CAE 331/513 Building Science Fall 2017

Size: px
Start display at page:

Download "CAE 331/513 Building Science Fall 2017"

Transcription

1 CAE 331/513 Building Science Fall 2017 October 5, 2017 Psychrometrics (equations) Advancing energy, environmental, and sustainability research within the built environment Dr. Brent Stephens, Ph.D. Civil, Architectural and Environmental Engineering Illinois Institute of Technology

2 Graduate student projects (CAE 513 only) Expectations document on BB now Individual projects Literature review Some modeling and/or measurement Conference-type paper submission Due dates for deliverables: Tuesday, October 17: Project topic via Thursday, November 30: Final report submission 2

3 Graduate student projects: Topic suggestions Energy questions Efficiency of radiant vs. central forced air heating/cooling? Efficiency of different air distribution systems (e.g., overhead/ufad) Net zero energy/carbon design/operation Electrical metering and power draw signatures HVAC systems Heat pumps, geothermal, energy recovery, absorption chillers, cogeneration Green building rating systems LEED, Green Globes, EnergyStar, Living Building, BREEAM, Moisture Dampness, fungal growth, remediation, buffering capacity IAQ/IEQ Thermal comfort, aerosols, ventilation, VOCs Other Electrical, lighting, plumbing, acoustics Tools you can use: Energy simulation, MATLAB modeling, measurements in BERG Lab 3

4 Last time Introduced Psychrometrics and several key terms: 1. Dry bulb temperature 2. Vapor pressure 3. Saturation 4. Relative humidity 5. Absolute humidity (or humidity ratio) 6. Dew point temperature 7. Wet bulb temperature 8. Enthalpy 9. Density 10. Specific volume 4

5 d SI chart 5

6 d Relative Humidity φ 50% Enthalpy h 44 kj/kg da Dew Point Temp T dew 11.7 C Specific Volume v m 3 /kg da Dry Air Density ρ 1/v 1.18 kg da /m 3 Wet Bulb Temp T wb 15.5 C Dry Bulb Temp T = 22 C Humidity Ratio W 8.2 g/kg da (i.e., kg/kg) 6

7 IP chart

8 Enthalpy h 30 Btu/lb Specific Volume v ft 3 /lbm Dew Point Temp T dew 40 F Wet Bulb Temp T wb 65 F Humidity Ratio W 5.8 lb/lb da Relative Humidity φ 13% Dry Bulb Temp T 100 F

9 grains/lb: 1 lb = 7000 grains Alternate IP chart (Wang) 9

10 PSYCHROMETRIC EQUATIONS 10

11 Specifying the state of moist air In order to specify the state of moist air, we need total atmospheric pressure, p, the air temperature, T, and at least one other property W, φ, h, p w, or T dew We can use the psychrometric chart We can also use the underlying equations for greater accuracy and automation All equations are in ASHRAE 2013 Handbook of Fundamentals Chapter 1 11

12 Remember: Vapor pressure and Saturation Air can hold moisture (i.e., water vapor) Vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases p w *Units of pressure, Pa or kpa (aka partial pressure ) The amount of moisture air can hold in vapor form before condensation occurs is dependent on temperature We call the limit saturation p ws *Units of pressure, Pa or kpa (aka saturation vapor pressure ) 12

13 Relative humidity, φ (RH) The relative humidity ratio, φ, is the mole fraction of water vapor (x w ) relative to the water vapor that would be in the mixture if it were saturated at the given T and P (x ws ) We can also describe RH by partial pressures (ideal gas) Relative humidity is a common measure that relates well to how we perceive moisture in air φ = x w x ws T,P = p w / p tot p ws / p tot = p w p ws 13

14 p ws for 0 C< T <200 C (SI units) For p ws, the saturation pressure over liquid water: ln p ws = C 8 T +C 9 +C 10 T +C 11 T 2 +C 12 T 3 +C 13 lnt Note: These constants are only for SI units IP units are different Units: *We will use this equation for most conditions in building science (above 0 C) 14

15 p ws for -100 C< T <0 C (SI units) For p ws, the saturation pressure over ice: ln p ws = C 1 T +C 2 +C 3 T +C 4 T 2 +C 5 T 3 +C 6 T 4 +C 7 lnt Note: These constants are only for SI units IP units are different Units: 15

16 Humidity ratio, W (SI units) The humidity ratio, W, is ratio of the mass of water vapor to mass of dry air in a given volume We use W when finding other mixture properties Note 1: W is small (W < 0.03 for most real building conditions) Note 2: W is sometimes expressed in grains/lb where 1 lb = 7000 grains (I don t use this but you will in CAE 464 HVAC Design) Units: W = m w m da = MW w x w MW da x da = x w x da [ kg w kg da ] x da = p da p da + p w = p da p tot x w = p w p da + p w = p w p tot 16

17 Humidity ratio, W (SI units) The humidity ratio, W, is ratio of the mass of water vapor to mass of dry air in a given volume We use W when finding other mixture properties Note 1: W is small (W < 0.03 for most real building conditions) Note 2: W is sometimes expressed in grains/lb where 1 lb = 7000 grains (I don t use this but you will in CAE 464 HVAC Design) W = x w x da = p w / p tot p da / p tot = p w p da = p w p tot p w where: p tot = p da + p w =101,325 sea level 17

18 Saturation humidity ratio, W s (SI units) At a given temperature T and pressure P there is a maximum W that can be obtained If we try to add any more moisture, it will just condense out It is when the partial pressure of vapor has reached the saturation pressure This maximum humidity ratio is called the saturation humidity ratio, W s From our previous equation we can write: W s = p ws p da = p ws p tot p ws UNITS [ kg w kg da ] 18

19 Degree of saturation, µ (SI units) The degree of saturation, µ (dimensionless), is the ratio of the humidity ratio W to that of a saturated mixture W s at the same T and P Note that µ and φ are not quite the same Their values are very similar at lower temperatures but may differ a lot at higher temperatures! µ = W $ # & " W s % T,P µ = φ 1+ (1 φ)w s / (0.6295) µ φ = 1 (1 µ) p ws / p tot 19

20 Specific volume, ν, and density, ρ (SI units) The specific volume of moist air (or the volume per unit mass of air, m 3 /kg) can be expressed as: v = R da T p da = R da T p tot p w = R da T ( W ) p tot v (T )( W ) / p tot If we have ν we can also find moist air density, ρ (kg/m 3 ): ρ = m da + m w V = 1 ( v 1+W ) 20

21 Enthalpy, h (SI units) The enthalpy of a mixture of perfect gases equals the sum of the individual partial enthalpies of the components Therefore, the enthalpy (h) for moist air is: h = h da +Wh g h = enthalpy for moist air [kj/kg] h g = specific enthalpy for saturated water vapor (i.e., h ws ) [kj/kg w ] h da = specific enthalpy for dry air (i.e., h ws ) [kj/kg da ] Some approximations: h da 1.006T h g T h 1.006T +W ( T ) *where T is in C and h is in kj/kg 21

22 Remember: 3 different temperatures T, T dew, and T wb The standard temperature, T, we are all familiar with is called the dry-bulb temperature, or T d It is a measure of internal energy We can also define: Dew-point temperature, T dew Temperature at which water vapor changes into liquid (condensation) Air is maximally saturated with water vapor Wet-bulb temperature, T wb The temperature that a parcel of air would have if it were cooled to saturation (100% relative humidity) by the evaporation of water into it Units of Celsius, Fahrenheit, or Kelvin ü The energy needed to evaporate liquid water (heat of vaporization) is taken from the air in the form of sensible heat and converted to latent heat, which lowers the temperature at constant enthalpy 22

23 Dew-point temperature, T dew The dew point temperature, T dew, is the air temperature at which the current humidity ratio (W) is equal to the saturation humidity ratio (W s ) at the same temperature i.e., W s (p, T dew ) =W When the air temperature is lowered to the dewpoint at constant pressure, the relative humidity rises to 100% and condensation occurs T dew is a direct measure of the humidity ratio W since W = W s at T = T dew 23

24 d Dew Point Temp T dew 11.7 C W = W s at T = T dew 24

25 Dew-point temperature, T dew (SI units) Dew-point temperature, T dew Note: These constants are only for SI units IP units are different 25

26 Wet-bulb temperature, T wb (SI units) Wet-bulb temperature, T wb Requires iterative solving find the T wb that satisfies the following equation (above freezing): W = ( T wb )W s@t wb 1.006(T T wb ) T 4.186T wb = actual W And for T below freezing: W = ( T wb )W s@t wb 1.006(T T wb ) T 2.1T wb = actual W *Where T wb and T are in Celsius 26

27 Obtaining these data from ASHRAE Tables ASHRAE HoF Ch. 1 (2013) Table 2 gives us W s, v da, v s, h da, and h s directly at different temperatures: 27

28 Obtaining these data from ASHRAE Tables ASHRAE HoF Ch. 1 (2013) Table 3 gives us p ws at different temperatures: 28

29 Revisit example from last class Moist air exists at 22 C dry-bulb temperature with 50% RH at sea level Find the following: (a) the humidity ratio, W (b) dew point temperature, T dew (c) wet-bulb temperature, T wb (d) enthalpy, h (e) specific volume, ν (f) density, ρ Also: (g) degree of saturation, µ 29

30 Psychrometric equations summary (SI units) pv = nrt p = p da + p w p w W m w = MW p w w = p w [ kg w = [ kg w ] ρ = m + m da w = 1 ] m da MW p da p w p da kg da p da V p pv 1+W w kg da p w ( ) φ = p w p ws pv = p ρ = RT R i = R MW i Dew point temperature: ln p ws = C 8 T +C 9 +C 10 T +C 11 T 2 +C 12 T 3 +C 13 lnt 30

31 Psychrometric equations summary (SI units) Wet bulb temperature (iterative solver): W = ( T )W 1.006(T T wb s@t wb wb ) T 4.186T wb Specific volume: v = R T da = R T ( W ) da p p w p v (T )( W ) / p Specific enthalpy: h 1.006T +W ( T ) *where T is in C = actual W *Where T wb and T are in Celsius 31

32 d Relative Humidity φ 50% Enthalpy h 44 kj/kg da Dew Point Temp T dew 11.7 C Specific Volume v m 3 /kg da Density ρ 1/v 1.18 kg da /m 3 Wet Bulb Temp T wb 15.5 C Dry Bulb Temp T = 22 C Humidity Ratio W 8.2 g/kg da (i.e., kg/kg) 32

33 Revisit another example from last class Moist air exists at 30 C dry-bulb temperature with a 15 C dew point temperature Find the following: (a) the humidity ratio, W (b) degree of saturation, µ (c) relative humidity, ϕ (d) enthalpy, h (e) specific volume, ν (f) density, ρ (g) wet bulb temperature, T wb 33

34 Humidity ratio W = p w p p C For a known T dew = 15 C, we know that the actual humidity ratio in the air, W, is by definition the same as the saturation humidity ratio, W s, at an air temperature of 15 C C =W s@t=15 C = p ws@15c = kpa Assume p = kpa (sea level) p ws p p C C =W s@t=15 C = = kg w kg da

35 Degree of saturation Need the saturation humidity T = 30 C: W s@t=30 C = p ws p p C! µ = W $ # & " W s =30 C p ws@15c = kpa W s@t=30 C = = kg w µ = W W s = = 0.39 kg da 35

36 From previous: Relative humidity φ = p w p ws p w@t=30 C = p ws@t=15 C =1.7057kPa p ws@t=30 C = kPa φ = = 0.40 = 40% 36

37 Enthalpy h 1.006T +W ( T ) *where T is in C h 1.006(30) + ( )( (30)) = 57.4 kj kg 37

38 Specific volume and density v (T )( W ) / p v ( )( ( )) / ( ) ρ = 1 ( v 1+W ) = v m3 kg da ( ) =1.157 kg m 3 38

39 Wet-bulb temperature Wet-bulb temperature is the T wb that fits this equation: W = ( T wb )W s@t wb 1.006(T T wb ) T 4.186T wb = Procedure: where: T = 30 C T wb =? C W s@twb =? = Guess T wb, calculate pws for that T, calculate W s for that T Repeat until W calculated based on those values (and original T) in equation above is equal to actual W ( in our case) T wb = 20.1 C p ws p p wb =? *Where T wb and T are in Celsius 39

40 d Enthalpy h 58 kj/kg da Specific Volume v m 3 /kg da Saturation W W s 0.27 kg w /kg da Relative Humidity φ 40% Dew Point Temp T dew 15 C Dry Bulb Temp T = 30 C Wet Bulb Temp t b 20 C Humidity Ratio W 10.7 g/kg da (i.e., ) 40

41 IP units example Moist air exists at 68 F dry-bulb temperature with 50% RH at sea level Find the following using psychrometric equations (IP units): (a) the humidity ratio, W (b) the saturation humidity ratio, W s (c) degree of saturation, µ (d) specific volume, ν (e) density, ρ (f) enthalpy, h 41

42 HW 3 assigned HW 3 assigned on Blackboard last time Building an Excel-based psychrometric calculator Due Tuesday October 10 Next time: psychrometric processes 42

CAE 331/513 Building Science Fall 2015

CAE 331/513 Building Science Fall 2015 CAE 331/513 Building Science Fall 2015 Week 5: September 24, 2015 Psychrometrics (equations) Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com

More information

CAE 331/513 Building Science Fall 2013

CAE 331/513 Building Science Fall 2013 CAE 331/513 Building Science Fall 2013 Lecture 4: September 16, 2013 Finishing solar radiation and windows Psychrometrics and thermal comfort Advancing energy, environmental, and sustainability research

More information

Thermodynamics Introduction and Basic Concepts

Thermodynamics Introduction and Basic Concepts Thermodynamics Introduction and Basic Concepts by Asst. Prof. Channarong Asavatesanupap Mechanical Engineering Department Faculty of Engineering Thammasat University 2 What is Thermodynamics? Thermodynamics

More information

Welcome. Vaisala Industrial Measure Webinar Series - Humidity Theory, Terms & Definitions. Yumi Alanoly Vaisala Application Engineer

Welcome. Vaisala Industrial Measure Webinar Series - Humidity Theory, Terms & Definitions. Yumi Alanoly Vaisala Application Engineer Welcome Vaisala Industrial Measure Webinar Series - Humidity Theory, Terms & Definitions Yumi Alanoly Vaisala Application Engineer Agenda 1. Why do we measure humidity? 2. Dalton s Law 3. Relative humidity

More information

1. Water Vapor in Air

1. Water Vapor in Air 1. Water Vapor in Air Water appears in all three phases in the earth s atmosphere - solid, liquid and vapor - and it is one of the most important components, not only because it is essential to life, but

More information

Subject: Principles of Refrigeration and Air Conditioning Lecturer: Assistant Professor Dr. Waheed Shaty Mohammed

Subject: Principles of Refrigeration and Air Conditioning Lecturer: Assistant Professor Dr. Waheed Shaty Mohammed Subject: Principles of Refrigeration and Air Conditioning Lecturer: Assistant Professor Dr. Waheed Shaty Mohammed Refrences: 1-A. R. Trott and T. Welch " Refrigeration and Air conditioning ",Third Edition

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Psychrometrics

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Psychrometrics Principles of Food and Bioprocess Engineering (FS 21) Solutions to Example Problems on Psychrometrics 1. We begin by identifying the conditions of the two streams on the psychrometric chart as follows.

More information

ln P s T and P s T where R 22,105, D A 27, E B 97.

ln P s T and P s T where R 22,105, D A 27, E B 97. ASAE D271.2 DEC94 Psychrometric Data Reviewed by ASAE s Structures and Environment Division and the Food Engineering Division Standards Committees; approved by the Electric Power and Processing Division

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Psychometric Processes Good afternoon, yesterday we

More information

CAE 331/513 Building Science Fall 2017

CAE 331/513 Building Science Fall 2017 CAE 331/513 Building Science Fall 2017 September 19, 2017 Human thermal comfort Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Twitter: @built_envi

More information

Water-Temperature-Dependent Wet Bulb Temperature Calculation

Water-Temperature-Dependent Wet Bulb Temperature Calculation Water-Temperature-Dependent Wet Bulb Temperature Calculation Oxycom Fresh Air BV December 7th, 2012 Abstract A numerical solution for the exact calculation of the wet bulb temperature of air has been derived,

More information

Weather is the state or condition of the atmosphere at a given location for a brief time period.

Weather is the state or condition of the atmosphere at a given location for a brief time period. Topic 8: WEATHER Workbook chapter 7 Weather is the state or condition of the atmosphere at a given location for a brief time period. Differences in how Earth s surfaces absorb and reradiate energy from

More information

8.3 DESIGN OF A SINGLE-EFFECT EVAPORATOR

8.3 DESIGN OF A SINGLE-EFFECT EVAPORATOR 554 CHAPTER 8 Evaporation are presented in a general way. Custom-designed modifications of these types can significantly alter the specific duties. 8.3 DESIGN OF A SINGLE-EFFECT EVAPORATOR In a single-effect

More information

Theory. Humidity h of an air-vapor mixture is defined as the mass ratio of water vapor and dry air,

Theory. Humidity h of an air-vapor mixture is defined as the mass ratio of water vapor and dry air, Theory Background In a cooling tower with open water circulation, heat is removed from water because of the material and heat exchange between the water and the ambient air. The cooling tower is a special

More information

R13 SET - 1 '' ''' '' ' '''' Code No RT21033

R13 SET - 1 '' ''' '' ' '''' Code No RT21033 SET - 1 II B. Tech I Semester Supplementary Examinations, June - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A 1. What is meant by thermodynamics system? (A/M 2006) Thermodynamics system is defined as any space or matter or group of matter

More information

AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri. Chapter 6 Energy Balances on Chemical Processes

AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri. Chapter 6 Energy Balances on Chemical Processes AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri Chapter 6 Energy Balances on Chemical Processes Thermodynamics system surroundings system boundary Forms of Energy 1. Energy Possessed

More information

Non-Reacting Gas Mixtures. Introduction. P-V-T Relationships for Ideal Gas Mixtures. Amagat Model (law of additive volumes)

Non-Reacting Gas Mixtures. Introduction. P-V-T Relationships for Ideal Gas Mixtures. Amagat Model (law of additive volumes) Non-Reacting Gas Mixtures Reading Problems 13-1 13-3 13-52, 13-60 14-1 14-7 14-32, 14-35, 14-68, 14-71, 14-75 14-79, 14-103, 14-112 Introduction homogeneous gas mixtures are frequently treated as a single

More information

Exam 1 (Chaps. 1-6 of the notes)

Exam 1 (Chaps. 1-6 of the notes) 10/12/06 ATS 541 - Atmospheric Thermodynamics and Cloud Physics 1 Exam 1 (Chaps. 1-6 of the notes) ATS 541 students: Answer all questions ATS 441 students: You may delete problem 3 or problem 5 1. [10

More information

MARIA COLLEGE OF ENGINEERING AND TECHNOLOGY

MARIA COLLEGE OF ENGINEERING AND TECHNOLOGY MARIA COLLEGE OF ENGINEERING AND TECHNOLOGY ATTOOR ENGINEERING THERMODYNAMICS (TWO MARK QUESTION BANK) UNIT 1 (BASIC COMCEPTS AND FIRST LAW) 1. Define the term thermal engineering. Thermal engineering

More information

The Numerical Psychrometric Analysis

The Numerical Psychrometric Analysis he Numerical sychrometric Analysis by Jorge R. López Busó, MSME, E Introduction he sychrometric Analysis is the base of any HVAC system design. Nowadays, the psychrometric analysis is mainly done by means

More information

Humidification requirements in economizer-type HVAC systems

Humidification requirements in economizer-type HVAC systems Humidification requirements in economizer-type HVAC systems Viktor T. Toth January 2, 2012 Abstract We develop a formulation to compute the maximum humidification load for economizer-type HVAC systems.

More information

Common Terms, Definitions and Conversion Factors

Common Terms, Definitions and Conversion Factors 1 Common Terms, Definitions and Conversion Factors 1. Force: A force is a push or pull upon an object resulting from the object s interaction with another object. It is defined as Where F = m a F = Force

More information

1/2/2016 WEATHER DEFINITION

1/2/2016 WEATHER DEFINITION WEATHER DEFINITION Weather state or condition of the variables of the atmosphere at a given time Weather variables temperature, air pressure, wind, moisture, cloud cover, precipitation, storms Weather

More information

Greenhouse Steady State Energy Balance Model

Greenhouse Steady State Energy Balance Model Greenhouse Steady State Energy Balance Model The energy balance for the greenhouse was obtained by applying energy conservation to the greenhouse system as a control volume and identifying the energy terms.

More information

Lecture Ch. 6. Condensed (Liquid) Water. Cloud in a Jar Demonstration. How does saturation occur? Saturation of Moist Air. Saturation of Moist Air

Lecture Ch. 6. Condensed (Liquid) Water. Cloud in a Jar Demonstration. How does saturation occur? Saturation of Moist Air. Saturation of Moist Air Lecture Ch. 6 Saturation of moist air Relationship between humidity and dewpoint Clausius-Clapeyron equation Dewpoint Temperature Depression Isobaric cooling Moist adiabatic ascent of air Equivalent temperature

More information

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A UBMCC11 - THERMODYNAMICS B.E (Marine Engineering) B 16 UNIT I BASIC CONCEPTS AND FIRST LAW PART- A 1. What do you understand by pure substance? 2. Define thermodynamic system. 3. Name the different types

More information

PowerPoint Presentation by: Associated Technical Authors. Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois

PowerPoint Presentation by: Associated Technical Authors. Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois Althouse Turnquist Bracciano PowerPoint Presentation by: Associated Technical Authors Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois Chapter 1 History and Fundamentals of Refrigeration

More information

Evapotranspiration. Rabi H. Mohtar ABE 325

Evapotranspiration. Rabi H. Mohtar ABE 325 Evapotranspiration Rabi H. Mohtar ABE 325 Introduction What is it? Factors affecting it? Why we need to estimate it? Latent heat of vaporization: Liquid gas o Energy needed o Cooling process Saturation

More information

Chapter 4 Water Vapor

Chapter 4 Water Vapor Chapter 4 Water Vapor Chapter overview: Phases of water Vapor pressure at saturation Moisture variables o Mixing ratio, specific humidity, relative humidity, dew point temperature o Absolute vs. relative

More information

NEBB Fundamental Formulas

NEBB Fundamental Formulas Approved NEBB - May 1, 17 Page 1 of 8 Version 1.3 A = Area (ft²) IP, (m²) SI M = Mass (lb) IP, (kg) SI ACH = Air Changes per Hour ma = Mixed Air Ak = Effective Area m = meter (metre) AV = Average m³/s

More information

V i = component volume of component i. T282. c Dr. Md. Zahurul Haq (BUET) Gas Mixture ME 203 (2017) 6 / 22. Moist Air T284

V i = component volume of component i. T282. c Dr. Md. Zahurul Haq (BUET) Gas Mixture ME 203 (2017) 6 / 22. Moist Air T284 Ideal Gas ixtures Properties of Homogeeous ixtures & Pyschrometry Dr. d. Zahurul Haq Professor Departmet of echaical Egieerig Bagladesh Uiversity of Egieerig & Techology (BUET) Dhaka-000, Bagladesh zahurul@me.buet.ac.bd

More information

Atmospheric Composition הרכב האטמוספירה

Atmospheric Composition הרכב האטמוספירה Atmospheric Composition הרכב האטמוספירה N 2 O 2 Trace Gases Water Vapor (H 2 O) Argon (Ar) Carbon Dioxide (CO 2 ) Neon (Ne) Helium (He) Methane (CH 4 ) Nitrous Oxide (N 2 O) Ozone (O 3 ) Nitrogen and oxygen

More information

Psychrometrics USER GUIDE. MATLAB Functions Library. Humid Air Properties. Windows Operating System SI and I-P Units Version 2.0

Psychrometrics USER GUIDE. MATLAB Functions Library. Humid Air Properties. Windows Operating System SI and I-P Units Version 2.0 Humid Air Properties Psychrometrics MATLAB Functions Library USER GUIDE Windows Operating System SI and I-P Units Version 2.0 Copyright 2015-2019 Fluidika Techlabs S de RL de CV. All Rights Reserved. Table

More information

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 621 213. Department: Mechanical Subject Code: ME2202 Semester: III Subject Name: ENGG. THERMODYNAMICS UNIT-I Basic Concept and First Law 1. What do you understand

More information

Chapter 5 - Atmospheric Moisture

Chapter 5 - Atmospheric Moisture Chapter 5 - Atmospheric Moisture Understanding Weather and Climate Aguado and Burt Water Water Vapor - water in a gaseous form, not droplets. Water can also achieve solid and liquid phases on Earth Temperature

More information

DEPARTMENT OF MECHANICAL ENGINEERING ME6301-ENGINEERING THERMODYNAMICS

DEPARTMENT OF MECHANICAL ENGINEERING ME6301-ENGINEERING THERMODYNAMICS SYED AMMAL ENGINEERING COLLEGE (Approved by the AICTE, New Delhi, Govt. of Tamilnadu and Affiliated to Anna University, chennai) Established in 1998 - An ISO 9001:2008 Certified Institution Dr. E.M.Abdullah

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008

Chapter 3 PROPERTIES OF PURE SUBSTANCES. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Objectives Introduce the concept of a pure substance. Discuss

More information

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8 CHEMISTRY 2000 Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 208 Dr. Susan Findlay See Exercises in Topic 8 Vapour Pressure of Pure Substances When you leave wet dishes on

More information

Ventilation. 6 Heat Exchangers. Air-conditioning processes. Vladimír Zmrhal (room no. 814)

Ventilation. 6 Heat Exchangers. Air-conditioning processes. Vladimír Zmrhal (room no. 814) Ventilation 6 Heat Exchangers Vladimír Zmrhal (room no. 814) http://users.fs.cvut.cz/~zmrhavla/index.htm Dpt. Of Environmental Engineering 1 Air-conditioning processes comfort 2 1 Dimensioning of air-conditioning

More information

Topic 1 The Atmosphere and Atmospheric Variables

Topic 1 The Atmosphere and Atmospheric Variables Name Notes: Topic 1 The Atmosphere Regents Earth Science Topic 1 The Atmosphere and Atmospheric Variables What is the atmosphere? Meteorology is the study of A. Structure of the Atmosphere: What two gases

More information

Guided Notes Weather. Part 1: Weather Factors Temperature Humidity Air Pressure Winds Station Models

Guided Notes Weather. Part 1: Weather Factors Temperature Humidity Air Pressure Winds Station Models Guided Notes Weather Part 1: Weather Factors Temperature Humidity Air Pressure Winds Station Models. 1. What is weather? Weather: short-term atmospheric conditions in a specific area at a specific time

More information

Dew Point and Cloud Formation

Dew Point and Cloud Formation Name: Date: ES: 1 2 3 4 Dew Point and Cloud Formation Part A: Run some water over your hands. After shaking off the excess, wave them back and forth until they are dry. 1. Describe the change in temperature

More information

CHAPTER 1. MEASURES OF ATMOSPHERIC COMPOSITION

CHAPTER 1. MEASURES OF ATMOSPHERIC COMPOSITION 1 CHAPTER 1. MEASURES OF ATMOSPHERIC COMPOSITION The objective of atmospheric chemistry is to understand the factors that control the concentrations of chemical species in the atmosphere. In this book

More information

Energy Balances. F&R Chapter 8

Energy Balances. F&R Chapter 8 Energy Balances. F&R Chapter 8 How do we calculate enthalpy (and internal energy) changes when we don t have tabulated data (e.g., steam tables) for the process species? Basic procedures to calculate enthalpy

More information

2.0 KEY EQUATIONS. Evaporator Net Refrigeration Effect. Compressor Work. Net Condenser Effect

2.0 KEY EQUATIONS. Evaporator Net Refrigeration Effect. Compressor Work. Net Condenser Effect 2.0 KEY EQUATIONS Evaporator Net Refrigeration Effect Q net refrigeration effect [] = (H 1 H 4 ) lb (Refrig Flow Rate) (60) min lb min hr H 1 = leaving evaporator enthalpy lb ; H 4 = entering evaporator

More information

Clouds associated with cold and warm fronts. Whiteman (2000)

Clouds associated with cold and warm fronts. Whiteman (2000) Clouds associated with cold and warm fronts Whiteman (2000) Dalton s law of partial pressures! The total pressure exerted by a mixture of gases equals the sum of the partial pressure of the gases! Partial

More information

III A-PROPATH: Moist Air

III A-PROPATH: Moist Air III A-PROPATH: Moist Air Use is made of two different formulations. One is that of ideal gas mixture of dry air and steam. Another is that of real fluid. 466 A-PROPATH: Moist Air 1. General Features 1.1

More information

Outline. Aim. Gas law. Pressure. Scale height Mixing Column density. Temperature Lapse rate Stability. Condensation Humidity.

Outline. Aim. Gas law. Pressure. Scale height Mixing Column density. Temperature Lapse rate Stability. Condensation Humidity. Institute of Applied Physics University of Bern Outline A planetary atmosphere consists of different gases hold to the planet by gravity The laws of thermodynamics hold structure as vertical coordinate

More information

Pyschrometric Sample Problem Pharmaceutical Engineering Graduate Program New Jersey Institute of Technology

Pyschrometric Sample Problem Pharmaceutical Engineering Graduate Program New Jersey Institute of Technology Background A pharmaceutical company wishes to construct a manufacturing space which will require an HVAC system that functions within the following parameters: Space drybulb temperature = 70 F Space relative

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc. Permission

More information

Section 2 of 6 Applied Psychrometrics

Section 2 of 6 Applied Psychrometrics Section 2 of 6 Applied Psychrometrics Psychrometric chart - your energy map Key psychrometric variables for humidity Predicting building condensation Hot weather Cold weather Predicting moisture sorption

More information

Thermal Properties, Moisture Diffusivity Chpt 8

Thermal Properties, Moisture Diffusivity Chpt 8 Processing and Storage of Ag Products Heating Cooling Combination of heating and cooling Grain dried for storage Noodles dried Fruits/Vegetables rapidly cooled Vegetables are blanched, maybe cooked and

More information

Unit 6. Unit Vocabulary: Distinguish between the three phases of matter by identifying their different

Unit 6. Unit Vocabulary: Distinguish between the three phases of matter by identifying their different *STUDENT* Unit Objectives: Absolute Zero Avogadro s Law Normal Boiling Point Compound Cooling Curve Deposition Energy Element Evaporation Heat Heat of Fusion Heat of Vaporization Unit 6 Unit Vocabulary:

More information

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O Formulas/Constants, Physics/Oceanography 4510/5510 B Atmospheric Physics II N A = 6.02 10 23 molecules/mole (Avogadro s number) 1 mb = 100 Pa 1 Pa = 1 N/m 2 Γ d = 9.8 o C/km (dry adiabatic lapse rate)

More information

7. The weather instrument below can be used to determine relative humidity.

7. The weather instrument below can be used to determine relative humidity. 1. What is the dewpoint temperature when the dry-bulb temperature is 12 C and the wet-bulb temperature is 7 C? A) 1 C B) -2 C C) -5 C D) 4 C 2. A parcel of air has a dry-bulb temperature reading of 16

More information

Thermodynamic Properties for Real Moist Air, Dry Air, Steam, Water, and Ice (ASHRAE RP-1485)

Thermodynamic Properties for Real Moist Air, Dry Air, Steam, Water, and Ice (ASHRAE RP-1485) Zittau/Görlitz University of Applied Sciences Department of Technical Thermodynamics www.thermodynamics-zittau.de Thermodynamic Properties for Real Moist Air, Dry Air, Steam, Water, and Ice (ASHRAE RP-1485)

More information

Atmosphere Properties and Instruments. Outline. AT351 Lab 2 January 30th, 2008

Atmosphere Properties and Instruments. Outline. AT351 Lab 2 January 30th, 2008 Atmosphere Properties and Instruments AT351 Lab 2 January 30th, 2008 Outline 1. Atmospheric Variables and How We Measure Them 2. Composition of the Atmosphere 3. How to Represent Weather Data Visually

More information

Chemistry Day 5. Friday, August 31 st Tuesday, September 4 th, 2018

Chemistry Day 5. Friday, August 31 st Tuesday, September 4 th, 2018 Chemistry Day 5 Friday, August 31 st Tuesday, September 4 th, 2018 Do-Now Title: BrainPOP: States of Matter 1. Write down today s FLT 2. List two examples of gases 3. List two examples of things that are

More information

Introduction. Lecture 6: Water in Atmosphere. How Much Heat Is Brought Upward By Water Vapor?

Introduction. Lecture 6: Water in Atmosphere. How Much Heat Is Brought Upward By Water Vapor? Lecture 6: Water in Atmosphere Introduction Over 70% of the planet is covered by water Water is unique in that it can simultaneously exist in all three states (solid, liquid, gas) at the same temperature

More information

GEF2200 Atmosfærefysikk 2012

GEF2200 Atmosfærefysikk 2012 GEF2200 Atmosfærefysikk 2012 Løsningsforslag til oppgavesett 4 WH06 3.46 (WH 2.49) The air parcel has the properties p = 1000hPa, T = 15 C and T d = 4 C. b Lifting the air parcel to p 2 = 900hPa, T 2 we

More information

Heat Flow Calculations Made Using the Models 8386 and 8386A VELOCICALC Plus Air Velocity Meters Application Note ITI-124

Heat Flow Calculations Made Using the Models 8386 and 8386A VELOCICALC Plus Air Velocity Meters Application Note ITI-124 Ventilation Test Instruments Heat Flow Calculations Made Using the Models 8386 and 8386A VELOCICALC Plus Air Velocity Meters Application Note ITI-124 The Models 8386 and 8386A calculate the heat flow between

More information

Honors Physics. Notes Nov 16, 20 Heat. Persans 1

Honors Physics. Notes Nov 16, 20 Heat. Persans 1 Honors Physics Notes Nov 16, 20 Heat Persans 1 Properties of solids Persans 2 Persans 3 Vibrations of atoms in crystalline solids Assuming only nearest neighbor interactions (+Hooke's law) F = C( u! u

More information

Simulation of Heat and Mass Transfer in the Corrugated Packing of the Counter Flow Cooling Tower

Simulation of Heat and Mass Transfer in the Corrugated Packing of the Counter Flow Cooling Tower Kasetsart J. (Nat. Sci.) 42 : 59-577 (2008) Simulation of Heat and Mass Transfer in the Corrugated Packing of the Counter Flow Cooling Tower Montri Pirunkaset* and Santi Laksitanonta BSTRCT This paper

More information

Lecture 3: DESIGN CONSIDERATION OF DRIERS

Lecture 3: DESIGN CONSIDERATION OF DRIERS Lecture 3: DESIGN CONSIDERATION OF DRIERS 8. DESIGN OF DRYER Design of a rotary dryer only on the basis of fundamental principle is very difficult. Few of correlations that are available for design may

More information

Physics 111. Lecture 34 (Walker 17.2,17.4-5) Kinetic Theory of Gases Phases of Matter Latent Heat

Physics 111. Lecture 34 (Walker 17.2,17.4-5) Kinetic Theory of Gases Phases of Matter Latent Heat Physics 111 Lecture 34 (Walker 17.2,17.4-5) Kinetic Theory of Gases Phases of Matter Latent Heat Dec. 7, 2009 Kinetic Theory Pressure is the result of collisions between gas molecules and walls of container.

More information

Psychrometrics USER GUIDE. Excel Add-In Library. Humid Air Properties. Windows Operating System SI and I-P Units Version 2.0

Psychrometrics USER GUIDE. Excel Add-In Library. Humid Air Properties. Windows Operating System SI and I-P Units Version 2.0 Humid ir Properties Psychrometrics Excel dd-in Library USER GUIDE Windows Operating System SI and I-P Units Version 2.0 Copyright 2015-2019 Fluidika Techlabs S de RL de CV. ll Rights Reserved. Table of

More information

Business. Final Exam Review. Competencies. Schedule Today. Most missed on Exam 3. Review Exam #3

Business. Final Exam Review. Competencies. Schedule Today. Most missed on Exam 3. Review Exam #3 Business Final Exam Review Online course evaluation (19/32 = 59%) Counts as a homework assignment (by Thurs) Professional program application Past due! Case study due today by 5 pm Leadership evaluation

More information

Ch10.4 Attractive Forces

Ch10.4 Attractive Forces Ch10.4 Attractive Forces Intermolecular Forces are the forces holding molecules to each other. Solids have strong forces Gases (vapor) have weak forces Intermolecular forces determine the phase of matter.

More information

CHAPTER 2. HVAC FUNDAMENTALS

CHAPTER 2. HVAC FUNDAMENTALS CHAPTER. HVAC FUNDAMENTALS. Human Thermal Comfort. Basic Physics.3 Properties of Moist Air.4 Energy Transport in HVAC Systems.5 HVAC Load Estimation. HUMAN THERMAL COMFORT.. Variables Affecting Thermal

More information

ME 201 Thermodynamics

ME 201 Thermodynamics ME 0 Thermodynamics Solutions First Law Practice Problems. Consider a balloon that has been blown up inside a building and has been allowed to come to equilibrium with the inside temperature of 5 C and

More information

Temp 54 Dew Point 41 Relative Humidity 63%

Temp 54 Dew Point 41 Relative Humidity 63% Temp 54 Dew Point 41 Relative Humidity 63% Water in the Atmosphere Evaporation Water molecules change from the liquid to gas phase Molecules in liquids move slowly Heat energy makes them move faster When

More information

Relative Humidity and Dew Point Lab

Relative Humidity and Dew Point Lab Name: Relative Humidity and Dew Point Lab Weather is the present state of the atmosphere. Factors that determine the type of weather the world will have are: air pressure, wind, temperature and the air

More information

Diffusional Growth of Liquid Phase Hydrometeros.

Diffusional Growth of Liquid Phase Hydrometeros. Diffusional Growth of Liquid Phase Hydrometeros. I. Diffusional Growth of Liquid Phase Hydrometeors A. Basic concepts of diffusional growth. 1. To understand the diffusional growth of a droplet, we must

More information

Weather & Atmospheric Variables Review

Weather & Atmospheric Variables Review Weather & Atmospheric Variables Review Words that are bold, italicized and/or underlined are vocabulary you must KNOW! A) Atmospheric variables: a) Temperature as it relates to: 1) duration of insolation...longer

More information

solid IMF>liquid IMF>gas IMF Draw a diagram to represent the 3 common states of matter of a given substance: solid liquid gas

solid IMF>liquid IMF>gas IMF Draw a diagram to represent the 3 common states of matter of a given substance: solid liquid gas Thermochemistry Part 1 Notes States of Matter and Intermolecular Forces (IMF) Chemistry HP At the end of this unit, students should be able to: Describe the various states of matter in terms of kinetic

More information

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 9210-221 Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 0 You should have the following for this examination one answer book non programmable calculator pen, pencil, drawing instruments

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc.

More information

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS, FLUID AND PLANT PROCESSES The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS TUTORIAL 1 LIQUIDS VAPOURS - GASES SAE

More information

Lecture PowerPoints. Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Page 1. Name: 1) The graph below shows air temperature for an area near the Earth's surface during a 12-hour period.

Page 1. Name: 1) The graph below shows air temperature for an area near the Earth's surface during a 12-hour period. Name: 1) The graph below shows air temperature for an area near the Earth's surface during a 12-hour period. Which graph best illustrates the probable change in air pressure during the same time period?

More information

01/21/14 Solution to the Assigned Problems of Workshop 1 Chem. 103, Spring 2014

01/21/14 Solution to the Assigned Problems of Workshop 1 Chem. 103, Spring 2014 Chapter 1 Chemistry - the Science of Change 01/21/14 Solution to the Assigned Problems of Workshop 1 Chem. 10, Spring 2014 Home-assigned problems 1.49, 1.67, 1.75, 1.87, 1.91, 1.9, 1.99, 1.105, 1.107,

More information

Phase Diagrams. Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur India

Phase Diagrams. Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur India Phase Diagrams 1 Increasing the temperature isobarically T-v diagram of constant-pressure phase-change processes of a pure substance at various pressures numerical values are for water. 2 Temperature -

More information

MODULE TITLE : MASS AND ENERGY BALANCE TOPIC TITLE : ENERGY BALANCE TUTOR MARKED ASSIGNMENT 3

MODULE TITLE : MASS AND ENERGY BALANCE TOPIC TITLE : ENERGY BALANCE TUTOR MARKED ASSIGNMENT 3 THIS BOX MUST BE COMPLETED Student Code No.... Student's Signature... Date Submitted... Contact e-mail... MODULE TITLE : MASS AND ENERGY BALANCE TOPIC TITLE : ENERGY BALANCE TUTOR MARKED ASSIGNMENT 3 NAME...

More information

LAB 3: Atmospheric Pressure & Moisture

LAB 3: Atmospheric Pressure & Moisture Name School LAB 3: Atmospheric Pressure & Moisture Our atmosphere is a very dynamic area especially when we see what type of interactions it has with the surrounding environment. This lab will begin discussing

More information

Thermodynamics System Surrounding Boundary State, Property Process Quasi Actual Equilibrium English

Thermodynamics System Surrounding Boundary State, Property Process Quasi Actual Equilibrium English Session-1 Thermodynamics: An Overview System, Surrounding and Boundary State, Property and Process Quasi and Actual Equilibrium SI and English Units Thermodynamic Properties 1 Thermodynamics, An Overview

More information

ME Thermodynamics I

ME Thermodynamics I Homework - Week 01 HW-01 (25 points) Given: 5 Schematic of the solar cell/solar panel Find: 5 Identify the system and the heat/work interactions associated with it. Show the direction of the interactions.

More information

Temperature and Its Measurement

Temperature and Its Measurement Temperature and Its Measurement When the physical properties are no longer changing, the objects are said to be in thermal equilibrium. Two or more objects in thermal equilibrium have the same temperature.

More information

PNEUMATIC ENTHALPY COMPARATOR

PNEUMATIC ENTHALPY COMPARATOR PNEUATIC ENTHALPY COPARATOR APS ANALYSTS OF PNEUATIC SYSTES LIITED analystsofpneumatic@bellnet.ca http://www.apscontrols.ca PHONE: (9) 6-2333 FAX: (9) 6-2444 CONTENTS PAGE - Preface ------------------------------------------

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Chapter 3 PROPERTIES OF PURE SUBSTANCES PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure

More information

MT3230 Supplemental Data 4.2 Spring, 2018 Dr. Sam Miller COMPUTING THE LATENT HEAT OF VAPORIZATION OF WATER AS A FUNCTION OF TEMPERATURE.

MT3230 Supplemental Data 4.2 Spring, 2018 Dr. Sam Miller COMPUTING THE LATENT HEAT OF VAPORIZATION OF WATER AS A FUNCTION OF TEMPERATURE. MT3230 Supplemental Data 4.2 Spring, 2018 Dr. Sam Miller COMPUTING THE LATENT HEAT OF VAPORIZATION OF WATER AS A FUNCTION OF TEMPERATURE Abstract The latent heat of vaporization parameterizes the amount

More information

Chapter 16. Copyright 2010 Pearson Education, Inc.

Chapter 16. Copyright 2010 Pearson Education, Inc. Chapter 16 Temperature and Heat Units of Chapter 16 Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work Specific Heats Conduction, Convection,

More information

4 WATER VAPOR. Contents 4.1. VAPOR PRESSURE AT SATURATION

4 WATER VAPOR. Contents 4.1. VAPOR PRESSURE AT SATURATION Copyright 2017 by Roland Stull. Practical Meteorology: An Algebra-based Survey of Atmospheric Science. v1.02b 4 WATER VAPOR Contents 4.1. Vapor Pressure at Saturation 87 HIGHER MATH Clausius-Clapeyron

More information

Chapter 9. Preview. Objectives Defining Temperature. Thermal Equilibrium. Thermal Expansion Measuring Temperature. Section 1 Temperature and

Chapter 9. Preview. Objectives Defining Temperature. Thermal Equilibrium. Thermal Expansion Measuring Temperature. Section 1 Temperature and Section 1 Temperature and Thermal Equilibrium Preview Objectives Defining Temperature Thermal Equilibrium Thermal Expansion Measuring Temperature Section 1 Temperature and Thermal Equilibrium Objectives

More information

The Water Cycle. Water in the Atmosphere AOSC 200 Tim Canty. Class Web Site:

The Water Cycle. Water in the Atmosphere AOSC 200 Tim Canty. Class Web Site: Water in the Atmosphere AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Latent Heat Evaporation & Saturation Relative Humidity Dew Point Lecture 11 Oct 2 2018

More information

Chapter 1 Introduction and Basic Concepts

Chapter 1 Introduction and Basic Concepts Chapter 1 Introduction and Basic Concepts 1-1 Thermodynamics and Energy Application Areas of Thermodynamics 1-2 Importance of Dimensions and Units Some SI and English Units Dimensional Homogeneity Unity

More information

Engr. Yvonne Ligaya F. Musico Chemical Engineering Department

Engr. Yvonne Ligaya F. Musico Chemical Engineering Department GASEOUS STATE Engr. Yvonne Ligaya F. Musico Chemical Engineering Department TOPICS Objective Properties of Gases Kinetic Molecular Theory of Gases Gas Laws OBJECTIVES Determine how volume, pressure and

More information

Content. Climate Parameters used for the measurement and recording of weather phenomena The Psychrometric Chart

Content. Climate Parameters used for the measurement and recording of weather phenomena The Psychrometric Chart Climate Content Climate Parameters used for the measurement and recording of weather phenomena The Psychrometric Chart Climate Climate is a measure of the average pattern of variation in temperature, humidity,

More information

ME 2202 ENGINEERING THERMODYNAMICS TWO MARKS QUESTIONS AND ANSWERS UNIT I BASIC CONCEPTS AND FIRST LAW

ME 2202 ENGINEERING THERMODYNAMICS TWO MARKS QUESTIONS AND ANSWERS UNIT I BASIC CONCEPTS AND FIRST LAW ME 2202 ENGINEERING THERMODYNAMICS TWO MARKS QUESTIONS AND ANSWERS UNIT I BASIC CONCEPTS AND FIRST LAW 1. What is thermodynamics? It is a basic science that deals with energy and its transformations. The

More information