Organic Molecules, Photoredox, and. Catalysis

Size: px
Start display at page:

Download "Organic Molecules, Photoredox, and. Catalysis"

Transcription

1 Organic Molecules, Photoredox, and Catalysis 1

2 What is Photoredox Catalysis 2

3 Transition Metal vs Organic Photoredox Transition Metal Catalysts Organic Catalyst Reprinted (2017) with permission from (Wangelin, A. J. V., Majek, M. Acc. Chem. Res. 2016, ). Copyright (2016) American Chemical Society. Similar range of reduction potentials Ru(bpy) $/g Ir(ppy) $/g eosiny - 1 $/g 3

4 Why Photoredox? Facilitates unique/exotic bond construction Occurs under mild conditions Orthogonal to polar or two electron processes Tunable catalysts Excited state regulates reactivity Redox neutral processes allow catalytic use of external oxidants and reductants 4

5 Fukuzumi, et al. Org. Lett., 2005,

6 Fukuzumi, et al. Org. Lett., 2005,

7 Outline-Photophysical Process Photophysical Properties Catalyst Design Methods Absorption Decay ISC PET Cage escape Back electron transfer S 1 vs T 1 7

8 Absorption and Types of Decay Absorption of a photon causing an electron to excite from the ground state (S 0 ) to the singlet excited state (S 1 ) Radiative decay- Loss of radiation in the form of a photon. S 1 to S 0 is called fluorescence Non-radiative decay (Interconversion): loss of energy as heat/ vibrations/ and rotations. Anslyn, E. V.; Dougherty, D. A. Modern physical organic chemistry; Univ. Science Books: Sausalito, CA, 2008 Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Principles of molecular photochemistry: an introduction; Viva Books: New Delhi,

9 Inter System Crossing (ISC) and Electron Transfer ISC is a radiationless spin relaxation from S 1 to the triplet T 1 and is a forbidden process Transition from T 1 to S 0 is a forbidden process. Relaxation from S 1 to ground state S 0 is an allowed transition A reductant can donate an electron to the excited substrate This transfer causes the formation of a radical ion pair Anslyn, E. V.; Dougherty, D. A. Modern physical organic chemistry; Univ. Science Books: Sausalito, CA, 2008 Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Principles of molecular photochemistry: an introduction; Viva Books: New Delhi,

10 Cage Escape and Back Electron Transfer (BET) Cage Escape-The process of solvation and separation of a radical ion pair into free ions Only possible if the excited state has a long lifetime BET-The decay of an excited electron back to the ground state of the reductant BET causes no net reaction between the photocatalyst and the reductant Anslyn, E. V.; Dougherty, D. A. Modern physical organic chemistry; Univ. Science Books: Sausalito, CA, 2008 Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Principles of molecular photochemistry: an introduction; Viva Books: New Delhi,

11 Outline-Photocatalyst Design Photophysical Properties Catalyst Design ph Quantum Yield Free Rotor Effect Heavy Atom Effect Donor-Acceptor Catalysts Methods 11

12 ph Effects on Absorption Isomer A and B are not catalytically active species and do not absorb in the visible light region ph is often neglected when catalytic species are reported in the literature and can drastically effect the absorption of a catalyst Romero, N. A.,Nicewicz, D. A. Chem. Rev. 2016, 116,

13 Quantum Yield φ = # molecules that undergo specific chemical process # photons of light absorbed Quantum Yield is an indicator of a processes efficiency Quantum yield is usually measured in terms of relative rates to different processes and can be misleading Example: both of these have the same quantum yield but vastly different rates of fluorescence. The rate of ISC for pyrene-3-carboxaldahyde is also much faster then benzene. Anslyn, E. V.; Dougherty, D. A. Modern physical organic chemistry; Univ. Science Books: Sausalito, CA, 2008 Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Principles of molecular photochemistry: an introduction; Viva Books: New Delhi,

14 Free Rotor Effect Addition of substituents with many degrees of rotational/ vibrational freedom increases the efficiency of internal conversion The substitution of a simple alkyl group can drastically effect the quantum yield of a catalyst Anslyn, E. V.; Dougherty, D. A. Modern physical organic chemistry; Univ. Science Books: Sausalito, CA, 2008 Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Principles of molecular photochemistry: an introduction; Viva Books: New Delhi,

15 Why the bromines? Significant numbers of efficient photocatalysts contain multiple heavy atoms such as bromine or iodine. Heavy atoms lead to an increased population of the T 1 state This increase is due to Spin Orbit Coupling and is called the heavy atom effect Anslyn, E. V.; Dougherty, D. A. Modern physical organic chemistry; Univ. Science Books: Sausalito, CA, 2008 Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Principles of molecular photochemistry: an introduction; Viva Books: New Delhi,

16 Donor-Acceptor Electron Transfer p-omettpp + λ max = 455nm E red =1.9V Efficient photocatalysts have charge separation or areas of high and low electron density separated by a lack of conjugation These donor-acceptor pairs facilitate electron transfer due to Marcus Theory Anslyn, E. V.; Dougherty, D. A. Modern physical organic chemistry; Univ. Science Books: Sausalito, CA, 2008 Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Principles of molecular photochemistry: an introduction; Viva Books: New Delhi,

17 2004: A New Organic Photoredox Catalyst Acr + -Mes Strong absorption band at λ=430nm Strong donor-acceptors regions Catalyst s excited state possesses high oxidation potential Reduced catalyst participates in further single electron transfer Mix between S 1 and T 1 state Commercially available 1g/$170 Fukuzumi, et al. J. Am. Chem. Soc., 2004, 126, 1600.; Fukuzumi, et al. J. Am. Chem. Soc., 2004, 126, ; Fukuzumi, et al. Org. Lett., 2005, 7, 4265.; Fukuzumi, et al. Org. Lett., 2006, 8, 6079.; Griesbeck, A. G., et al. Org. Lett., 2007, 9, 611.; Fukuzumi, 17 et al. Chem. Commun., 2010, 46, 601.; Fukuzumi, et al. Chem. Commun., 2011, 47, 8515.; Fukuzumi, et al. Chem. Sci., 2011, 2, 715.

18 Acr + -Mes Photochemical Applications Photophysical Properties Catalyst Design Methods 18

19 Anti-Markovnikov Alkene Hydrofunctionalization 19

20 Anti-Markovnikov Hydroetherification Z=(CH 2 ) n Nicewicz, D. A., et al. J. Am. Chem. Soc. 2012, 134,

21 Mechanism icewicz, D. A., et al. J. Am. Chem. Soc. 2012, 134,

22 Intramolecular Anti-Markovnikov Hydroamination Nicewicz, D. A., et al. J. Am. Chem. Soc. 2013, 135,

23 Intermolecular Anti-Markovnikov Hydroaminaation Nicewicz, D. A., et al. Angew. Chem. Int. Ed., 2014, 53,

24 Anti-Markovnikov Hydrofluoronation Nicewicz, D. A., et al. Nat. Chem., 2014, 6,

25 Anti-Markovnikov Hydrochloronation Nicewicz, D. A., et al. Nat. Chem., 2014, 6,

26 Anti-Markovnikov Hydrofunctionalization Nicewicz, D. A., et al. J. Am. Chem. Soc., 2013, 135, Nicewicz, D. A., et al. Chem. Sci. 2013, 4,

27 Polar Radical Crossover Additions 27

28 Polar Radical Crossover Additions Group Question Provide a reasonable mechanism, and a stereochemical rationale for the formation of the syn and anti products. Finally, indicate which will be the major product. Nicewicz, D. A., et al. Angew. Chem. Int. Ed., 2013, 52,

29 Mechanism Nicewicz, D. A., et al. Angew. Chem. Int. Ed., 2013, 52,

30 Group Question Answer Nicewicz, D. A., et al. Angew. Chem. Int. Ed., 2013, 52,

31 Decarboxylative Functionalization 31

32 Hydrodecarboxylation Nicewicz, D. A., et al. J. Am. Chem. Soc., 2015, 137, pp

33 Hydrodecarboxylation Nicewicz, D. A., et al. J. Am. Chem. Soc., 2015, 137, pp

34 Fluorination Ye, J., et al.chem. Commun. 2015,

35 Formal [3+2] Cycloadditions 35

36 Formal [3+2] Cycloaddition for Pyrrole Synthesis Xiao, W.-J., et al. Angew. Chem. Int. Ed., 2014, 53,

37 Proposed Mechanism Xiao, W.-J., et al. Angew. Chem. Int. Ed., 2014, 53,

38 Oxazole Synthesis via Azirine Aldehyde Cycloaddition Xiao, W. J., et al. Org. Lett., 2015, 17,

39 Aryl C-H Functionalization 39

40 Arene C-H Amination Nicewicz, D. A., et al. Science, 2015, 349,

41 Mechanism Nicewicz, D. A., et al. Science, 2015, 349,

42 Arene Cyanation Nicewicz, D. A., et al. J. Am. Chem. Soc., 2017, asaps 42

43 Conclusion Photophysical Properties Catalyst Design Methods Organic photoredox catalysis is an expanding field Many privileged catalytic scaffolds other than the acridinium family exist Applications towards oxidation, reduction, C-H functionalization, and decarboxylative functionalization have been discovered New dual catalytic systems should be developed to enable enantioselective catalysis Increased oxidation and reduction potentials are necessary for the discovery of new types of synthetic disconnections 43

44 References Reviews Chanon. M, Julliard. M., Chem. Rev. 1983, 83, Albini. A, et al., Chem. Soc. Rev., 2013, 42, Wangelin, A. J. V., Majek, M. Acc. Chem. Res. 2016, 49, Romero, N. A.,Nicewicz, D. A. Chem. Rev. 2016, 116, Books Anslyn, E. V.; Dougherty, D. A. Modern physical organic chemistry; Univ. Science Books: Sausalito, CA, 2008 Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Principles of molecular photochemistry: an introduction; Viva Books: New Delhi,

45 Questions? 45

PHOTOCATALYSIS: FORMATIONS OF RINGS

PHOTOCATALYSIS: FORMATIONS OF RINGS PHOTOCATALYSIS: FORMATIONS OF RINGS Zachery Matesich 15 April 2014 Roadmap 2 Photoredox Catalysis Cyclizations Reductive Oxidative Redox-neutral Electron Transfer Conclusion http://www.meta-synthesis.com/webbook/11_five/five.html

More information

10. 6 Photochemistry. Out-class reading: Levine, pp photochemistry

10. 6 Photochemistry. Out-class reading: Levine, pp photochemistry Out-class reading: Levine, pp. 800-804 photochemistry 6.1 Brief introduction of light 1) Photochemistry The branch of chemistry which deals with the study of chemical reaction initiated by light. 2) Energy

More information

Excited State Processes

Excited State Processes Excited State Processes Photophysics Fluorescence (singlet state emission) Phosphorescence (triplet state emission) Internal conversion (transition to singlet gr. state) Intersystem crossing (transition

More information

Reactivity within Confined Nano-spaces

Reactivity within Confined Nano-spaces Reactivity within Confined Nano-spaces Larry Wolf Group Meeting 11-17-09 Encapsulating Cyclobutadiene hemicarcerand Anslyn, E. V; Dougherty, D. A. Modern Physical Organic Chemistry Cram. D. J. et. al.

More information

Advanced Organic Chemistry Chm 512/412 Spring Handout I Photochemistry Part 1. Photophysical Processes Quenching Alkene cis-trans Isomerization

Advanced Organic Chemistry Chm 512/412 Spring Handout I Photochemistry Part 1. Photophysical Processes Quenching Alkene cis-trans Isomerization Advanced rganic Chemistry Chm 512/412 Spring 2010 Handout I Photochemistry Part 1 Photophysical Processes Quenching Alkene cis-trans Isomerization Importance of Photochemistry/Photophysics rganic Synthesis

More information

Chem G8316_10 Supramolecular Organic Chemistry

Chem G8316_10 Supramolecular Organic Chemistry Chem G8316_10 Supramolecular Organic Chemistry Lecture 5, Wednesday, February 3, 2010 Photophysics of aromatic hydrocarbons Supramolecular effects on the photophysics of aromatic hydrocarbons 1 Course

More information

Recent Applications of Organic Dyes as Photoredox Catalysts in Organic Synthesis

Recent Applications of Organic Dyes as Photoredox Catalysts in Organic Synthesis pubs.acs.org/acscatalysis Downloaded via 148.251.232.83 on March 16, 2019 at 18:54:06 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. Recent

More information

Chap. 12 Photochemistry

Chap. 12 Photochemistry Chap. 12 Photochemistry Photochemical processes Jablonski diagram 2nd singlet excited state 3rd triplet excited state 1st singlet excited state 2nd triplet excited state 1st triplet excited state Ground

More information

Contents. List of. 2 Early pioneers of organic

Contents. List of. 2 Early pioneers of organic Contents List of V 1 1 2 Early pioneers of organic 3 2.1 15 3 Photophysics of 19 3.1 the 21 3.2 The 24 3.3 The Theoreticians' Perspective: A Closer 31 3.3.1 Transition 32 3.3.2 36 3.4 43 Flavin 45 4.1

More information

Advanced Organic Chemistry

Advanced Organic Chemistry D. A. Evans, G. Lalic Question of the day: Chemistry 530A TBS Me 2 C Me toluene, 130 C 70% TBS C 2 Me H H Advanced rganic Chemistry Me Lecture 16 Cycloaddition Reactions Diels _ Alder Reaction Photochemical

More information

1. Photoreduction of Benzophenone in 2-Propanol

1. Photoreduction of Benzophenone in 2-Propanol 1. Photoreduction of Benzophenone in 2-Propanol Topic: photochemistry, photophysics, kinetics, physical-organic chemistry Level: undergraduate physical chemistry Time: 2 x 2 hours (separated by ~24 hours)

More information

C H Activated Trifluoromethylation

C H Activated Trifluoromethylation Literature report C H Activated Trifluoromethylation Reporter:Yan Fang Superior:Prof. Yong Huang Jun. 17 th 2013 Contents Background Trifluoromethylation of sp-hybridized C-H Bonds Trifluoromethylation

More information

4. Organic photosynthetic reactions

4. Organic photosynthetic reactions 4. rganic photosynthetic reactions 100 4.1 eactions of ethenes and aromatic compounds Photoreactivity of ethenes E Geometrical isomerization In π-π* excited states, there is effectively no π bond and so

More information

PHOTOCHEMISTRY NOTES - 1 -

PHOTOCHEMISTRY NOTES - 1 - - 1 - PHOTOCHEMISTRY NOTES 1 st Law (Grotthus-Draper Law) Only absorbed radiation produces chemical change. Exception inelastic scattering of X- or γ-rays (electronic Raman effect). 2 nd Law (Star-Einstein

More information

Singlet Oxygen. Laura Calvo Parra Denmark Group Meeting February 21, 2017

Singlet Oxygen. Laura Calvo Parra Denmark Group Meeting February 21, 2017 Singlet Oxygen Laura Calvo Parra Denmark Group Meeting February 21, 2017 Presentation Outline I. Introduction II. Electronic transitions III. Photosensitizers IV. Schenk-Ene reaction V. [4+2] and [2+2]

More information

Chapter 15 Molecular Luminescence Spectrometry

Chapter 15 Molecular Luminescence Spectrometry Chapter 15 Molecular Luminescence Spectrometry Two types of Luminescence methods are: 1) Photoluminescence, Light is directed onto a sample, where it is absorbed and imparts excess energy into the material

More information

Asymmetric Catalysis by Lewis Acids and Amines

Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Lewis acid catalysis - Chiral (bisooxazoline) copper (II) complexes - Monodentate Lewis acids: the formyl -bond Amine catalysed reactions Asymmetric

More information

Modeling of S-N Bond Breaking in an Aromatic Sulfilimine. By Jacob Brunsvold & Katrina Hanson Advisor: Stacey Stoffregen

Modeling of S-N Bond Breaking in an Aromatic Sulfilimine. By Jacob Brunsvold & Katrina Hanson Advisor: Stacey Stoffregen Modeling of S-N Bond Breaking in an Aromatic Sulfilimine By Jacob Brunsvold & Katrina Hanson Advisor: Stacey Stoffregen Outline! Background Photochemical Reaction! Introduction to Photochemistry and Quantum

More information

David W.C. MacMillan: Career-in-Review. Yan Xu Dong Group Meeting Jan. 2, 2014

David W.C. MacMillan: Career-in-Review. Yan Xu Dong Group Meeting Jan. 2, 2014 David W.C. MacMillan: Career-in-Review Yan Xu Dong Group Meeting Jan. 2, 2014 David W.C. MacMillan: A Brief Introduction Career 1968 Born in Bellshill, Scotland. 1987-1991 Undergraduate degree in chemistry

More information

Supplemental Information: Photobasicity in. Quinolines: Origin and Tunability via the. Substituents Hammett Parameters

Supplemental Information: Photobasicity in. Quinolines: Origin and Tunability via the. Substituents Hammett Parameters Supplemental Information: Photobasicity in Quinolines: Origin and Tunability via the Substituents Hammett Parameters Eric Driscoll, Jonathan Ryan Hunt, and Jahan M Dawlaty University of Southern California

More information

Highlights from the MacMillan Lab. Kelly Craft Group Meeting Presentation 7/8/15

Highlights from the MacMillan Lab. Kelly Craft Group Meeting Presentation 7/8/15 Highlights from the MacMillan Lab Kelly Craft Group Meeting Presentation 7/8/15 David MacMillan! Born in Bellshill, Scotland (1968)! Undergraduate degree: University of Gaslow (Ernie Colvin)! PhD: University

More information

Fluorescence (Notes 16)

Fluorescence (Notes 16) Fluorescence - 2014 (Notes 16) XV 74 Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

single-molecule fluorescence resonance energy transfer

single-molecule fluorescence resonance energy transfer single-molecule fluorescence resonance energy transfer (2) determing the Förster radius: quantum yield, donor lifetime, spectral overlap, anisotropy michael börsch 26/05/2004 1 fluorescence (1) absorbance

More information

Deactivation Pathways in Transition Metal Catalysis

Deactivation Pathways in Transition Metal Catalysis Deactivation Pathways in Transition tal Catalysis Why Study Catalyst Decomposition? decomposition active for catalysis inactive for catalysis "One of the reasons for [the] limited understanding [of catalyst

More information

Enone Photochemistry: Fundamentals and Applications

Enone Photochemistry: Fundamentals and Applications Enone Photochemistry: Fundamentals and Applications Initial Discovery Ciamician and Silber were the first to report a 2 2 light-induced cycloaddition in 1908: Italian sunlight, one year carvone camphorcarvone

More information

https://cuvillier.de/de/shop/publications/766

https://cuvillier.de/de/shop/publications/766 Jelena Jenter (Autor) Nitrogen Donor Ligands in the Coordination Chemistry of the are Earth and Alkaline Earth Metals Synthesis - Structures - Catalysis https://cuvillier.de/de/shop/publications/766 Copyright:

More information

General Considerations on the Radiation and Photochemistry of Resists

General Considerations on the Radiation and Photochemistry of Resists Chapter 8 General Considerations on the Radiation and otochemistry of Resists Here the boundaries meet and all contradictions exist side by side. Fyodor Dostoevsky, The Brothers Karamazov 8.1 Interaction

More information

Chemistry 2. Molecular Photophysics

Chemistry 2. Molecular Photophysics Chemistry 2 Lecture 12 Molecular Photophysics Assumed knowledge Electronic states are labelled using their spin multiplicity with singlets having all electron spins paired and triplets having two unpaired

More information

N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations

N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations Angew. Chem. Int. Ed. 2017, 10.1002. 1 N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations Reporter: En Li Supervisor: Prof. Yong

More information

Catellani Reaction (Pd-Catalyzed Sequential Reaction) Todd Luo

Catellani Reaction (Pd-Catalyzed Sequential Reaction) Todd Luo Catellani Reaction (Pd-Catalyzed Sequential Reaction) Todd Luo 2014.1.6 1 Content Introduction Progress of Catellani Reaction o-alkylation and Applications o-arylation and Applications Conclusion and Outlook

More information

Last Updated: April 22, 2012 at 7:49pm

Last Updated: April 22, 2012 at 7:49pm Page 1 Electronic Properties of d 6 π Coordination Compounds The metal-to-ligand charge transfer (MLCT) excited states of d 6 π coordination compounds have emerged as the most efficient for both solar

More information

Excited States in Organic Light-Emitting Diodes

Excited States in Organic Light-Emitting Diodes Excited States in Organic Light-Emitting Diodes The metal-to-ligand charge transfer (MLCT) excited states of d 6 π coordination compounds have emerged as the most efficient for solar harvesting and sensitization

More information

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area 1 CHEMISTRY 263 HOME WORK Lecture Topics: Module7. Hydrogenation of Alkenes The Function of the Catalyst - Syn and anti- addition Hydrogenation of Alkynes - Syn- addition of hydrogen: Synthesis of cis-alkenes

More information

6.8 The HOMO and LUMO Concept of Electronic Transitions The Selection Rules for Electronic Transitions Physical Properties of

6.8 The HOMO and LUMO Concept of Electronic Transitions The Selection Rules for Electronic Transitions Physical Properties of Contents Part I Pericyclic Reactions 1 General Aspects of Pericyclic Reactions... 3 1.1 Introduction... 3 1.2 Molecular Orbitals and Their Symmetry Properties.... 4 1.3 Classification of Pericyclic Reactions...

More information

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry Benzene and Aromatic Compounds Chapter 15 Organic Chemistry, 8 th Edition John McMurry 1 Background Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Four degrees of unsaturation. It

More information

THE DIELS-ALDER REACTION

THE DIELS-ALDER REACTION 22.6 TE DIELS-ALDER REATIN 977 2 Both overlaps are bonding. ± 2 ± 2 2 M of the diene LUM of the alkene ( 2 ) (*) The [ + 2] cycloaddition is allowed by a thermal pathway. Both overlaps are bonding, so

More information

D. X. Hu Towards Catalytic Enantioselective Halogenation of Alkenes Burns Group

D. X. Hu Towards Catalytic Enantioselective Halogenation of Alkenes Burns Group D. X. Hu Towards Catalytic Enantioselective Halogenation of Alkenes Burns Group Literature Review Organic Synthesis 10, 20, 50 Years from Now? Catalytic Enantioselective Halogenation October 6 th, 2012

More information

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito 1 sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito 2016. 1. 30 1. Introduction 2 About Carbene 3 Brief history of carbene (~2000) Carbene Neutral compounds featuring a divalent carbon atom with only

More information

Radical cascade reactions triggered by single electron transfer

Radical cascade reactions triggered by single electron transfer Radical cascade reactions triggered by single electron transfer Reporter: Leming Wang Supervisor: Prof. Yong Huang 2017.11.13 Mateusz P. Plesniak, Huan-Ming Huang and David J. Procter; Nature Reviews Chemistry

More information

Chapter 11. Basics in spin-orbit couplings

Chapter 11. Basics in spin-orbit couplings 1- The Jablonski diagram (or the state diagram of diamagnetic molecules) 2- Various natures of excited states and basics in molecular orbitals 3- Vibronic coupling and the Franck-Condon term 4- Excited

More information

Catalytic alkylation of remote C H bonds enabled by proton-coupled electron transfer

Catalytic alkylation of remote C H bonds enabled by proton-coupled electron transfer Catalytic alkylation of remote C bonds enabled by proton-coupled electron transfer Reporter: Ji Zhou Checker: Shubo u Date: 2016/11/14 Choi, G. J.; Zhu, Q.-L.; Miller, D. C.; Gu, C. J.; Knowles, R. R.

More information

Principles and Applications of Photochemistry

Principles and Applications of Photochemistry Principles and Applications of Photochemistry Brian Wardle Manchester Metropolitan University, Manchester, UK A John Wiley & Sons, Ltd., Publication Principles and Applications of Photochemistry Principles

More information

Lewis Base Catalysis in Organic Synthesis

Lewis Base Catalysis in Organic Synthesis Hu Group Lewis Base Catalysis in Organic Synthesis Group Meeting Yuwen Zeng Sep. 28 th, 2014 Introduction Definitions Basic concepts Presentation Outline Lewis base catalysis: n- * Interactions Electrophilic

More information

A Simple Introduction of the Mizoroki-Heck Reaction

A Simple Introduction of the Mizoroki-Heck Reaction A Simple Introduction of the Mizoroki-Heck Reaction Reporter: Supervisor: Zhe Niu Prof. Yang Prof. Chen Prof. Tang 2016/2/3 Content Introduction Intermolecular Mizoroki-Heck Reaction Intramolecular Mizoroki-Heck

More information

This syllabus is printed on both sides of each page in the hard-copy version.

This syllabus is printed on both sides of each page in the hard-copy version. TO: FROM: Prospective Chemistry 5511 Students Peter Gaspar August 13, 2010 SUBJECT: Course Syllabus for Chemistry 5511 Fall 2010 Chemistry 5511 Mechanistic Organic Chemistry is the first semester of a

More information

Dr. P. Wipf Chem /26/2007

Dr. P. Wipf Chem /26/2007 I. Basic Principles I-L. Radicals & Carbenes Features of Radical Reactions Review: Curran, D. P. In Comprehensive Organic Synthesis; B. M. Trost and I. Fleming, Ed.; Pergamon Press: Oxford, 1991; Vol.

More information

XV 74. Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go?

XV 74. Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go? XV 74 Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go? 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet S = 0 could be any of them

More information

C h a p t e r S i x t e e n: Nuclear Magnetic Resonance Spectroscopy. An 1 H NMR FID of ethanol

C h a p t e r S i x t e e n: Nuclear Magnetic Resonance Spectroscopy. An 1 H NMR FID of ethanol 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 C h a p t e r S i x t e e n: Nuclear Magnetic Resonance Spectroscopy An 1 NMR FID of ethanol Note: Problems with italicized numbers

More information

Chemistry 2000 Lecture 18: Reactions of organic compounds

Chemistry 2000 Lecture 18: Reactions of organic compounds hemistry 2000 Lecture 18: Reactions of organic compounds Marc R. Roussel March 6, 2018 Marc R. Roussel Reactions of organic compounds March 6, 2018 1 / 27 Reactions of organic compounds Organic chemists

More information

Aromatic Compounds II

Aromatic Compounds II 2302272 Org Chem II Part I Lecture 2 Aromatic Compounds II Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 17 in Organic Chemistry, 8 th Edition, L.

More information

CHEMISTRY 263 HOME WORK

CHEMISTRY 263 HOME WORK Lecture Topics: CHEMISTRY 263 HOME WORK Module7: Hydrogenation of Alkenes Hydrogenation - syn and anti- addition - hydrogenation of alkynes - synthesis of cis-alkenes -synthesis of trans-alkenes Text sections:

More information

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry A. Loupy, B.Tchoubar Salt Effects in Organic and Organometallic Chemistry 1 Introduction - Classification of Specific Salt Effects 1 1.1 Specific Salt Effects Involving the Salt's Lewis Acid or Base Character

More information

Introduction ENERGY. Heat Electricity Electromagnetic irradiation (light)

Introduction ENERGY. Heat Electricity Electromagnetic irradiation (light) Photochemistry Introduction ENERGY Heat Electricity Electromagnetic irradiation (light) Vision: Triggered by a photochemical reaction Is red in the dark? The answer must be NO - Since what we see as colour

More information

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July Stereodivergent Catalysis Aragorn Laverny SED Group Meeting July 31 2018 1 Stereodivergent Catalysis In the context of asymmetric synthesis, a stereodivergent process is one that allows access to any given

More information

Lecture 3: Light absorbance

Lecture 3: Light absorbance Lecture 3: Light absorbance Perturbation Response 1 Light in Chemistry Light Response 0-3 Absorbance spectrum of benzene 2 Absorption Visible Light in Chemistry S 2 S 1 Fluorescence http://www.microscopyu.com

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

What the Einstein Relations Tell Us

What the Einstein Relations Tell Us What the Einstein Relations Tell Us 1. The rate of spontaneous emission A21 is proportional to υ 3. At higher frequencies A21 >> B(υ) and all emission is spontaneous. A 21 = 8π hν3 c 3 B(ν) 2. Although

More information

Hydrogen-Mediated C-C Bond Formation

Hydrogen-Mediated C-C Bond Formation EPFL - ISIC - LSPN Hydrogen-Mediated C-C Bond Formation History and selected examples The Research of Prof. Michael Krische (University of Texas at Austin) LSPN Group Seminar Mathias Mamboury Table of

More information

Bio-inspired C-H functionalization by metal-oxo complexes

Bio-inspired C-H functionalization by metal-oxo complexes 1 Literature Seminar Bio-inspired C-H functionalization by metal-oxo complexes 2016. 7. 23. Nagashima Nozomu 2 C-H functionalization by enzymes Enzymes enable aliphatic C-H functionalization 3 P450 oxidation

More information

O + k 2. H(D) Ar. MeO H(D) rate-determining. step?

O + k 2. H(D) Ar. MeO H(D) rate-determining. step? ame: CEM 633: Advanced rganic Chem: ysical Problem Set 6 (Due Thurs, 12/8/16) Please do not look up references until after you turn in the problem set unless otherwise noted. For the following problems,

More information

Fluorescence Quenching

Fluorescence Quenching Summary Fluorescence Quenching The emission of light from the excited state of a molecule (fluorescence or phosphorescence) can be quenched by interaction with another molecule. The stationary and time-dependent

More information

Chemistry Instrumental Analysis Lecture 11. Chem 4631

Chemistry Instrumental Analysis Lecture 11. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 11 Molar Absorptivities Range 0 to 10 5 Magnitude of e depends on capture cross section of the species and probability of the energy-absorbing transition. e

More information

Nitrogen Centered Radical Ligands Nagashima Nozomu

Nitrogen Centered Radical Ligands Nagashima Nozomu 1 Nitrogen Centered Radical Ligands 2015. 7. 4. Nagashima Nozomu 1. Introduction 2 3 Aminyl radical 1) D. E. Wiliams, JACS, 1966, 88, 5665 2) Y. Teki et al. JOC, 2000, 65, 7889 Sterically protected aminyl

More information

Conjugated Systems, Orbital Symmetry and UV Spectroscopy

Conjugated Systems, Orbital Symmetry and UV Spectroscopy Conjugated Systems, Orbital Symmetry and UV Spectroscopy Introduction There are several possible arrangements for a molecule which contains two double bonds (diene): Isolated: (two or more single bonds

More information

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi Electrophilic Aromatic Substitution Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi 1 Recall the electophilic addition of HBr (or Br2) to alkenes H + nu cleophile H Br H

More information

Perhaps the most striking aspect of many coordination compounds of transition metals is that they have vivid colors. The UV-vis spectra of

Perhaps the most striking aspect of many coordination compounds of transition metals is that they have vivid colors. The UV-vis spectra of 1 Perhaps the most striking aspect of many coordination compounds of transition metals is that they have vivid colors. The UV-vis spectra of coordination compounds of transition metals involve transitions

More information

Department of Chemistry, University of Saskatchewan Saskatoon SK S7N 4C9, Canada. Wipf Group. Tyler E. Benedum Current Literature February 26, 2005

Department of Chemistry, University of Saskatchewan Saskatoon SK S7N 4C9, Canada. Wipf Group. Tyler E. Benedum Current Literature February 26, 2005 Ward, D.E; Jheengut, V.; Akinnusi, O.T. Enantioselective Direct Intermolecular Aldol Reactions with Enantiotopic Group Selectivity and Dynamic Kinetic Resolution, Organic Letters 2005, ASAP. Department

More information

Excited States Calculations for Protonated PAHs

Excited States Calculations for Protonated PAHs 52 Chapter 3 Excited States Calculations for Protonated PAHs 3.1 Introduction Protonated PAHs are closed shell ions. Their electronic structure should therefore be similar to that of neutral PAHs, but

More information

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or nonaromatic? 1 2 Classify cyclononatetrene and it s various ions

More information

Anti-Markovnikov Olefin Functionalization

Anti-Markovnikov Olefin Functionalization Anti-Markovnikov Olefin Functionalization ~Prof. Robert H. Grubbs Work~ 4 th Literature Seminar July 5, 2014 Soichi Ito (D1) Contents 1. Introduction Flow of Prof. Grubbs Research Markovnikov s Rule Wacker

More information

Functionalization of arene and heteroarene via organic photoredox catalysis. Reporter: Fengjin Wu Supervisor: Prof. Huang Date:

Functionalization of arene and heteroarene via organic photoredox catalysis. Reporter: Fengjin Wu Supervisor: Prof. Huang Date: Functionalization of arene and heteroarene via organic photoredox catalysis Reporter: Fengjin Wu Supervisor: Prof. Huang Date: 10. 23. 2017 Outline: 1. Background 2. Direct C-H bond functionalization of

More information

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010 Bifunctional Asymmetric Catalysts: Design and Applications Junqi Li CHEM 535 27 Sep 2010 Enzyme Catalysis vs Small-Molecule Catalysis Bronsted acid Lewis acid Lewis acid Bronsted base Activation of both

More information

What dictates the rate of radiative or nonradiative excited state decay?

What dictates the rate of radiative or nonradiative excited state decay? What dictates the rate of radiative or nonradiative excited state decay? Transitions are faster when there is minimum quantum mechanical reorganization of wavefunctions. This reorganization energy includes

More information

Palladium-catalyzed sp 3 C H activation. Yan Xu Dong Group Meeting Apr. 2, 2014

Palladium-catalyzed sp 3 C H activation. Yan Xu Dong Group Meeting Apr. 2, 2014 Palladium-catalyzed sp 3 C H activation, Yan Xu Dong Group Meeting Apr. 2, 2014 Content 1 Allylic C H activation 2 Benzylic C H activation Palladiumcatalyzed sp 3 C H activation 3 4 Common sp 3 C H activation:

More information

Chapter 2 Energy Transfer Review

Chapter 2 Energy Transfer Review Chapter 2 Energy Transfer Review In this chapter, we discuss the basic concepts of excitation energy transfer, making the distinction between radiative and nonradiative, and giving a brief overview on

More information

About the GRE Chemistry Subject Test p. 1 About the GRE Chemistry Subject Test GRE Chemistry Topics Test Dates Testing Fee Test Format Testing Time

About the GRE Chemistry Subject Test p. 1 About the GRE Chemistry Subject Test GRE Chemistry Topics Test Dates Testing Fee Test Format Testing Time About the GRE Chemistry Subject Test p. 1 About the GRE Chemistry Subject Test GRE Chemistry Topics Test Dates Testing Fee Test Format Testing Time Scoring To Guess or Not to Guess On the Day of the Test

More information

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology Organic Chemistry M. R. Naimi-Jamal Faculty of Chemistry Iran University of Science & Technology Chapter 5-2. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry,

More information

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions I. General Features of Electronic spectroscopy. A. Visible and ultraviolet photons excite electronic state transitions. ε photon = 120 to 1200

More information

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS) Reactions of Aromatic Compounds Reading: Wade chapter 17, sections 17-1- 17-15 Study Problems: 17-44, 17-46, 17-47, 17-48, 17-51, 17-52, 17-53, 17-59, 17-61 Key Concepts and Skills: Predict and propose

More information

p Bonds as Nucleophiles

p Bonds as Nucleophiles Chapter 8 p Bonds as Nucleophiles REACTIONS OF ALKENES, ALKYNES, DIENES, AND ENOLS Copyright 2018 by Nelson Education Limited 1 8.2.1 Orbital structure of alkenes Geometry: Electrostatic potential: Electron-rich

More information

Electronic Spectra of Complexes

Electronic Spectra of Complexes Electronic Spectra of Complexes Interpret electronic spectra of coordination compounds Correlate with bonding Orbital filling and electronic transitions Electron-electron repulsion Application of MO theory

More information

1. Predict the structure of the molecules given by the following spectral data: a Mass spectrum:m + = 116

1. Predict the structure of the molecules given by the following spectral data: a Mass spectrum:m + = 116 Additional Problems for practice.. Predict the structure of the molecules given by the following spectral data: a Mass spectrum:m + = IR: weak absorption at 9 cm - medium absorption at cm - NMR 7 3 3 C

More information

TOK: The relationship between a reaction mechanism and the experimental evidence to support it could be discussed. See

TOK: The relationship between a reaction mechanism and the experimental evidence to support it could be discussed. See Option G: Further organic chemistry (15/22 hours) SL students study the core of these options and HL students study the whole option (the core and the extension material). TOK: The relationship between

More information

E L E C T R O P H O S P H O R E S C E N C E

E L E C T R O P H O S P H O R E S C E N C E Organic LEDs part 4 E L E C T R O P H O S P H O R E S C E C E. OLED efficiency 2. Spin 3. Energy transfer 4. Organic phosphors 5. Singlet/triplet ratios 6. Phosphor sensitized fluorescence 7. Endothermic

More information

ACTIVATION OF C H BONDS BY LOW-VALENT METAL COMPLEXES ( THE ORGANOMETALLIC CHEMISTRY )

ACTIVATION OF C H BONDS BY LOW-VALENT METAL COMPLEXES ( THE ORGANOMETALLIC CHEMISTRY ) CHAPTER IV ACTIVATION OF C H BONDS BY LOW-VALENT METAL COMPLEXES ( THE ORGANOMETALLIC CHEMISTRY ) n the end of the 1960s the leading specialist in homogeneous catalysis Jack Halpern wrote [1]: to develop

More information

Photoredox Catalysis in Organic Chemistry

Photoredox Catalysis in Organic Chemistry This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. pubs.acs.org/joc Photoredox

More information

4 Single molecule FRET

4 Single molecule FRET 4 Single molecule FRET FRET basics Energie Dipole-dipole interaction Teil I SM Fluo, Kap. 4 FRET FRET basics transfer rate (from Fermis Golden Rule) k t = 1 0 1 r 6 apple 2 9 ln(10) n 4 N A 128 5 Z d f

More information

The concept of the organic molecule as

The concept of the organic molecule as Perspective Supramolecular organic photochemistry: Control of covalent bond formation through noncovalent supramolecular interactions and magnetic effects Nicholas J. Turro* Department of Chemistry, Columbia

More information

Modern Molecular. Photochemistry. Nicholas J. Turro COLUMBIA UNIVERSITY. V. Ramamurthy UNIVERSITY OF MIAMI. J. C. Scaiano UNIVERSITY OF OTTAWA

Modern Molecular. Photochemistry. Nicholas J. Turro COLUMBIA UNIVERSITY. V. Ramamurthy UNIVERSITY OF MIAMI. J. C. Scaiano UNIVERSITY OF OTTAWA Modern Molecular Photochemistry of Organic Molecules Nicholas J. Turro COLUMBIA UNIVERSITY V. Ramamurthy UNIVERSITY OF MIAMI J. C. Scaiano UNIVERSITY OF OTTAWA TECHNISCHE INFORM A HON SB i i.-,l IOTHEK

More information

NOT TO BE REMOVED FROM THE EXAMINATION HALL

NOT TO BE REMOVED FROM THE EXAMINATION HALL A copy of the Level III (FHEQ Level 6) Equation and Data Sheet booklet is provided. The use of hand-held, battery-operated, electronic calculators will be permitted subject to the regulations governing

More information

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group Literature eport Functionalization of C(sp 3 ) Bonds Using a Transient Directing Group eporter: Mu-Wang Chen Checker: Yue Ji Date: 2016-04-05 Yu, J.-Q. et al. Science 2016, 351, 252-256. Scripps esearch

More information

Fluorescence 2009 update

Fluorescence 2009 update XV 74 Fluorescence 2009 update Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

Figure 1 Relaxation processes within an excited state or the ground state.

Figure 1 Relaxation processes within an excited state or the ground state. Excited State Processes and Application to Lasers The technology of the laser (Light Amplified by Stimulated Emission of Radiation) was developed in the early 1960s. The technology is based on an understanding

More information

Amphoteric Molecules < Chemistry of Andrei K. Yudin > Hyung Min Chi 17 JUNE 2014

Amphoteric Molecules < Chemistry of Andrei K. Yudin > Hyung Min Chi 17 JUNE 2014 Amphoteric Molecules < Chemistry of Andrei K. Yudin > Hyung Min Chi 17 JUNE 2014 1 Amphoteric molecules Amphoteric? Greek word amphoteros (both of two) Amphoterism in acid/base chemistry Amino acids (thermodynatic

More information

Supplementary Figure 1 XRD and Raman spectrum characterization of GQDs. a, XRD pattern of GQDs. b, Raman spectrum of GQDs, the appearance of the mode

Supplementary Figure 1 XRD and Raman spectrum characterization of GQDs. a, XRD pattern of GQDs. b, Raman spectrum of GQDs, the appearance of the mode Supplementary Figure 1 XRD and Raman spectrum characterization of GQDs. a, XRD pattern of GQDs. b, Raman spectrum of GQDs, the appearance of the mode at 1456 cm -1 is not fully understood. Nevertheless,

More information

Heavy cation e ect on intersystem crossing between triplet and singlet phenylacyl and benzyl geminate radical pairs within zeolites

Heavy cation e ect on intersystem crossing between triplet and singlet phenylacyl and benzyl geminate radical pairs within zeolites Tetrahedron Letters 41 (2000) 7163±7167 Heavy cation e ect on intersystem crossing between triplet and singlet phenylacyl and benzyl geminate radical pairs within zeolites Manoj Warrier, a Nicholas J.

More information

Rhodium Catalyzed Alkyl C-H Insertion Reactions

Rhodium Catalyzed Alkyl C-H Insertion Reactions Rhodium Catalyzed Alkyl C-H Insertion Reactions Rh Rh Jeff Kallemeyn 5/17/05 1. Cyclopropanation The Versatile and Reactive Rhodium Carbene R + Et Rh 2 (Ac) 4 R C 2 Et N 2 2. [2,3] sigmatropic rearrangement

More information

Mechanistic Studies of Allylsilane Rearrangement

Mechanistic Studies of Allylsilane Rearrangement chanistic Studies of Allylsilane Rearrangement Thesis: The goal of our project is to determine the operating mechanism in the transformation of α-siloxy allylsilanes to vinyl silanes. Elucidating the mechanism

More information

and Ultraviolet Spectroscopy

and Ultraviolet Spectroscopy Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 15 Conjugated Systems, Orbital Symmetry, and Ultraviolet Spectroscopy 2010, Prentice all Conjugated Systems Conjugated double bonds are separated

More information

UV-Vis Spectroscopy. Chem 744 Spring Gregory R. Cook, NDSU Thursday, February 14, 13

UV-Vis Spectroscopy. Chem 744 Spring Gregory R. Cook, NDSU Thursday, February 14, 13 UV-Vis Spectroscopy Chem 744 Spring 2013 UV-Vis Spectroscopy Every organic molecule absorbs UV-visible light Energy of electronic transitions saturated functionality not in region that is easily accessible

More information