Modeling of Conjugated Heat and Mass Transfer in Solid Sorbents

Size: px
Start display at page:

Download "Modeling of Conjugated Heat and Mass Transfer in Solid Sorbents"

Transcription

1 Modeling of Conjugated Heat and Mass Transfer in Solid Sorbents C.E.L. NOBREGA Departamento de Engenharia Mecânica Centro Federal de Educação Tecnológica CEFET-Rio Av. Maracanã, 229, Bloco E, ZC: BRAZIL N.C.L. BRUM Programa de Engenharia Mecânica Universidade Federal do Rio de Janeiro COPPE/UFRJ Rio de Janeiro, Cidade Universitária, P.O: BRAZIL Abstract: - Although the content of ater vapor ithin atmospheric air is usually comprised of a fe grams per kilogram of dry air, the control of humidity is of crucial importance in HVAC design, due to the high latent heat of ater. Accordingly, air dehumidification can account for as much as 40% of the total energy consumption of an air conditioning unity. The use of solid sorbents for air dehumidification has increased over the last decades, as some materials can be prepared as a coating for porous matrices used as heat and mass exchangers. Since the adsorption is an exothermic phenomenon, the mass transfer significantly affects the heat transfer process. The present paper is dedicated to the modeling and solution of the conjugated heat and mass transfer in a solid sorbent layer. Key-Words: - adsorption, desiccant, dehumidification, heat and mass transfer. Introduction The concern ith indoor air quality has led to increased air ventilation rates in modern building design. As a consequence, cooling units ith larger capacity have to be employed, since outdoor air has to be cooled and dehumidified to the comfort condition. This increase in the thermal load can be minimized by using an enthalpy heel, described in Fig.. It consists of a porous cylindrical matrix, usually made ith fiber-glass or aluminum. The matrix is coated ith a desiccant material, usually silica-gel or an artificial zeolite. The enthalpy heel continuously rotates beteen the supply and exhaust air ducts of the building. Heat is transferred form the supply side to the exhaust side, as the exhaust stream is colder than the supply air stream. In addition, some moisture contained ithin the supply air stream is captured by the desiccant coat, as it flos through the enthalpy heel. This moisture ill be released on the exhaust side, since the exhaust stream is dryer than the supply air stream. Accordingly, the enthalpy heel allos simultaneous heat and mass transfer to the exhaust stream, hich is sub sequentially dumped back to the atmosphere. Fig. shos the detail of typical cell. The air flos through the channel, exchanging heat and mass ith the desiccant felt. The knoledge of the temperature and mass distributions along the flo direction is of great importance to airconditioning engineers. A number of assumptions are required to obtain a solvable mathematical model, hile retaining physical reasoning [, 5]: The physical domain is bounded by symmetry lines, hich represent perfectly insulated and impermeable surfaces. All air and desiccant physical properties are constant. The air flo is thermally developed The temperature and mass concentrations in y direction are disregarded. Accordingly, only distributions in the x direction are considered. The adsorption heat is represented by a heat source ithin the desiccant felt. Initial temperature and mass distributions are unknon but the heel operates in cycles, hich characterizes the problem as periodic. The heat of adsorption is comprised by the sum of the ater latent heat of vaporization and the ettability heat, hich accounts for reducing one degree of movement freedom of an adsorbed vapor molecule. ISBN:

2 Defining a non-dimensional position x 2hyAF x H m T (5) And a non-dimensional time t hy xt (6) mc 2 AF B WR Equations () to (4) can be reritten as Figure : Schematic of an enthalpy heel 2 Problem Formulation Figure (2.a) shos a control volume in the flo direction, enclosing a differential length of the desiccant felt and the flo channel. The mass conservation principle is expressed as [6,8] Y Y f m W 0 m u t x L t () Y x W t T x T t Y Y Y Y 2 T T T T Y Y (7) (8) (9) (0) Figure (2.b) shos a control volume in the flo direction, enclosing exclusively a differential length of the desiccant felt. The mass conservation principle is expressed as f m Ly AF W t y 2 h Y Y (2) Figure (3.a) shos a control volume in the flo direction, enclosing exclusively a differential length of the desiccant felt. The energy conservation principle is expressed as H H m H 0 m u t x L t (3) Figure (3.b) shos a control volume in the flo direction, enclosing exclusively a differential length of the flo channel. The energy conservation principle is expressed as m H H H 2hy Y Y 2h T T yaf u t x Y (4) ith 2 C r H f T H H Y f W Q H H T T () (2) The adsorption of a gas on a solid surface is an exothermic process, since the degrees of freedom of gas molecules movement are reduced. The heat liberated is called heat of adsorption, and in the case of ater vapor is comprised of the latent heat of evaporation plus the heat of etting. The folloing expressions for the heat of adsorption and the isotherm for ater vapor and regular density silicagel ere obtained experimentally [9]: Q2400W 3500, W 0.05 Q400W 2950, W 0.05 (3) ISBN:

3 W W W W 3 4 (4) Figure 2: Mass Balance on a control volume Figure 4: fluxogram for iterative solution The convergence criteria requires a pre-established agreement for both temperature and concentration fields, Crit. T( x,0) T( guess)( x,0) Conv. temp T ( x,0) (5) Crit. W( x,0) W( guess)( x,0) Conv. mass W( x,0) (6) As required by a periodic regime, the inlet of enthalpy must equal the average outlet enthalpy at the end of each cycle. An indication of the numerical accuracy of the solution is provided by the heat and mass balance error (HMBE), Figure 3: Energy Balance on a control volume 3 Problem Solution The solution of the problems requires Eqs. (7) to (0) to be discretized, using the finite-volume technique [0]. The convective terms ere represented by an upind scheme, hereas the time-dependent terms ere represented by a fully implicit scheme. The periodic nature of the problem requires an interactive solution. The initial temperature and concentration distributions ithin the desiccant felt are guessed, and the problem is solved up to the pre-defined nondimensional period P. The distributions in P are required to match the initially guessed distributions, as otherise the calculated distributions at P are used as a ne guess. A fluxogram is given in Fig. (4). ph pc Hhi Hci ( H ) 0 ho dt H 0 codt p h p c HMBE H H hi ci (7) All the calculations in the present ork exhibited HBE values smaller than 0.0%. The air enthalpy is given by H at Y d ct (8) a KJ / Kg C d KJ / Kg c KJ / Kg C Table shos typical temperature and concentration distributions along the flo direction, for t = 0.0 and t = P. ISBN:

4 t = 0.0 t = P x T(ºC) W T(ºC) W Table : Typical mass and temperature distributions at the beginning and end of a cycle The purpose of the equipment is to recover enthalpy form exhaust air stream, accordingly, it is opportunely to define enthalpy recovery effectiveness, Hhi Hho ER H H (9) hi ci The first analysis considers the simulation for three different values for the non-dimensional period of revolution P, as a function of the enthalpy heel non-dimensional length X. The results are shon in Fig. (5). It can be seen that loer periods of revolution ould lead to increasing enthalpy recovery effectiveness. ER by considering Figures (6) and (7), hich respectively depicts the temperature and humidity distributions along the desiccant felt, at the end of the desorption cycle. Figure (6) shos that the moisture removal capacity is small, as there is little difference beteen the humidity concentrations at the beginning and at the end of the adsorption process. The impact on the enthalpy recovery is hoever important, due to the significant value of the heat of adsorption. By comparing Figs. (6) and (7), it can be learned that the greater variation in the humidity content occurs by the middle of the section, here the temperature variation is also higher. Humidity Concentration, W NON-DIMENSIONAL POSITION, X Figure 6: Humidity concentration along the desiccant felt at selected angular positions, P = 8.0, L = Figure (7) shos that the desiccant felt temperature increases during the adsorption process, as heat is transferred form the supply air stream. Hoever, the rise in temperature negatively affects the adsorption process, hich is exothermic by nature. Accordingly, a rise in temperature of the surrounding medium inhibits the required heat release. Accordingly, the sensible and latent energy recoveries have competing effects over the enthalpy recovery effectiveness NON-DIMENSIONAL LENTGH, X Figure 5: Enthalpy recovery effectiveness The influence of the non-dimensional period of revolution over the effectiveness is further explained ISBN:

5 TEMPERATURE OF DESICCANT FELT, T W ( C) NON-DIMENSIONAL POSITION, X Figure 7: Temperature distribution along the desiccant felt at selected angular positions, P = 8.0, L = This is an interesting feature, since it makes the enthalpy recovery effectiveness fairly insensitive to the atmospheric conditions, as described by Fig. (8). ER L = 20.0 L = OUTSIDE AIR ABSOLUTE HUMIDITY, Y hi Figure 8: Enthalpy recovery effectiveness as a function of atmospheric conditions. The curve relative to L = 5.0 shos a little decrease in the enthalpy recover effectiveness as the atmospheric humidity increases. This effect shos to be overcome for a higher value of L. 4 Conclusion A simple mathematical model for the conjugated heat and mass transfer ithin a solid desiccant material as developed and numerically solved. The problem consists of a set of four partial differential equations, hich represent mass and energy balances ithin the air and the desiccant material, and one algebraic equation, hich stands for the desiccant adsorption isotherm. Although the conclusions are restricted to silica-gel, other materials could be easily fitted in the presented methodology. The governing equations ere composed by familiar non-dimensional parameters, so as to supply equipment designers ith typical figures. It as observed that sensible and latent energy recovery have contradictory effects over the enthalpy recovery effectiveness. It as also shon that the enthalpy recovery effectiveness is independent of the atmospheric conditions, as long as sufficient desiccant length is provided for both sensible and latent heat recovery. 5 Nomenclature a constant c constant cop coefficient of performance C r all specific heat (kj/kg K) d constant f desiccant mass fraction h heat transfer coefficient (KW/m 2 ) h y convective mass transfer coefficient (kg/m 2 s) H enthalpy of air (kj/kg) L length of the heel (m) m air mass flo rate (kg/s) m mass of the all (kg) P period of revolution P atm atmospheric Pressure (Pa) P t etted perimeter (m) P s saturation pressure (Pa) Q heat of adsorption (kj/kg) t time (s) T temperature (C) u air flo velocity (m/s) Y air absolute humidity (kg/kg air) Y L adsorbed air layer absolute humidity (kg/kg air) W desiccant humidity (kg of moisture/kg of desiccant) x coordinate (m) flo channel idth (m) y AF ISBN:

6 Greek letters 2 auxiliary parameter auxiliary parameter relative humidity of air layer effectiveness Subscripts ci cold inlet co cold outlet ER heat heel hi hot inlet ho hot outlet sat saturation all air Superscript non-dimensional Wheels, Energy, 2009, (34): doi:0.06/j.energy [7]Chung, J.D.; Lee, D.Y., Effect of Desiccant Isotherm on the Performance of Desiccant Wheel, International Journal of Refrigeration, 2009 ;( 32): doi: 0.06/ j.ijrefrig [8] Nobrega, C.E.L.; Brum, N.C.L., Influence of Isotherm Shape over Desiccant Cooling Cycle Performance, Heat Transfer Engineering, 2009, 30(4): doi:0.080./ [9] Pesaran, A.A., Mills, A.F..; Moisture Transport in silica Gel Packed Beds-Part I, International Journal of Heat and Mass Transfer, 987; (30): [0] Patankar, S. Numerical Heat Transfer and Fluid Flo. Boston, Ma: Hemisphere Publishing Co., 980. References: [] Bullock, C.E., Trelkheld, J.L., 966, Dehumidification of Moist Air by Adiabatic Adsorption, ASHRAE, Transactions, vol. (72), pp 30. [2] Maclaine-Cross, I.L.; Banks, P.J., 972, Coupled Heat and Mass Transfer in Regenerators, Int. Journal of Heat and Mass Transfer, vol. (5), 972. [3] Jurinak, J.J., J.W. Mitchell, W.A. Beckman, 984, Open Cycle Solid Desiccant Air Conditioning as an Alternative to Vapor Compression Cooling in Residential Applications Journal of Solar Energy Engineering, pp 252. [4] Zheng, W.; Worek, W.M.; 993, Numerical Simulation of Combined Heat and Mass transfer in a Rotary Dehumidifier, Numerical Heat Transfer, A, vol. (23) [5] Zhang, X.J., et al., 2003, A Simulation Study of Heat and Mass Transfer in a Honeycomb Rotary Dehumidifier, Applied Thermal Engineering, vol.23. [6] Nobrega, C.E.L.; Brum, N.C.L., Modeling and Simulation of Heat and Enthalpy Recovery ISBN:

Selection of adsorptive materials for desiccant cooling systems

Selection of adsorptive materials for desiccant cooling systems Selection of adsorptive materials for desiccant cooling systems Nóbrega, C.E.L., Brum, N.C.L. 2 Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, CEFET-RIO 2 Universidade Federal do Rio e

More information

Ventilation. 6 Heat Exchangers. Air-conditioning processes. Vladimír Zmrhal (room no. 814)

Ventilation. 6 Heat Exchangers. Air-conditioning processes. Vladimír Zmrhal (room no. 814) Ventilation 6 Heat Exchangers Vladimír Zmrhal (room no. 814) http://users.fs.cvut.cz/~zmrhavla/index.htm Dpt. Of Environmental Engineering 1 Air-conditioning processes comfort 2 1 Dimensioning of air-conditioning

More information

Simulation of Heat and Mass Transfer in the Corrugated Packing of the Counter Flow Cooling Tower

Simulation of Heat and Mass Transfer in the Corrugated Packing of the Counter Flow Cooling Tower Kasetsart J. (Nat. Sci.) 42 : 59-577 (2008) Simulation of Heat and Mass Transfer in the Corrugated Packing of the Counter Flow Cooling Tower Montri Pirunkaset* and Santi Laksitanonta BSTRCT This paper

More information

ScienceDirect. Fluid dynamics optimization of a novel isothermal adsorption dehumidification system for solar driven applications

ScienceDirect. Fluid dynamics optimization of a novel isothermal adsorption dehumidification system for solar driven applications Available online at www.sciencedirect.com ScienceDirect Energy Procedia 48 (2014 ) 628 637 SHC 2013, International Conference on Solar Heating and Cooling for Buildings and Industry September 23-25, 2013,

More information

MEASUREMENTS OF TIME-SPACE DISTRIBUTION OF CONVECTIVE HEAT TRANSFER TO AIR USING A THIN CONDUCTIVE-FILM

MEASUREMENTS OF TIME-SPACE DISTRIBUTION OF CONVECTIVE HEAT TRANSFER TO AIR USING A THIN CONDUCTIVE-FILM MEASUREMENTS OF TIME-SPACE DISTRIBUTION OF CONVECTIVE HEAT TRANSFER TO AIR USING A THIN CONDUCTIVE-FILM Hajime Nakamura Department of Mechanical Engineering, National Defense Academy 1-10-0 Hashirimizu,

More information

R13 SET - 1 '' ''' '' ' '''' Code No RT21033

R13 SET - 1 '' ''' '' ' '''' Code No RT21033 SET - 1 II B. Tech I Semester Supplementary Examinations, June - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

CENG 5210 Advanced Separation Processes. Reverse osmosis

CENG 5210 Advanced Separation Processes. Reverse osmosis Reverse osmosis CENG 510 Advanced Separation Processes In osmosis, solvent transports from a dilute solute or salt solution to a concentrated solute or salt solution across a semipermeable membrane hich

More information

Greenhouse Steady State Energy Balance Model

Greenhouse Steady State Energy Balance Model Greenhouse Steady State Energy Balance Model The energy balance for the greenhouse was obtained by applying energy conservation to the greenhouse system as a control volume and identifying the energy terms.

More information

A Novel Model Considered Mass and Energy Conservation for Both Liquid and Vapor in Adsorption Refrigeration System.

A Novel Model Considered Mass and Energy Conservation for Both Liquid and Vapor in Adsorption Refrigeration System. Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 A Novel Model Considered Mass and Energy Conservation for Both Liquid and

More information

Theory. Humidity h of an air-vapor mixture is defined as the mass ratio of water vapor and dry air,

Theory. Humidity h of an air-vapor mixture is defined as the mass ratio of water vapor and dry air, Theory Background In a cooling tower with open water circulation, heat is removed from water because of the material and heat exchange between the water and the ambient air. The cooling tower is a special

More information

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:

More information

HT FACTOR ANALYSIS FOR FORCED AND MIXED CONVECTION LAMINAR HEAT TRANSFER IN A HORIZONTAL TUBE USING ARTIFICIAL NEURAL NETWORK

HT FACTOR ANALYSIS FOR FORCED AND MIXED CONVECTION LAMINAR HEAT TRANSFER IN A HORIZONTAL TUBE USING ARTIFICIAL NEURAL NETWORK Proceedings of HT7 7 ASME-JSME Thermal Engineering Summer Heat Transfer Conference July 8-, 7, Vancouver, British Columbia, CANADA HT7-355 FACTOR ANALYSIS FOR FORCED AND MIXED CONVECTION LAMINAR HEAT TRANSFER

More information

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions.

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions. We RoU No. 700095 Candidate should write his/her Roll No. here. Total No. of Questions : 7 No. of Printed Pages : 7 SEM-2017(03HI MECHANICAL ENGINEERING Paper II Time ; 3 Hours ] [ Total Marks : 0 Instructions

More information

Potential use of Thermoelectric Generator Device for Air Conditioning System

Potential use of Thermoelectric Generator Device for Air Conditioning System Potential use of Thermoelectric Generator Device for Air Conditioning System Pedro M. Peralta Trinidad 1, Gerardo Carbajal 1 1 Universidad del Turabo, Puerto Rico, pperalta.engi@gmail.com, gcarbajal1@suagm.edu

More information

Study of the performance of activated carbon methanol adsorption systems concerning heat and mass transfer

Study of the performance of activated carbon methanol adsorption systems concerning heat and mass transfer Applied Thermal Engineering 23 (2003) 1605 1617 www.elsevier.com/locate/apthermeng Study of the performance of activated carbon methanol adsorption systems concerning heat and mass transfer L.W. Wang,

More information

Theoretical Design and Analysis of Gravity Assisted Heat Pipes

Theoretical Design and Analysis of Gravity Assisted Heat Pipes Theoretical Design and Analysis of Gravity Assisted Heat Pipes Archit M. Deshpande Heramb S. Nemlekar Rohan D. Patil Abstract Gravity assisted heat pipes are heat transfer devices that are extensively

More information

ENGINEERING OF NUCLEAR REACTORS. Tuesday, October 9 th, 2014, 1:00 2:30 p.m.

ENGINEERING OF NUCLEAR REACTORS. Tuesday, October 9 th, 2014, 1:00 2:30 p.m. .31 ENGINEERING OF NUCLEAR REACTORS Tuesday, October 9 th, 014, 1:00 :30 p.m. OEN BOOK QUIZ 1 (solutions) roblem 1 (50%) Loss o condensate pump transient in a LWR condenser i) Consider the seaater in the

More information

Effect of moisture transfer on heat energy storage in simple layer walls

Effect of moisture transfer on heat energy storage in simple layer walls Effect of moisture transfer on heat energy storage in simple layer walls C. MAALOUF 1, A.D. TRAN LE 1, M. LACHI 1, E. WURTZ 2, T.H. MAI 1 1-Laboratoire Thermomécanique/GRESPI, Faculté des Sciences, University

More information

Lecture 3: DESIGN CONSIDERATION OF DRIERS

Lecture 3: DESIGN CONSIDERATION OF DRIERS Lecture 3: DESIGN CONSIDERATION OF DRIERS 8. DESIGN OF DRYER Design of a rotary dryer only on the basis of fundamental principle is very difficult. Few of correlations that are available for design may

More information

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A UBMCC11 - THERMODYNAMICS B.E (Marine Engineering) B 16 UNIT I BASIC CONCEPTS AND FIRST LAW PART- A 1. What do you understand by pure substance? 2. Define thermodynamic system. 3. Name the different types

More information

A generic adsorption heat pump model for system simulations in TRNSYS

A generic adsorption heat pump model for system simulations in TRNSYS A generic adsorption heat pump model for system simulations in TRNSYS Christian Glück and Ferdinand P. Schmidt Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany Phone: +49 721

More information

Subject: Principles of Refrigeration and Air Conditioning Lecturer: Assistant Professor Dr. Waheed Shaty Mohammed

Subject: Principles of Refrigeration and Air Conditioning Lecturer: Assistant Professor Dr. Waheed Shaty Mohammed Subject: Principles of Refrigeration and Air Conditioning Lecturer: Assistant Professor Dr. Waheed Shaty Mohammed Refrences: 1-A. R. Trott and T. Welch " Refrigeration and Air conditioning ",Third Edition

More information

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 5. Mass and Energy Analysis of Control Volumes Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)

More information

CALCULATION OF STEAM AND WATER RELATIVE PERMEABILITIES USING FIELD PRODUCTION DATA, WITH LABORATORY VERIFICATION

CALCULATION OF STEAM AND WATER RELATIVE PERMEABILITIES USING FIELD PRODUCTION DATA, WITH LABORATORY VERIFICATION CALCULATION OF STEAM AND WATER RELATIVE PERMEABILITIES USING FIELD PRODUCTION DATA, WITH LABORATORY VERIFICATION Jericho L. P. Reyes, Chih-Ying Chen, Keen Li and Roland N. Horne Stanford Geothermal Program,

More information

Minimizing and maximizing compressor and turbine work respectively

Minimizing and maximizing compressor and turbine work respectively Minimizing and maximizing compressor and turbine ork respectively Reversible steady-flo ork In Chapter 3, Work Done during a rocess as found to be W b dv Work Done during a rocess It depends on the path

More information

Phase of acoustic impedance and performance of standing wave thermoacoustic coolers

Phase of acoustic impedance and performance of standing wave thermoacoustic coolers Journal of Mechanical Science and Technology 3 (009) 1476~1484 Journal of Mechanical Science and Technology.springerlink.com/content/1738-494x DOI 10.1007/s106-009-0351- Phase of acoustic impedance and

More information

CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum

CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum 1997 19 CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION 3.0. Introduction

More information

Theoretical and experimental studies on a latent heat thermal energy storage system (LHTES) containing flat slabs of phase change materials

Theoretical and experimental studies on a latent heat thermal energy storage system (LHTES) containing flat slabs of phase change materials International Journal of Smart Grid and Clean Energy Theoretical and experimental studies on a latent heat thermal energy storage system (LHTES) containing flat slabs of phase change materials A. Mirahamad,

More information

CAE 331/513 Building Science Fall 2017

CAE 331/513 Building Science Fall 2017 CAE 331/513 Building Science Fall 2017 October 5, 2017 Psychrometrics (equations) Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Twitter: @built_envi

More information

Thermodynamics Introduction and Basic Concepts

Thermodynamics Introduction and Basic Concepts Thermodynamics Introduction and Basic Concepts by Asst. Prof. Channarong Asavatesanupap Mechanical Engineering Department Faculty of Engineering Thammasat University 2 What is Thermodynamics? Thermodynamics

More information

Effect of External Recycle on the Performance in Parallel-Flow Rectangular Heat-Exchangers

Effect of External Recycle on the Performance in Parallel-Flow Rectangular Heat-Exchangers Tamkang Journal of Science and Engineering, Vol. 13, No. 4, pp. 405 412 (2010) 405 Effect of External Recycle on the Performance in Parallel-Flow Rectangular Heat-Exchangers Ho-Ming Yeh Energy and Opto-Electronic

More information

Modeling and Simulation of an Air-cooling Condenser under Transient Conditions

Modeling and Simulation of an Air-cooling Condenser under Transient Conditions Availale online at.sciencedirect.com Procedia Engineering 3 (202) 87 822 International Conference on Advances in Computational Modeling and Simulation Modeling and Simulation of an Air-cooling Condenser

More information

CAE 331/513 Building Science Fall 2015

CAE 331/513 Building Science Fall 2015 CAE 331/513 Building Science Fall 2015 Week 5: September 24, 2015 Psychrometrics (equations) Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com

More information

Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle

Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle Journal of Applied Science and Engineering, Vol. 17, No. 3, pp. 293 304 (2014) DOI: 10.6180/jase.2014.17.3.10 Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle Ho-Ming

More information

Evaluation of the Characteristic of Adsorption in a Double-Effect Adsorption Chiller with FAM-Z01

Evaluation of the Characteristic of Adsorption in a Double-Effect Adsorption Chiller with FAM-Z01 Journal of Materials Science and Chemical Engineering, 2016, 4, 8-19 http://www.scirp.org/journal/msce ISSN Online: 2327-6053 ISSN Print: 2327-6045 Evaluation of the Characteristic of Adsorption in a Double-Effect

More information

Pressure Swing Adsorption: A Gas Separation & Purification Process

Pressure Swing Adsorption: A Gas Separation & Purification Process Pressure Swing Adsorption: A Gas Separation & Purification Process Pressure swing adsorption is an adsorption-based process that has been used for various gas separation and purification purposes. Separation

More information

Analysis of moist air unwatering by adsorbent in fluidized bed for thermal power stations units conservation

Analysis of moist air unwatering by adsorbent in fluidized bed for thermal power stations units conservation EPJ Web of Conferences 76, 01011 (2014) DOI: 10.1051/epjconf/20147601011 C Owned by the authors, published by EDP Sciences, 2014 Analysis of moist air unwatering by adsorbent in fluidized bed for thermal

More information

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Adsorption Processes Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Principles of adsorption Types of adsorption Definitions Brief history Adsorption isotherms Mechanism

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A 1. What is meant by thermodynamics system? (A/M 2006) Thermodynamics system is defined as any space or matter or group of matter

More information

Analysis and Performance of Radial Flow Rotary Desiccant Dehumidifiers

Analysis and Performance of Radial Flow Rotary Desiccant Dehumidifiers Copyright 997 by ASME M. M. Elsayed A. J. Chamkha Mechanical and Industrial Engineering Department, Kuwait University, P.O. Box 5969, Safat 3060, Kuwait Analysis and Performance of Radial Flow Rotary Desiccant

More information

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE Chapter 6 Using Entropy 1 2 Chapter Objective Means are introduced for analyzing systems from the 2 nd law perspective as they undergo processes that are not necessarily cycles. Objective: introduce entropy

More information

Spring_#7. Thermodynamics. Youngsuk Nam.

Spring_#7. Thermodynamics. Youngsuk Nam. Spring_#7 Thermodynamics Youngsuk Nam ysnam1@khu.ac.kr You can t connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in

More information

Nondestructive Monitoring of Setting and Hardening of Portland Cement Mortar with Sonic Methods

Nondestructive Monitoring of Setting and Hardening of Portland Cement Mortar with Sonic Methods Nondestructive Monitoring of Setting and Hardening of Portland Cement Mortar ith Sonic Methods Thomas Voigt, Northestern University, Evanston, USA Surendra P. Shah, Northestern University, Evanston, USA

More information

1. Basic state values of matter

1. Basic state values of matter 1. Basic state values of matter Example 1.1 The pressure inside a boiler is p p = 115.10 5 Pa and p v = 9.44.10 4 Pa inside a condenser. Calculate the absolute pressure inside the boiler and condenser

More information

Dynamic Modeling of Shell-and-Tube Heat- Exchangers: Moving Boundary vs. Finite Volume

Dynamic Modeling of Shell-and-Tube Heat- Exchangers: Moving Boundary vs. Finite Volume Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 004 Dynamic Modeling of Shell-and-Tube Heat- Exchangers: Moving Boundary vs.

More information

MARIA COLLEGE OF ENGINEERING AND TECHNOLOGY

MARIA COLLEGE OF ENGINEERING AND TECHNOLOGY MARIA COLLEGE OF ENGINEERING AND TECHNOLOGY ATTOOR ENGINEERING THERMODYNAMICS (TWO MARK QUESTION BANK) UNIT 1 (BASIC COMCEPTS AND FIRST LAW) 1. Define the term thermal engineering. Thermal engineering

More information

T718. c Dr. Md. Zahurul Haq (BUET) HX: Energy Balance and LMTD ME 307 (2018) 2/ 21 T793

T718. c Dr. Md. Zahurul Haq (BUET) HX: Energy Balance and LMTD ME 307 (2018) 2/ 21 T793 HX: Energy Balance and LMTD Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-000, Bangladesh http://zahurul.buet.ac.bd/

More information

ON THE DYNAMICS OF HUMIDITY ADSORPTION

ON THE DYNAMICS OF HUMIDITY ADSORPTION Proceedings of COBEM 2005 Copyright 2005 by ABCM 18th International Congress of Mechanical Engineering November 6-11, 2005, Ouro Preto, MG ON THE DYNAMICS OF HUMIDITY ADSORPTION Manoel Antonio da Fonseca

More information

Measurement of Thermal Conductivity of Cured Tobacco Material

Measurement of Thermal Conductivity of Cured Tobacco Material Food Sci. Technol. Res., 14 (), 14 131, 8 Measurement of Thermal Conductivity of Cured Tobacco Material Takayoshi kuroia 1*, Norio araki and Yukio nakanishi 3 1 Japan Tobacco Inc., --1 Toranomon, Minato-ku,

More information

A population balance approach for continuous fluidized bed dryers

A population balance approach for continuous fluidized bed dryers A population balance approach for continuous fluidized bed dryers M. Peglow, U. Cunäus, C. Kettner, T. Metzger, E. Tsotsas, Thermal Process Engineering, University Magdeburg, 396 Magdeburg, ermany Abstract

More information

Performance investigation of a waste heat driven pressurized adsorption refrigeration cycle

Performance investigation of a waste heat driven pressurized adsorption refrigeration cycle IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Performance investigation of a waste heat driven pressurized adsorption rigeration cycle o cite this article: K Habib 2015 IOP

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY SPRING 2007

MASSACHUSETTS INSTITUTE OF TECHNOLOGY SPRING 2007 MASSACHUSETTS INSTITUTE OF TECHNOLOGY SPRING 007 5.9 Energy Environment and Society (a Project Based First Year Subject supported by the d'arbeloff Program) ---------------------------------------------------------------------------------------

More information

Parametric Study of Rock Bed Thermal Regenerator for Space Heating

Parametric Study of Rock Bed Thermal Regenerator for Space Heating RESEARCH ARTICLE OPEN ACCESS Parametric Study of Rock Bed Thermal Regenerator for Space Heating Neeraj Tewari, Manish Bhendura, Mithleshupadhyay, D.S. Murthy Mechanical Engineering Department, College

More information

INVESTIGATION OF THE PERFORMANCE OF COOLING PANELS: CEILING AND FLOOR PANElS.

INVESTIGATION OF THE PERFORMANCE OF COOLING PANELS: CEILING AND FLOOR PANElS. INVESTIGATION OF THE PERFORMANCE OF COOLING PANELS: CEILING AND FLOOR PANElS. * M. Hammad, Al Helo, S. And Khlaif, B. University of Jordan. Mechanical Engineering Department. hammad@ju.edu.jo 1.0 ABSTRACT:

More information

CHARACTERIZATION OF ULTRASONIC IMMERSION TRANSDUCERS

CHARACTERIZATION OF ULTRASONIC IMMERSION TRANSDUCERS CHARACTERIZATION OF ULTRASONIC IMMERSION TRANSDUCERS INTRODUCTION David D. Bennink, Center for NDE Anna L. Pate, Engineering Science and Mechanics Ioa State University Ames, Ioa 50011 In any ultrasonic

More information

CHAPTER 8 ENTROPY. Blank

CHAPTER 8 ENTROPY. Blank CHAPER 8 ENROPY Blank SONNAG/BORGNAKKE SUDY PROBLEM 8-8. A heat engine efficiency from the inequality of Clausius Consider an actual heat engine with efficiency of η working between reservoirs at and L.

More information

Critical Conditions for Water-based Suppression of Plastic Pool Fires. H. Li 1, A. S. Rangwala 1 and J.L. Torero 2

Critical Conditions for Water-based Suppression of Plastic Pool Fires. H. Li 1, A. S. Rangwala 1 and J.L. Torero 2 Paper # 070FR-0069 Topic: Fire 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013 Critical Conditions

More information

Applications of Adsorption Refrigeration Cycle Review

Applications of Adsorption Refrigeration Cycle Review International Journal of Emerging Research in Management &Technology Research Article May 2015 Applications of Adsorption Refrigeration Cycle Review 1 Bhushan M. Dusane, 2 N. C. Ghuge 1 Department of Mechanical

More information

Variable Viscosity Effect on Heat Transfer over a. Continuous Moving Surface with Variable Internal. Heat Generation in Micropolar Fluids

Variable Viscosity Effect on Heat Transfer over a. Continuous Moving Surface with Variable Internal. Heat Generation in Micropolar Fluids Applied Mathematical Sciences, Vol. 6, 2012, no. 128, 6365-6379 Variable Viscosity Effect on Heat Transfer over a Continuous Moving Surface ith Variable Internal Heat Generation in Micropolar Fluids M.

More information

Three-Dimensional Simulation of Mixing Flow in a Porous Medium with Heat and Mass Transfer in a Moisture Recovery System

Three-Dimensional Simulation of Mixing Flow in a Porous Medium with Heat and Mass Transfer in a Moisture Recovery System 12 th Fluid Dynamics Conference, Babol Noshirvani University of Technology, 28-30 April 2009 Three-Dimensional Simulation of Mixing Flow in a Porous Medium with Heat and Mass Transfer in a Moisture Recovery

More information

Characterisation of a Rotating Adsorber Designed for Thermochemical Heat Storage Processes

Characterisation of a Rotating Adsorber Designed for Thermochemical Heat Storage Processes Aix-les-Bains (France), 16 19 September 2014 Characterisation of a Rotating Adsorber Designed for Thermochemical Heat Storage Processes Gerald Englmair 1, Bernhard Zettl 1 and Daniel Lager 2 1 Austria

More information

2.0 KEY EQUATIONS. Evaporator Net Refrigeration Effect. Compressor Work. Net Condenser Effect

2.0 KEY EQUATIONS. Evaporator Net Refrigeration Effect. Compressor Work. Net Condenser Effect 2.0 KEY EQUATIONS Evaporator Net Refrigeration Effect Q net refrigeration effect [] = (H 1 H 4 ) lb (Refrig Flow Rate) (60) min lb min hr H 1 = leaving evaporator enthalpy lb ; H 4 = entering evaporator

More information

Liquid water is one of the

Liquid water is one of the Formanski 71 1/07/09 8:57 Page 71 V olume 5 - Number 7 - May 2009 (71-75) Abstract Liquid water is one of the agents responsible for damage of building materials. Therefore determination of its content

More information

Hydrate Inhibition with Methanol A Review and New Concerns over Experimental Data Presentation

Hydrate Inhibition with Methanol A Review and New Concerns over Experimental Data Presentation ydrate Inhibition ith Methanol A Revie and Ne Concerns over Experimental Data Presentation Gavin McIntyre, Michael lavinka, Vicente ernandez Bryan Research & Engineering, Inc. Bryan, TX Abstract ydrate

More information

Water-Temperature-Dependent Wet Bulb Temperature Calculation

Water-Temperature-Dependent Wet Bulb Temperature Calculation Water-Temperature-Dependent Wet Bulb Temperature Calculation Oxycom Fresh Air BV December 7th, 2012 Abstract A numerical solution for the exact calculation of the wet bulb temperature of air has been derived,

More information

Vapor Pressure Prediction for Stacked-Chip Packages in Reflow by Convection-Diffusion Model

Vapor Pressure Prediction for Stacked-Chip Packages in Reflow by Convection-Diffusion Model Vapor Pressure Prediction for Stacked-Chip Packages in Reflo by Convection-Diffusion Model Jeremy Adams, Liangbiao Chen, and Xuejun Fan Lamar University, PO Box 10028, Beaumont, TX 77710, USA Tel: 409-880-7792;

More information

Optimization of Peripheral Finned-Tube Evaporators Using Entropy Generation Minimization

Optimization of Peripheral Finned-Tube Evaporators Using Entropy Generation Minimization Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering Optimization of Peripheral Finned-Tube Evaporators Using Entropy Generation

More information

Ceiling Radiant Cooling Panels Employing Heat-Conducting Rails: Deriving the Governing Heat Transfer Equations

Ceiling Radiant Cooling Panels Employing Heat-Conducting Rails: Deriving the Governing Heat Transfer Equations Authors may request permission to reprint or post on their personal or company Web site once the final version of the article has been published. A reprint permission form may be found at www.ashrae.org.

More information

Mohammad Ali Abdous *, Shahriyar Ghazanfari Holagh, Masood Shamsaiee, Mohsen khoshzat and Hamid Saffari

Mohammad Ali Abdous *, Shahriyar Ghazanfari Holagh, Masood Shamsaiee, Mohsen khoshzat and Hamid Saffari Conference Proceedings Paper An Ealuation of Heat ransfer Enhancement echnique in Flo Boiling Conditions Based on Entropy Generation Analysis: Micro-Fin ube Mohammad Ali Abdous *, Shahriyar Ghazanfari

More information

Adsorption and Desorption Isotherms Of Desiccants for Dehumidification Applications: Silica Aerogels and Silica Aerogel Coatings on Metal Foams

Adsorption and Desorption Isotherms Of Desiccants for Dehumidification Applications: Silica Aerogels and Silica Aerogel Coatings on Metal Foams Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Adsorption and Desorption Isotherms Of Desiccants for Dehumidification

More information

Humidification requirements in economizer-type HVAC systems

Humidification requirements in economizer-type HVAC systems Humidification requirements in economizer-type HVAC systems Viktor T. Toth January 2, 2012 Abstract We develop a formulation to compute the maximum humidification load for economizer-type HVAC systems.

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 621 213. Department: Mechanical Subject Code: ME2202 Semester: III Subject Name: ENGG. THERMODYNAMICS UNIT-I Basic Concept and First Law 1. What do you understand

More information

Modeling and Control of a Fluidised Bed Dryer

Modeling and Control of a Fluidised Bed Dryer Modeling and Control of a Fluidised Bed Dryer J.A Villegas S.R. Duncan H.G. Wang W.Q. Yang R.S. Raghavan Department of Engineering Science, University of Oxford, Parks Road, Oxford OX 3PJ, UK, e-mail:

More information

Find: a) Mass of the air, in kg, b) final temperature of the air, in K, and c) amount of entropy produced, in kj/k.

Find: a) Mass of the air, in kg, b) final temperature of the air, in K, and c) amount of entropy produced, in kj/k. PROBLEM 6.25 Three m 3 of air in a rigid, insulated container fitted with a paddle wheel is initially at 295 K, 200 kpa. The air receives 1546 kj of work from the paddle wheel. Assuming the ideal gas model,

More information

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption EVE 402 Air Pollution Generation and Control Chapter #6 Lectures Adsorption Recap: Solubility: the extent of absorption into the bulk liquid after the gas has diffused through the interface An internal

More information

QUASI STEADY STATE MODEL FOR ADSORPTION COOLING SYSTEMS: AUTOMOTIVE APPLICATIONS

QUASI STEADY STATE MODEL FOR ADSORPTION COOLING SYSTEMS: AUTOMOTIVE APPLICATIONS Proceedings of the ASME 22 6th International Conference on Energy Sustainability & th Fuel Cell Science, Engineering and Technology Conference ESFuelCell22 July 23-26, 22, San Diego, CA, USA ESFuelCell22-9362

More information

The energy performance of an airflow window

The energy performance of an airflow window The energy performance of an airflow window B.(Bram) Kersten / id.nr. 0667606 University of Technology Eindhoven, department of Architecture Building and Planning, unit Building Physics and Systems. 10-08-2011

More information

Computation of turbulent natural convection at vertical walls using new wall functions

Computation of turbulent natural convection at vertical walls using new wall functions Computation of turbulent natural convection at vertical alls using ne all functions M. Hölling, H. Herig Institute of Thermo-Fluid Dynamics Hamburg University of Technology Denickestraße 17, 2173 Hamburg,

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Psychometric Processes Good afternoon, yesterday we

More information

HEAT AND MASS TRANSFER IN A HIGH-POROUS LOW- TEMPERATURE THERMAL INSULATION IN REAL OPERATING CONDITIONS

HEAT AND MASS TRANSFER IN A HIGH-POROUS LOW- TEMPERATURE THERMAL INSULATION IN REAL OPERATING CONDITIONS MATEC Web of Conferences 3, 0033 ( 05) DOI: 0.05/ matecconf/ 0530033 C Owned by the authors, published by EDP Sciences, 05 HEAT AND MASS TRANSFER IN A HIGH-POROUS LOW- TEMPERATURE THERMAL INSULATION IN

More information

Evaporative Effectiveness & Mass Transfer Coefficient of A U-Shape Brass Tube of an Evaporative Heat Exchanger

Evaporative Effectiveness & Mass Transfer Coefficient of A U-Shape Brass Tube of an Evaporative Heat Exchanger Evaporative Effectiveness & Mass Transfer Coefficient of A U-Shape Brass Tube of an Evaporative Heat Exchanger Sachin Duhan 1, Raj Kumar 2 1 M. Tech, Department of Mechanical Engineering, Deenbandhu Chhotu

More information

The Electrodynamics of a Pair of PV Modules with Connected Building Resistance

The Electrodynamics of a Pair of PV Modules with Connected Building Resistance Proc. of the 3rd IASME/WSEAS Int. Conf. on Energy, Environment, Ecosystems and Sustainable Development, Agios Nikolaos, Greece, July 24-26, 2007 563 he Electrodynamics of a Pair of s with Connected Building

More information

Enhancement of a Modelica Model of a Desiccant Wheel

Enhancement of a Modelica Model of a Desiccant Wheel Enhancement of a Modelica Model of a Desiccant Wheel Andreas Joos Gerhard Schmitz Wilson Casas Hamburg University of Technology Institute of Thermo-Fluid Dynamics, Applied Thermodynamics 21071 Hamburg,

More information

c Dr. Md. Zahurul Haq (BUET) Heat Exchangers: Rating & Sizing - I ME 307 (2017) 2 / 32 T666

c Dr. Md. Zahurul Haq (BUET) Heat Exchangers: Rating & Sizing - I ME 307 (2017) 2 / 32 T666 Heat Exchanger: Rating & Sizing Heat Exchangers: Rating & Sizing - I Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-000,

More information

ME Thermodynamics I

ME Thermodynamics I Homework - Week 01 HW-01 (25 points) Given: 5 Schematic of the solar cell/solar panel Find: 5 Identify the system and the heat/work interactions associated with it. Show the direction of the interactions.

More information

Honeycomb Encapsulated Atmospheric Solar Collector Along with Single Basin Solar Still in Highly Energy Absorbing Weather Condition

Honeycomb Encapsulated Atmospheric Solar Collector Along with Single Basin Solar Still in Highly Energy Absorbing Weather Condition Indian Journal of Science and Technology, Vol 9(5), DOI: 10.17485/ijst/016/v9i5/87153, February 016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Honeycomb Encapsulated Atmospheric Solar Collector

More information

Fundamentals of WUFI-Plus WUFI Workshop NTNU / SINTEF 2008

Fundamentals of WUFI-Plus WUFI Workshop NTNU / SINTEF 2008 Fundamentals of WUFI-Plus WUFI Workshop NTNU / SINTEF 2008 Simultaneous Calculation of Transient Hygrothermal Conditions of Indoor Spaces and Building Envelopes boundary conditions Building envelope Outdoor

More information

Soil Mechanics Permeability of Soils and Seepage page 1 CHAPITRE 9. PERMEABILITY OF SOILS AND SEEPAGE...1

Soil Mechanics Permeability of Soils and Seepage page 1 CHAPITRE 9. PERMEABILITY OF SOILS AND SEEPAGE...1 Soil Mechanics Permeability of Soils and Seepage page 1 Contents of this chapter : CHAPITRE 9. PERMEABILITY OF SOILS AND SEEPAGE...1 9.1 INTRODUCTION...1 9.2 DARCY S LAW...1 9.2.1 DEFINITION OF HEAD...1

More information

Common Terms, Definitions and Conversion Factors

Common Terms, Definitions and Conversion Factors 1 Common Terms, Definitions and Conversion Factors 1. Force: A force is a push or pull upon an object resulting from the object s interaction with another object. It is defined as Where F = m a F = Force

More information

Response of NiTi SMA wire electrically heated

Response of NiTi SMA wire electrically heated , 06037 (2009) DOI:10.1051/esomat/200906037 Oned by the authors, published by EDP Sciences, 2009 Response of NiTi SMA ire electrically heated C. Zanotti a, P. Giuliani, A. Tuissi 1, S. Arnaboldi 1, R.

More information

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1% We are IntechOpen, the first native scientific publisher of Open Access books 3,350 108,000 1.7 M Open access books available International authors and editors Downloads Our authors are among the 151 Countries

More information

THE METHOD OF THE WORKING FLUID SELECTION FOR ORGANIC RANKINE CYCLE (ORC) SYSTEM WITH VOLUMETRIC EXPANDER. * Corresponding Author ABSTRACT

THE METHOD OF THE WORKING FLUID SELECTION FOR ORGANIC RANKINE CYCLE (ORC) SYSTEM WITH VOLUMETRIC EXPANDER. * Corresponding Author ABSTRACT Paper ID: 79, Page 1 THE METHOD OF THE WORKING FLUID SELECTION FOR ORGANIC RANKINE CYCLE (ORC) SYSTEM WITH VOLUMETRIC EXPANDER Piotr Kolasiński* 1 1 Wrocław University of Technology, Department of Thermodynamics,

More information

A 1-D Model of the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly

A 1-D Model of the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly A 1-D Model of the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly Robert Coker *1 and Jim Knox 1 1 Marshall Space Flight Center, NASA *Corresponding author: ES22, MSFC, Huntsville, AL 35812,

More information

Validation of IDA Indoor Climate and Energy

Validation of IDA Indoor Climate and Energy Technical report: Validation of IDA Indoor Climate and Energy 4.0 build 4 with respect to ANSI/ASHRAE Standard 140-2004 April 2010 Equa Simulation AB Råsundavägen 100 169 57 Solna Sweden Contents 1 Introduction

More information

Why do Golf Balls have Dimples on Their Surfaces?

Why do Golf Balls have Dimples on Their Surfaces? Name: Partner(s): 1101 Section: Desk # Date: Why do Golf Balls have Dimples on Their Surfaces? Purpose: To study the drag force on objects ith different surfaces, ith the help of a ind tunnel. Overvie

More information

Adsorption of Polar and Nonpolar Vapors on Selected Adsorbents: Breakthrough Curves and their Simulation

Adsorption of Polar and Nonpolar Vapors on Selected Adsorbents: Breakthrough Curves and their Simulation Adsorption of Polar and Nonpolar Vapors on Selected Adsorbents: Breakthrough Curves and their Simulation Dr. Robert Eschrich Quantachrome GmbH & Co. KG 2018-04-17 Leipziger Symposium on Dynamic Sorption

More information

Numerical Treatment of Two-Phase Flow in Porous Media Including Specific Interfacial Area

Numerical Treatment of Two-Phase Flow in Porous Media Including Specific Interfacial Area Procedia Computer cience Volume 51, 2015, Pages 1249 1258 ICC 2015 International Conference On Computational cience Numerical Treatment of To-Phase Flo in Porous Media Including pecific Interfacial Area

More information

III E

III E THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 E. 47th St., New York, N.Y. 10017. 9i-M633 The Society shall not be responsible for statements or opinions advanced ii papers or thicussion at meetings

More information

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A PROBLEM 3. KNON: Various geometric shapes involving two areas and. FIND: Shape factors, F and F, for each configuration. SSUMPTIONS: Surfaces are diffuse. NLYSIS: The analysis is not to make use of tables

More information