchi, F.; Murai, S. Topics in rganometallic Chemistry 1999, 48 egioselective and Catalytic Functionalization Achieved: 5 mol% B B Cp*h(C 2 4 ) 2 Bin 150 o C 84% yield, 5hr artwig, J.F. et. al. Science, 2000, 1995 Field is still young and exciting new discoveries expected in the next decade

15 Addition of C- Bonds Across M=X Bonds Ziconium-nitrogen double bond - C3 85 o C - C 4 = C 6 6 h TF o reactions with alkanes have yet been reported Walsh,.J.; ollander, F.J.; Bergman,.G. JACS, 1988, 110, 8729 III. Chemistry of Zirconocene Imido Complexes rganometallics 1993, 12, 3705 JACS 1998, 110, 8729 ACIEE 2000, 39, 233 9

16

17

18 Equimolar eaction of Enantiopure Imido Complex with acemic 1,2 Cyclononadiene C C C + TF + C C C TF acemic 1.0 equiv (,) Enantiopure 1.0 equiv (S) (,) Expected: 0.5 equiv 0.5 equiv 0.5 equiv Found: 1.0 equiv 0 equiv 0 equiv C C C C C C + C C C (S) () ossible Mechanism for Allene Stereoinversion : C C C (S), = [ (C 2 ) 6 ] + or Zwitterion (or diradical)!-allyl complex C C C () Allene chirality is destroyed in forming the intermediate

19 robing the Stepwise Mechanism eaction of the achiral == and ptically Active Allene Cp 2 Concerted TF C C C enantioenriched Stepwise Stepise mechanism should result in racemization of the starting allene esults Depend Dramatically on the Allene Substituents C C C (S), 86% ee Al 2 3 (C 2 ) 6 optically inactive C C C acemic h C C C h (), 98% ee Al 2 3 h C C C h h h () optically active 93% ee

20 Thermal Metallacycle earrangement bserved * C 3 60 C 1 ( 2 ) C 3 2 C b a C 3 a 1,4 ydrozirc. C 3 1,2-ydrozirc. C b C b * C C 3 Could rapid!-elimination be the mechanistic explanation? The!-Elimination athway Accounts For the uzzling bservations (a) acemization in the reaction of alkyl- but not arylallenes with Cp 2 Z=: (b) Formation of azadiene complexes: C' fast C' slow C' C 2 ' (c) Inversion of configuration in the (EBTI) + 1,3 dialkylallene reactions: C C C unstable stable

21 Use of Enantiopure Diphenylallene to esolve Imidozirconium Complexes (S,S) h h C C C (S) h (S,S,) h 86% ee 61 %yield 0.60 eq -10 to 25 o C = 2,5 Me 2 C 6 3 > 95 % ee 44% yield (,) (,) esolved imido complex cleanly separated by wasing with cold Et 2 obert G. Bergman esearch Best known for: 1972 Discovery of thermal rearrangement ofcis-1,5-hexadiyne-3-enes to 1,4-dehydrobenzenes, the "Bergman cyclization" 1982 Discovery of the first soluble organometallic complexes that undergo intermolecular insertion of transition metals into C- bonds of alkanes Major eas of Current esearch ew Stoichiometric and Catalytic C- activation and Si- activation Methods Stoichiometric and Catalytic Chemistry of Group IV Imido Complexes Fundamental Chemistry of Late Metal Alkoxo and Amido Complexes ew Catalytic Ligands for Use in Aysymmetric Carbene Transfer eactions ver 350 publications

Some Hartwig Chemistry Experimental Approaches and Detailed Mechanistic Analysis

Some Hartwig Chemistry Experimental Approaches and Detailed Mechanistic Analysis Some artwig Chemistry Experimental Approaches and Detailed chanistic Analysis b. 1964 1986 A.B. Princeton U, Maitland Jones 1990.D. UC Berkeley, obert Bergman and ichard Anderson 1990-92 Post-doc, MIT,

More information

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group Literature eport Functionalization of C(sp 3 ) Bonds Using a Transient Directing Group eporter: Mu-Wang Chen Checker: Yue Ji Date: 2016-04-05 Yu, J.-Q. et al. Science 2016, 351, 252-256. Scripps esearch

More information

Homogeneous Catalysis - B. List

Homogeneous Catalysis - B. List omogeneous Catalysis - B. List 2.2.2 Research Area "rganocatalytic Asymmetric α-alkylation of Aldehydes" (B. List) Involved:. Vignola, A. Majeed Seayad bjective: α-alkylations of carbonyl compounds are

More information

Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting Timothy Chang

Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting Timothy Chang Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting 01-15-2008 Timothy Chang Outlines - Fundamental considerations, C-H versus C-C activation - Orbital interactions -

More information

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation M.C. White, Chem 153 verview -282- Week of ovember 11, 2002 Functionalization of terminal olefins via migratory insertion /reductive elimination sequence ydrogenation ML n E ydrosilylation Si 3 Si 3 ML

More information

Enantioselective Protonations

Enantioselective Protonations Enantioselective Protonations Marc Timo Gieseler 25.02.2013 15.03.2013 Group Seminar AK Kalesse 1 verview Introduction Enantioselective Protonation of Cyclic Substrates Enantioselective Protonation of

More information

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines Current Literature - May 12, 2007 Direct, Catalytic ydroaminoalkylation of Unactivated lefins with -Alkyl ylamines ' '' Ta[ 2 ] 5 (4-8 mol%), 160-165 o C 24-67h 66-95% ' '' S. B. erzon and J. F. artwig,

More information

ACTIVATION OF C H BONDS BY LOW-VALENT METAL COMPLEXES ( THE ORGANOMETALLIC CHEMISTRY )

ACTIVATION OF C H BONDS BY LOW-VALENT METAL COMPLEXES ( THE ORGANOMETALLIC CHEMISTRY ) CHAPTER IV ACTIVATION OF C H BONDS BY LOW-VALENT METAL COMPLEXES ( THE ORGANOMETALLIC CHEMISTRY ) n the end of the 1960s the leading specialist in homogeneous catalysis Jack Halpern wrote [1]: to develop

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

Denmark s Base Catalyzed Aldol/Allylation

Denmark s Base Catalyzed Aldol/Allylation Denmark s Base Catalyzed Aldol/Allylation Evans Group Seminar ovember 1th, 003 Jimmy Wu Lead eferences: Denmark, S. E. Acc. Chem. es., 000, 33, 43 Denmark, S. E. Chem. Comm. 003, 167 Denmark, S. E. Chem.

More information

Shi Asymmetric Epoxidation

Shi Asymmetric Epoxidation Shi Asymmetric Epoxidation Chiral dioxirane strategy: R 3 + 1 xone, ph 10.5, K 2 C 3, H 2, C R 3 formed in situ catalyst (10-20 mol%) is prepared from D-fructose, and its enantiomer from L-sorbose oxone,

More information

Oxidative Addition and Reductive Elimination

Oxidative Addition and Reductive Elimination xidative Addition and Reductive Elimination red elim coord 2 ox add ins Peter.. Budzelaar xidative Addition Basic reaction: n + X Y n X Y The new -X and -Y bonds are formed using: the electron pair of

More information

Rhodium Carbenoids and C-H Insertion

Rhodium Carbenoids and C-H Insertion hodium Carbenoids and C- Insertion Literature Talk Uttam K. Tambar March 1, 2004 8pm, oyes 147 h h h h h h irreversible reversible carbenoid 2 h2l4 1 h2l4 or h2l4 2 utline I. What is a Carbene? II. What

More information

Keynotes in Organic Chemistry

Keynotes in Organic Chemistry Keynotes in Organic Chemistry Second Edition ANDREW F. PARSONS Department of Chemistry, University of York, UK Wiley Contents Preface xi 1 Structure and bonding 1 1.1 Ionic versus covalent bonds 1 1.2

More information

Aldehydes and Ketones : Aldol Reactions

Aldehydes and Ketones : Aldol Reactions Aldehydes and Ketones : Aldol Reactions The Acidity of the a Hydrogens of Carbonyl Compounds: Enolate Anions Hydrogens on carbons a to carbonyls are unusually acidic The resulting anion is stabilized by

More information

Chem 253 Problem Set 7 Due: Friday, December 3, 2004

Chem 253 Problem Set 7 Due: Friday, December 3, 2004 Chem 253 roblem Set 7 ue: Friday, ecember 3, 2004 Name TF. Starting with the provided starting material, provide a concise synthesis of. You may use any other reagents for your synthesis. It can be assumed

More information

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene VII Abstracts 2011 p1 2.12.15 rganometallic Complexes of Scandium, Yttrium, and the Lanthanides P. Dissanayake, D. J. Averill, and M. J. Allen This manuscript is an update to the existing Science of Synthesis

More information

Sonogashira: in situ, metal assisted deprotonation

Sonogashira: in situ, metal assisted deprotonation M.C. White, Chem 253 Cross-Coupling -120- Week of ctober 11, 2004 Sonogashira: in situ, metal assisted deprotonation catalytic cycle: ' (h 3 ) n d II The first report: h Sonogashira T 1975 (50) 4467. h

More information

Wilkinson s other (ruthenium) catalyst

Wilkinson s other (ruthenium) catalyst Wilkinson s other (ruthenium) catalyst Cl 3 ; 2 h 3, reflux 3h h 3 Cl h 3 h Cl 3 Good catalyst especially for 2 1-alkenes 2, base toluene Cl h 3 h 3 h 3 Et 3 Cl h 3 Cl h 3 h 3 R h 3 h 3 Cl h 3 R RC 2 C

More information

Aldol Reactions pka of a-h ~ 20

Aldol Reactions pka of a-h ~ 20 Enolate Anions Chapter 17 Hydrogen on a carbons a to a carbonyl is unusually acidic The resulting anion is stabilized by resonance to the carbonyl Aldehydes and Ketones II Aldol Reactions pka of a-h ~

More information

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination CHAPTER 7 Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination 7-1 Solvolysis of Tertiary and Secondary Haloalkanes The rate of S N 2 reactions decrease dramatically

More information

Organocatalytic Umpolung via N- Heterocyclic Carbenes. Qinghe Liu Hu Group Meeting August 20 th 2015

Organocatalytic Umpolung via N- Heterocyclic Carbenes. Qinghe Liu Hu Group Meeting August 20 th 2015 rganocatalytic Umpolung via N- Heterocyclic Carbenes Qinghe Liu Hu Group Meeting August 20 th 2015 Contents Part 1: Introduction Part 2: N-Heterocyclic carbene-catalyzed umpolung: classical umpolung, conjugated

More information

Chapter 14. Principles of Catalysis

Chapter 14. Principles of Catalysis Organometallics Study Meeting 2011/08/28 Kimura Chapter 14. Principles of Catalysis 14. 1. General Principles 14.1.1. Definition of a Catalyst 14.1.2. Energetics of Catalysis 14.1.3. Reaction Coordinate

More information

Stereoselective Synthesis of Configurationally Stable Functionalized Ethano-Bridged Tröger Bases

Stereoselective Synthesis of Configurationally Stable Functionalized Ethano-Bridged Tröger Bases Stereoselective Synthesis of Configurationally Stable Functionalized Ethano-Bridged Tröger Bases Michon, C.; Sharma, A.; Bernardinelli, G.; Francotte, E.; Lacour, J. Chem. Commun., 2010, 46, 2206-2208

More information

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH Asymmetric Total Synthesis of ( )-Plicatic Acid via a Highly Enantioselective and Diastereoselective Nucleophilic Epoxidation of Acyclic Trisubstituted lefins H H H H CH ( )-Plicatic Acid H H Sun, B.F.;

More information

"-Amino Acids: Function and Synthesis

-Amino Acids: Function and Synthesis "-Amino Acids: Function and Synthesis # Conformations of "-Peptides # Biological Significance # Asymmetric Synthesis Sean Brown MacMillan Group eting ovember 14, 2001 Lead eferences: Cheng,. P.; Gellman,

More information

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition 1. Radical Substitution on Alkanes Only Cl and Br are useful at the laboratory level. Alkane reactivity: tertiary > secondary > primary > methyl Numbers below products give their relative yield. Relative

More information

Oxidative addition of methane and benzene C H bonds to rhodium center: A DFT study

Oxidative addition of methane and benzene C H bonds to rhodium center: A DFT study Chemical hysics Letters 43 (006) 385 389 www.elsevier.com/locate/cplett Oxidative addition of methane and benzene C bonds to rhodium center: A DFT study Siwei Bi *, Zhenwei Zhang, Shufen Zhu College of

More information

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed CEM 330 Final Exam December 5, 2014 Your name: ASWERS This a closed-notes, closed-book exam The use of molecular models is allowed This exam consists of 12 pages Time: 2h 30 min 1. / 30 2. / 30 3. / 30

More information

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Molybdenum-Catalyzed Asymmetric Allylic Alkylation Molybdenum-Catalyzed Asymmetric Allylic Alkylation X MoL n u u * Tommy Bui 9/14/04 Asymmetric Allylic Alkylation from a Synthetic Viewpoint X X M u u * and/or u form a C-C bond with the creation of a new

More information

CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Text Sections (N0 1.9, 9-11) Homework: Chapter 1:

CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Text Sections (N0 1.9, 9-11) Homework: Chapter 1: CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Atomic Structure - Valence Electrons Chemical Bonds: The Octet Rule - Ionic bond - Covalent bond How to write Lewis

More information

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements C 2 (F 203) Lecture 3 Prof. Bode edox eutral eactions and earrangements Types of edox eutral rganic eactions. eactions with no external reducing or oxidizing agent In this case, one part of the starting

More information

Rhodium Catalyzed Hydroacylation

Rhodium Catalyzed Hydroacylation Literature Report Changbin Yu 2012-12-04 检查 : 蔡先锋 Rhodium Catalyzed ydroacylation Vy M. Dong* Education h.d. California Institute of Technology, 2004 M.S. University of California at Berkeley, 2000 BS

More information

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Lecture 6: Transition-Metal Catalysed C-C Bond Formation Lecture 6: Transition-Metal Catalysed C-C Bond Formation (a) Asymmetric allylic substitution 1 u - d u (b) Asymmetric eck reaction 2 3 Ar- d (0) Ar 2 3 (c) Asymmetric olefin metathesis alladium π-allyl

More information

Enols and Enolates. A type of reaction with carbonyl compounds is an α-substitution (an electrophile adds to the α carbon of a carbonyl)

Enols and Enolates. A type of reaction with carbonyl compounds is an α-substitution (an electrophile adds to the α carbon of a carbonyl) Enols and Enolates A type of reaction with carbonyl compounds is an α-substitution (an electrophile adds to the α carbon of a carbonyl) E+ E In the preceding chapters, we primarily studied nucleophiles

More information

Carbenes and Carbene Complexes I Introduction

Carbenes and Carbene Complexes I Introduction Carbenes and Carbene Complexes I Introduction A very interesting (honest) class of radical-like molecules Steadily becoming more important as they find far more synthetic applications We will primarily

More information

Metal Hydrides, Alkyls, Aryls, and their Reactions

Metal Hydrides, Alkyls, Aryls, and their Reactions Metal Hydrides, Alkyls, Aryls, and their Reactions A Primer on MO Theory σ-bonding in Organotransition Metal Complexes M-C Bond Energies in Organotransition Metal Complexes Thermodynamic Predictions

More information

Glendale Community College Chemistry 105 Exam. 3 Lecture Notes Chapters 6 & 7

Glendale Community College Chemistry 105 Exam. 3 Lecture Notes Chapters 6 & 7 Sevada Chamras, Ph.D. Glendale Community College Chemistry 105 Exam. 3 Lecture Notes Chapters 6 & 7 Description: Examples: 3 Major Types of Organic Halides: 1. Alkyl Halides: Chapter 6 (Part 1/2) : Alkyl

More information

sp 3 C-H Alkylation with Olefins Yan Xu Dec. 3, 2014

sp 3 C-H Alkylation with Olefins Yan Xu Dec. 3, 2014 sp 3 C-H Alkylation with Olefins, Yan Xu Dec. 3, 2014 1) sp 3 C-H Alkylation via Directed C-H activation 2) Hydroaminoalkylation (still via C-H activation) 3) Hydrohydroxyalkylation (via radical chemistry)

More information

Elementary Organometallic Reactions

Elementary Organometallic Reactions Elementary eactions CE 966 (Tunge) Elementary rganometallic eactions All mechanisms are simply a combination of elementary reactions. 1) Coordination -- issociation 2) xidative Addition -- eductive Elimination

More information

EWG EWG EWG EDG EDG EDG

EWG EWG EWG EDG EDG EDG Functional Group Interconversions Lecture 4 2.1 rganic Synthesis A. Armstrong 20032004 3.4 eduction of aromatic systems We can reduce aromatic systems to cyclohexanes under very forcing hydrogenolytic

More information

Decarboxylation of allylic β-ketoesters

Decarboxylation of allylic β-ketoesters M.C. White, Chem 253 π-allyl chemistry -224- Week of ovember 8, 2004 Decarboxylation of allylic β-ketoesters Indicate the mechanism of the following transformation: d 2 dba 3 2.5 mol% h 3 10-20 mol% TF,

More information

Organic Chemistry CHM 314 Dr. Laurie S. Starkey, Cal Poly Pomona Alkyl Halides: Substitution Reactions - Chapter 6 (Wade)

Organic Chemistry CHM 314 Dr. Laurie S. Starkey, Cal Poly Pomona Alkyl Halides: Substitution Reactions - Chapter 6 (Wade) rganic Chemistry CM 314 Dr. Laurie S. Starkey, Cal Poly Pomona Alkyl alides: Substitution Reactions - Chapter 6 (Wade) Chapter utline I. Intro to RX (6-1 - 6-7) II. Substitution Reactions A) S N 2 (6-8,

More information

Selectivity in Non-Directed C H Functionalization of sp 3 C H Bonds

Selectivity in Non-Directed C H Functionalization of sp 3 C H Bonds Selectivity in on-directed C Functionalization of sp 3 C Bonds aromatic C primary C benzylic C Ac secondary C α-heteroatom C tertiary C gan Shaw MacMillan Group eting C Functionalization: Challenges for

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis rganometallic hemistry and omogeneous atalysis Dr. Alexey Zazybin Lecture N8 Kashiwa ampus, December 11, 2009 Types of reactions in the coordination sphere of T 3. Reductive elimination X-L n -Y L n +

More information

Tips for taking exams in 852

Tips for taking exams in 852 Comprehensive Tactical Methods in rganic Synthesis W. D. Wulff 1) Know the relative reactivity of carbonyl compounds Tips for taking exams in 852 Cl > > ' > > ' N2 eg: 'Mg Et ' 1equiv. 1equiv. ' ' Et 50%

More information

Problem session (3) Daiki Kuwana. Please fill in the blank and explain reaction mechanisms and stereoselectivities.

Problem session (3) Daiki Kuwana. Please fill in the blank and explain reaction mechanisms and stereoselectivities. Problem session (3) Daiki Kuwana Please fill in the blank and explain reaction mechanisms and stereoselectivities. 1. 1-1 1. (Ac) 2 (10 mol%), DPEphos (20 mol%) Et 3, toluene, 90 C 2. s 4 (14 mol%), M;

More information

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 I. Isolated, cumulated, and conjugated dienes A diene is any compound with two or C=C's is a diene. Compounds containing more than two

More information

Highlights of Schmidt Reaction in the Last Ten Years

Highlights of Schmidt Reaction in the Last Ten Years ighlights of Schmidt eaction in the Last Ten Years Dendrobates histrionicus Jack Liu ov. 18, 2003 Introduction Classical Schmidt reaction of aldehydes and carboxylic acids Classical Schmidt reaction of

More information

D. X. Hu Towards Catalytic Enantioselective Halogenation of Alkenes Burns Group

D. X. Hu Towards Catalytic Enantioselective Halogenation of Alkenes Burns Group D. X. Hu Towards Catalytic Enantioselective Halogenation of Alkenes Burns Group Literature Review Organic Synthesis 10, 20, 50 Years from Now? Catalytic Enantioselective Halogenation October 6 th, 2012

More information

Reactions at α-position

Reactions at α-position Reactions at α-position In preceding chapters on carbonyl chemistry, a common reaction mechanism observed was a nucleophile reacting at the electrophilic carbonyl carbon site NUC NUC Another reaction that

More information

1. Addition of HBr to alkenes

1. Addition of HBr to alkenes eactions of Alkenes I eading: Wade chapter 8, sections 8-1- 8-8 tudy Problems: 8-47, 8-48, 8-55, 8-66, 8-67, 8-70 Key Concepts and kills: Predict the products of additions to alkenes, including regiochemistry

More information

Transition Metal Catalyzed Carbon-Carbon Bond Activation

Transition Metal Catalyzed Carbon-Carbon Bond Activation literature seminar 2 H. Mitsunuma(M1) 2010/09/08 Transition tal Catalyzed Carbon-Carbon Bond Activation 0. Introduction Currently, selective C-H and C-C bond activation by transition metal complexes has

More information

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b.

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. eaction chemistry of complexes Three general forms: 1. eactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. Oxidative Addition c. eductive Elimination d. Nucleophillic

More information

Learning Guide for Chapter 11 - Alkenes I

Learning Guide for Chapter 11 - Alkenes I Learning Guide for Chapter 11 - Alkenes I I. Introduction to alkenes - p 1 bond structure, classifying alkenes, reactivity, physical properties, occurrences and uses, spectroscopy, stabilty II. Unsaturation

More information

Asymmetric Catalysis by Lewis Acids and Amines

Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Lewis acid catalysis - Chiral (bisooxazoline) copper (II) complexes - Monodentate Lewis acids: the formyl -bond Amine catalysed reactions Asymmetric

More information

Catalytic Asymmetric Pauson-Khand Reaction. Won-jin Chung 02/25/2003

Catalytic Asymmetric Pauson-Khand Reaction. Won-jin Chung 02/25/2003 Catalytic Asymmetric Pauson-Khand eaction U. Khand; G.. Knox; P. L. Pauson; W. E. Watts J. Chem. Soc. Chem. Commun. 1971, 36 Won-jin Chung 02/25/2003 The General Pattern of the Pauson-Khand eaction Co

More information

Strained Molecules in Organic Synthesis

Strained Molecules in Organic Synthesis Strained Molecules in rganic Synthesis 0. Introduction ~ featuring on three-membered rings ~ Tatsuya itabaru (M) Lit. Seminar 08068 for cyclobutadienes : see Mr. Yamatsugu's Lit. Sem. 069 eat of Formation

More information

Chemistry Final Examinations Summer 2006 answers

Chemistry Final Examinations Summer 2006 answers Chemistry 235 - Final Examinations Summer 2006 answers A GEERAL CEMISTRY answers are given from 1-20: no reaction C 3 CC 3 Ph C C C C C 3 Et 2 2 2 B. REACTIS AD REAGETS [32 MARKS] 2. A single substance

More information

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions ALKANES Water-insoluble, low density C-C single bonds Higher MW -> higher BP, higher MP Branching -> lower BP, higher MP Forms cycloalkanes which can have ring strain Cyclohexane: chair vs. boat configuration

More information

Organic Chemistry HL IB CHEMISTRY HL

Organic Chemistry HL IB CHEMISTRY HL Organic Chemistry HL IB CHEMISTRY HL Understandings: Nucleophilic Substitution Reactions: SN1 represents a nucleophilic unimolecular substitution reaction and SN2 represents a nucleophilic bimolecular

More information

EASTERN ARIZONA COLLEGE General Organic Chemistry I

EASTERN ARIZONA COLLEGE General Organic Chemistry I EASTERN ARIZONA COLLEGE General Organic Chemistry I Course Design 2015-2016 Course Information Division Science Course Number CHM 235 (SUN# CHM 2235) Title General Organic Chemistry I Credits 4 Developed

More information

Chem 251 Fall Learning Objectives

Chem 251 Fall Learning Objectives Learning Objectives Chapter 8 (last semester) 1. Write an electron-pushing mechanism for an SN2 reaction between an alkyl halide and a nucleophile. 2. Describe the rate law and relative rate of reaction

More information

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D Alcohols I eading: Wade chapter 10, sections 10-1- 10-12 Study Problems: 10-35, 10-37, 10-38, 10-39, 10-40, 10-42, 10-43 Key Concepts and Skills: Show how to convert alkenes, alkyl halides, and and carbonyl

More information

Chap. 8 Substitution Reactions

Chap. 8 Substitution Reactions Chap. 8 Substitution Reactions Y + R X R' Y + X Nucleophilic not necessarily the same as R Electrophilic S N 1 slow (C 3 ) 3 CCl (C + Cl - 3 ) 3 C + (C 3 ) 3 C + OC 2 C 3 C 3 C 2 O C 3 C 2 O d[( C ) 3CCl]

More information

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2.

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2. Preparation of Alkyl alides, R-X Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): UV R + X 2 R X or heat + X This mechanism involves a free radical chain reaction. A chain

More information

A Stereoselective Synthesis of (+)-Gonyautoxin 3

A Stereoselective Synthesis of (+)-Gonyautoxin 3 A Stereoselective Synthesis of (+)-Gonyautoxin 3 Mulcahy, J. V.; Du Bois, J. J. Am. Chem. Soc. 2008, 130, 12630-12631 Total Synthesis of (+)-Lithospermic Acid by Asymmetric Intramolecular Alkylation via

More information

Advanced Organic Chemistry

Advanced Organic Chemistry D. A. Evans, G. Lalic Question of the day: Chemistry 530A TBS Me 2 C Me toluene, 130 C 70% TBS C 2 Me H H Advanced rganic Chemistry Me Lecture 16 Cycloaddition Reactions Diels _ Alder Reaction Photochemical

More information

Recent advances in transition metal-catalyzed or -mediated cyclization of 2,3-allenoic acids: New methodologies for the synthesis of butenolides*

Recent advances in transition metal-catalyzed or -mediated cyclization of 2,3-allenoic acids: New methodologies for the synthesis of butenolides* Pure Appl. Chem., Vol. 76, No. 3, pp. 651 656, 2004. 2004 IUPAC Recent advances in transition metal-catalyzed or -mediated cyclization of 2,3-allenoic acids: New methodologies for the synthesis of butenolides*

More information

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc Chiral Catalyst II ast lecture we looked at asymmetric catalysis for oxidation and reduction Many other organic transformations, this has led to much investigation Today we will look at some others...

More information

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2018

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2018 OChem 1 Mechanism Flashcards Dr. Peter Norris, 2018 Mechanism Basics Chemical change involves bonds forming and breaking; a mechanism describes those changes using curved arrows to describe the electrons

More information

Chapter 8. Substitution reactions of Alkyl Halides

Chapter 8. Substitution reactions of Alkyl Halides Chapter 8. Substitution reactions of Alkyl Halides There are two types of possible reaction in organic compounds in which sp 3 carbon is bonded to an electronegative atom or group (ex, halides) 1. Substitution

More information

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2015

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2015 OChem 1 Mechanism Flashcards Dr. Peter Norris, 2015 Mechanism Basics Chemical change involves bonds forming and breaking; a mechanism describes those changes using curved arrows to describe the electrons

More information

Substitution and Elimination reactions

Substitution and Elimination reactions PART 3 Substitution and Elimination reactions Chapter 8. Substitution reactions of RX 9. Elimination reactions of RX 10. Substit n/elimin n of other comp ds 11. Organometallic comp ds 12. Radical reactions

More information

Chapter 11, Part 1: Polar substitution reactions involving alkyl halides

Chapter 11, Part 1: Polar substitution reactions involving alkyl halides hapter 11, Part 1: Polar substitution reactions involving alkyl halides Overview: The nature of alkyl halides and other groups with electrophilic sp 3 hybridized leads them to react with nucleophiles and

More information

Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation

Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation Asymmetric Synthesis of Medium-Sized ings by Intramolecular Au(I)-Catalyzed Cyclopropanation 1 2 Iain D. G. Watson, Stefanie itter, and F. Dean Toste JACS, ASAP, 1/22/2009 DI: 10.1021/ja8085005 2.5 mol%

More information

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones MCAT rganic Chemistry Problem Drill 10: Aldehydes and Ketones Question No. 1 of 10 Question 1. Which of the following is not a physical property of aldehydes and ketones? Question #01 (A) Hydrogen bonding

More information

Detailed Course Content

Detailed Course Content Detailed Course Content Chapter 1: Carbon Compounds and Chemical Bonds The Structural Theory of Organic Chemistry 4 Chemical Bonds: The Octet Rule 6 Lewis Structures 8 Formal Charge 11 Resonance 14 Quantum

More information

L substrate (Leaving group,l)

L substrate (Leaving group,l) Aliphatic Nucleophilic Substitution Nu + Nucleophile L substrate (Leaving group,l) conditions products Nucleophiles are chemical species that react with centers of positive ionic character. When the center

More information

Development of Chiral Phosphine Olefin Ligands and Their Use in Asymmetric Catalysis

Development of Chiral Phosphine Olefin Ligands and Their Use in Asymmetric Catalysis Development of Chiral osphine lefin Ligands and Their Use in Asymmetric Catalysis 2 Wei-Liang Duan July 31, 2007 Research Works in Hayashi Group, Kyoto University (ct, 2003 Mar, 2007) Conventional Chiral

More information

Organic Tutorials 3 rd Year Xmas Vac

Organic Tutorials 3 rd Year Xmas Vac rganic Tutorials 3 rd Year Xmas Vac Third Year Reactive Intermediates: Radicals, Arynes, Carbenes etc. Radicals References: Moody and Whitham Reactive Intermediates, xford Chemistry Primer 8; Carey and

More information

Enantioselective Synthesis of Pactamycin, a Complex Antitumor Antibiotic

Enantioselective Synthesis of Pactamycin, a Complex Antitumor Antibiotic Journal Club (3) Tomoya akamura Enantioselective Synthesis of Pactamycin, a Complex Antitumor Antibiotic Justin T. Malinowski, Robert J. Sharpe, Jeffrey S. Johnson Science 03, 30, 80 8.. Introduction -.

More information

Suggested solutions for Chapter 32

Suggested solutions for Chapter 32 s for Chapter 32 32 PBLEM 1 Explain how the stereo- and regio- chemistry of these reactions are controlled. Why is the epoxidation only moderately diastereoselective, and why does the amine attack where

More information

Zr-Catalyzed Carbometallation

Zr-Catalyzed Carbometallation -Catalyzed Carbometallation C C C C ML n C C ML n ML n C C C C ML n ML n C C ML n Wipf Group esearch Topic Seminar Juan Arredondo November 13, 2004 Juan Arredondo @ Wipf Group 1 11/14/2004 Carbometallation

More information

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides Negishi Coupling of Secondary Alkylzinc alides with Aryl Bromides and Chlorides X X = Br, Cl 2 1 ZnBr 1, 2 = Alkyl Cat. Pd(OAc) 2 Ligand TF/Toluene rt or 60 o C 1 2 J. Am. Chem. Soc. 2009, ASAP Article

More information

C-H Bond Activation Using Homogeneous Transition Metal Catalysts

C-H Bond Activation Using Homogeneous Transition Metal Catalysts C- Bond Activation Using omogeneous Transition tal Catalysts Kevin Campos March 1, 1996 Reviews: R. Bergman, Acc. Chem. Res., 1995, 28, 154 R. Crabtree, Chem. Rev., 1985, 245 M. Brookhart, J. rganomet.

More information

Suggested solutions for Chapter 40

Suggested solutions for Chapter 40 s for Chapter 40 40 PBLEM 1 Suggest mechanisms for these reactions, explaining the role of palladium in the first step. Ac Et Et BS () 4 2 1. 2. K 2 C 3 evision of enol ethers and bromination, the Wittig

More information

Catalytic Asymmetric Total Syntheses of Quinine and Quinidine

Catalytic Asymmetric Total Syntheses of Quinine and Quinidine Catalytic Asymmetric Total Syntheses of Quinine and Quinidine 8 7 9 2 1 3 4 6 5 7 9 8 2 1 3 4 6 5 Quinine Zhensheng Ding Quinidine January 22 2004 Chinese ew Year Day 1. Jacobsen, E.,. J. Am. Chem. Soc.

More information

Recent Development in. Tandem Radical Reactions (TRR)

Recent Development in. Tandem Radical Reactions (TRR) ecent Development in Tandem adical eactions (T) Feng u Jan. 13, 2006 Contents Brief Introduction of the istory of T Definition of T Intramolecular T Intermolecular T T as Key Steps in Total Synthesis of

More information

Literature Report III

Literature Report III Literature Report III Regioselective ydroarylation of Alkynes Reporter: Zheng Gu Checker: Cong Liu Date: 2017-08-28 Cruz, F. A.; Zhu, Y.; Tercenio, Q. D.; Shen, Z.; Dong, V. M. J. Am. Chem. Soc. 2017,

More information

CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS

CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS 1. STRUCTURE AND BONDING a] Atomic structure and bonding b] Hybridization and MO Theory c] Drawing chemical structures 2. POLAR COVALENT BONDS: ACIDS AND BASES

More information

O + k 2. H(D) Ar. MeO H(D) rate-determining. step?

O + k 2. H(D) Ar. MeO H(D) rate-determining. step? ame: CEM 633: Advanced rganic Chem: ysical Problem Set 6 (Due Thurs, 12/8/16) Please do not look up references until after you turn in the problem set unless otherwise noted. For the following problems,

More information

Answers To Chapter 7 Problems.

Answers To Chapter 7 Problems. Answers To Chapter Problems.. Most of the Chapter problems appear as end-of-chapter problems in later chapters.. The first reaction is an ene reaction. When light shines on in the presence of light and

More information

Chapter 8 Alkenes and Alkynes II: Addition Reactions

Chapter 8 Alkenes and Alkynes II: Addition Reactions Chapter 8 Alkenes and Alkynes II: Addition Reactions Introduction: Additions to Alkenes Generally the reaction is exothermic because one π and one σ bond are converted to two σ bonds The π electrons of

More information

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES.

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES. COURSE OBJECTIVES / OUTCOMES / COMPETENCIES. By the end of the course, students should be able to do the following: See Test1-4 Objectives/Competencies as listed in the syllabus and on the main course

More information

CEM 351 3rd EXAM/Version A Friday, November 21, :50 2:40 p.m. Room 138, Chemistry

CEM 351 3rd EXAM/Version A Friday, November 21, :50 2:40 p.m. Room 138, Chemistry Name (print) Signature Student # Section Number CEM 351 3rd EXAM/Version A Friday, November 21, 2003 1:50 2:40 p.m. Room 138, Chemistry Key Grade? 1.(20 2.(20. 3.(20 4.(20 5.(20 6.(20 TTAL 100 Score Note:

More information

Asymmetric Nucleophilic Catalysis

Asymmetric Nucleophilic Catalysis Asymmetric ucleophilic Catalysis Chiral catalyst X 2 Chiral catalyst X = alkyl, X 1 2 1 Vedejs, E.; Daugulis,. J. Am. Chem. Soc. 2003, 125, 4166-4173 Shaw, S. A.; Aleman,.; Vedejs, E. J. Am. Chem. Soc.

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of X 2. Addition of and addition of Y X 3. Addition to allene and alkyne 4. Substitution at α-carbon 5. eactions via organoborane

More information

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes A ighly Efficient rganocatalyst for Direct Aldol Reactions of Ketones and Aldehydes Zhuo Tang, Zhi-ua Yang, Xiao-ua Chen, Lin-Feng Cun, Ai-Qiao Mi, Yao-Zhong Jiang, and Liu-Zhu Gong Contribution from the

More information