Supplementary Figure 1 XRD and Raman spectrum characterization of GQDs. a, XRD pattern of GQDs. b, Raman spectrum of GQDs, the appearance of the mode

Size: px
Start display at page:

Download "Supplementary Figure 1 XRD and Raman spectrum characterization of GQDs. a, XRD pattern of GQDs. b, Raman spectrum of GQDs, the appearance of the mode"

Transcription

1 Supplementary Figure 1 XRD and Raman spectrum characterization of GQDs. a, XRD pattern of GQDs. b, Raman spectrum of GQDs, the appearance of the mode at 1456 cm -1 is not fully understood. Nevertheless, this mode has been previously suggested to be characteristic to the stretching vibrations of the C=C bonds, as observed on transpolyacetylene 1.

2 Supplementary Figure 2 XPS spectra of GQDs. a, Atom concentrations of C, N, O, and S. b-d, High-resolution N1s, S2p, and O1s XPS spectra of the as-prepared GQDs, respectively. e, High-resolution O1s XPS spectra of GQDs after heating at 150 o C.

3 Supplementary Figure 3 In vitro photostability comparison of GQDs and CdTe QDs. a, The GQDs labeled HeLa cells yielded stable fluorescent signals during 90 minutes continuous observation, the scale bar is 20 μm. b, In contrast, for the control group using CdTe QDs as fluorescent labels, the signals were decreased gradually upon increasing irradiation time, the scale bar is 20 μm.

4 Supplementary Figure 4 Effects of ph. The fluorescence intensity at 680 nm of GQDs (λ ex = 500 nm) in a citric acid-na 2 HPO 4 buffer solution in the range of ph values from 2 to 8.

5 Supplementary Figure 5 Time-dependent ESR signals of GQDs. a, GQDs solution with TEMP. b, Pure water with TEMP. c, The signal intensity at G vs irradiation time, red dots represent GQDs solution and dark dots represent the pure water solution.

6 Supplementary Figure 6 Chemical trapping measurements of the 1 O 2 quantum yield of GQDs. a, Photodegradation of Na 2 -ADPA with GQDs. b, The absorption peak area of GQDs. c, The decomposition rate constants of Na 2 -ADPA by GQDs. d, Photodegradation of Na 2 -ADPA with RB. e, The absorption peak area of RB. f, The decomposition rate constants of Na 2 -ADPA by RB.

7 Supplementary Figure 7 The 1 O 2 quantum yields measurements of GQDs at the different excitation wavelengths. a, The absorption spectra of GQDs and RB in water solution, and the reduction in absorption of Na 2 -ADPA at 378 nm in the presence of GQDs or RB was plotted as a function of the irradiation time using different wavelengths. b, c with 538 nm, d, e with 549 nm and f, g with 562 nm.

8 Supplementary Figure 8 Amplified nucleus fluorescence images stained by Hoechst in the presence of GQDs. a, Before irradiation, the scale bar is 5 μm. b, After irradiation, the scale bar is 5 μm.

9 Supplementary Figure 9 Time-dependent confocal bright field images of HeLa cells in the absence of GQDs with different irradiation time,the scale bar is 50 μm.

10 Supplementary Figure 10 In vivo stability of GQDs.

11 Supplementary Figure 11 Fluorescence images of mice after various treatments at 1 st, 9 th, 17 th, and 25 th day.

12 Supplementary Figure 12 The photothermal effects of GQDs.

13 Supplementary Figure 13 Time-dependent weight of the mice with different treatments.

14 Supplementary Figure 14 Evaluation of the energy gap between S 1 and T 1. Decrease of Na 2 -ADPA absorption at 378 nm as a function of light irradiation time in the presence of (a) GQDs, (b) GQDs-tetracence, and (c) GQDs-pentacence mixture in aqueous solution. [Na 2 -ADPA]=40 μg ml -1, QDs]=[Tetracence]=[Pentacence]=20 μg ml -1.

15 Supplementary Figure 15 The route for synthesis of PT2.

16 Supplementary Table 1 Fluorescence properties of GQDs compare with 9, 10-Dicyanoanthracene Fluorescence Lifetime (ns) GQDs 9,10-Dicyanoanthr (H 2 O) a-cene (Benzene) Fluorescence quantum yield GQDs (H 2 O) 9,10-Dicyanoanthrace n-e (Benzene) N /1.21/ % 47.2% Air 0.39/1.23/ % 44.8% O /1.10/ % 30.6%

17 Supplementary Table 2 The 1 O 2 quantum yields of GQDs using different wavelengths λ ex A RB /A GQDs K GQDs K RB Ф GQDs 538 nm nm nm

18 Supplementary Table 3 The 1 O 2 quantum yields of GQD in different ph solutions ph A GQDs K GQDs A RB K RB Ф GQDs

19 Supplementary Table 4 Signal-to-background data of GQDs in vivo imaging Exciting wavelength Collected fluorescence channels a I signal b I background c S/B nm nm a and b refer to the fluorescence intensity of injection district and the background, respectively. c refers to the signal to background of the fluorescence intensity

20 Supplementary Note 1: In Supplementary Figure 6, the decomposition rate constants K GQDs and K RB can be determined to be 0.27 and 0.048, respectively. (Supplementary Figures 6c and 6f). In addition, A GQDs is 26.9 (Supplementary Figure 6b) and A RB is 8.26 (Supplementary Figure 6e). Thus, Substituting 0.75 (the 1 O 2 quantum yield of RB in water) into the following formula: Ф GQDs =Ф RB *K GQDs *A RB /(K RB *A GQDs ).(1) Thus, 1 O 2 quantum yield of GQDs in water, Ф GQDs, can be calculated to be 1.3.

21 Supplementary Note 2. As shown in Supplementary Figure 12, after irradiation for 20 min, the temperature of GQDs aqueous solution was only increased by 8.8 o C at a concentration of 27 µm. Therefore, the photothermal effect of the GQDs could be ruled out in the in vivo experiments 2, 3.

22 Supplementary Note 3: the S 1 energy of GQDs was estimated around 2.14 ev (49.30 kcal mol -1 ). T 1 energy could normally be estimated from the phosphorescence emission. However, we could not directly observe the phosphorescence of GQDs, which is probably due to the efficient energy gap law effect resulted from the close energy level to the ground state 4-7. The energy level of T 1 state was thus estimated by using triplet quenchers with different triplet energy 8, 9. In the present work, we used a standard method to monitor the conversion rate of disodium 9,10-anthracendipropionic acid (Na 2 -ADPA) to its endoperoxide by 1 O 2 oxidation in the presence of the triplet quenchers, i.e., tetracence and pentacence with T 1 energy levels of kcal mol -1 and 19.8 kcal mol -1, respectively 10. As shown in Supplementary Figure 14, the bleaching rate of Na 2 -ADPA with GQDs mixture pentacence was dropped by about 24% compared with the control solution. In contrast, the addition of tetracence did not induce obvious change. Based on these observations, we could estimate that the triplet energy level of GQDs was between kcal mol -1 and kcal mol -1, and the energy gap (ΔE ST ) between S 1 state and T 1 state was calculated to be about 22.80~26.80 kcal mol -1. This result suggested that the excited state of GQDs (S 1 and T 1 ) could be quenched by ground-state oxygen jointly through ET 1 and ET 2 (Figure 5), and the quantum yield of 1 O 2 generation over 1.0 could be

23 reasonably forecasted. Supplementary References 1. López-Ríos, T., Sandré, É., Leclercq, S. & Sauvain, É. Polyacetylene in diamond films evidenced by surface enhanced raman scattering. Phy. Rev. Lett. 76, (1996). 2. Joensen, J. et al. The thermal effects of therapeutic lasers with 810 and 904 nm wavelengths on human skin. Photomed. Laser Surg. 29, (2011). 3. Moon, H. K., Lee, S. H. & Choi, H. C. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano. 3, (2009). 4. Englman, R. & Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18, (1970). 5. Ramasamy, S. M. & Hurtubise, R. J. Energy-gap law and room-temperature phosphorescence of polycyclic aromatic hydrocarbons adsorbed on cyclodextrin/sodium chloride solid matrices. Appl. Spectrosc. 50, (1996). 6. Itoh, T. Fluorescence and phosphorescence from higher excited states of organic molecules. Chem. Rev. 112, (2012). 7. Turro, N. J. Modern Molecular Photochemistry. 183, (University Science Books,

24 1991). 8. Herkstroeter, W. G. Determination of triplet-energy levels in azomethine dyes by energy-transfer measurements. J. Am. Chem. Soc. 97, (1975). 9. Ford, W. E. & Kamat, P. V. Photochemistry of 3,4,9,10-perylenetetracarboxylic dianhydride dyes. 3. Singlet and triplet excited-state properties of the bis (2,5-di-tert-butylphenyl)imide derivative. J. Phys. Chem. 91, (1987). 10. Herkstroeter, W. G. & Merkel, P. B. The triplet state energies of rubrene and diphenylisobenzofuran. J. Photochem. 16, (1981).

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) J Kazunari Matsuda Institute of Advanced Energy, Kyoto University Introduction of optical properties of nano-carbon materials

More information

Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy

Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy Electronic Supplementary Material Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy Minhuan Lan 1,, Shaojing Zhao 1,, Zhenyu

More information

High photostability and enhanced fluorescence of gold nanoclusters by silver doping-supporting information

High photostability and enhanced fluorescence of gold nanoclusters by silver doping-supporting information High photostability and enhanced fluorescence of gold nanoclusters by silver doping-supporting information Size measurements Figure S1 P2 FTIR measurements Figure S2 P2 XPS measurements Figure S3 P3 Photo-physical

More information

Physical Chemistry Lab II CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible.

Physical Chemistry Lab II CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible. Physical Chemistry Lab II Name: KEY CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible. Constants: c = 3.00 10 8 m/s h = 6.63 10-34 J s 1 Hartree = 4.36 10-18

More information

Supporting Information

Supporting Information Supporting Information Fluorescent Carbon Nanoparticle: Synthesis, Characterization and Bio-imaging Application S.C. Ray (a),*, Arindam Saha, Nikhil R. Jana * and Rupa Sarkar Centre for Advanced Materials,

More information

Raman spectroscopy of phthalocyanines and their sulfonated derivatives

Raman spectroscopy of phthalocyanines and their sulfonated derivatives Journal of Molecular Structure 744 747 (2005) 481 485 www.elsevier.com/locate/molstruc Raman spectroscopy of phthalocyanines and their sulfonated derivatives B. Brożek-Płuska*, I. Szymczyk, H. Abramczyk

More information

Chapter 15 Molecular Luminescence Spectrometry

Chapter 15 Molecular Luminescence Spectrometry Chapter 15 Molecular Luminescence Spectrometry Two types of Luminescence methods are: 1) Photoluminescence, Light is directed onto a sample, where it is absorbed and imparts excess energy into the material

More information

Supporting Information

Supporting Information Supporting Information Study of Diffusion Assisted Bimolecular Electron Transfer Reactions: CdSe/ZnS Core Shell Quantum Dot acts as an Efficient Electron Donor as well as Acceptor. Somnath Koley, Manas

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supplementary Information Cross-linker Mediated Formation of Sulfur-functionalized V 2 O 5 /Graphene

More information

Supporting Information for. Metallonaphthalocyanines as Triplet Sensitizers for Near-Infrared. Photon Upconversion beyond 850 nm

Supporting Information for. Metallonaphthalocyanines as Triplet Sensitizers for Near-Infrared. Photon Upconversion beyond 850 nm Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting Information for Metallonaphthalocyanines as Triplet Sensitizers for

More information

Department of Chemistry of The College of Staten Island and The Graduate Center, The City University of

Department of Chemistry of The College of Staten Island and The Graduate Center, The City University of Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Fe 3 O 4 /Carbon quantum dots hybrid nanoflowers for highly active and

More information

Haiyang Sun, Huimin Guo,* Wenting Wu, Xin Liu, Jianzhang Zhao*

Haiyang Sun, Huimin Guo,* Wenting Wu, Xin Liu, Jianzhang Zhao* Electronic Supplementary Information for: Coumarin phosphorescence observed with ^ Pt(II) bisacetylide complex and its applications for luminescent oxygen sensing and triplet-triplet-annihilation based

More information

PHOTOCHEMISTRY NOTES - 1 -

PHOTOCHEMISTRY NOTES - 1 - - 1 - PHOTOCHEMISTRY NOTES 1 st Law (Grotthus-Draper Law) Only absorbed radiation produces chemical change. Exception inelastic scattering of X- or γ-rays (electronic Raman effect). 2 nd Law (Star-Einstein

More information

A Biosensor for the Detection of Single Base Mismatches in microrna

A Biosensor for the Detection of Single Base Mismatches in microrna Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 215 Supporting Information A Biosensor for the Detection of Single Base Mismatches in microrna Jieon

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2012.63 Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control Liangfeng Sun, Joshua J. Choi, David Stachnik, Adam C. Bartnik,

More information

Fabrication of graphene quantum dot-decorated graphene sheets via. chemical surface modification

Fabrication of graphene quantum dot-decorated graphene sheets via. chemical surface modification Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary Information for: Fabrication of graphene quantum dot-decorated graphene sheets via

More information

Supporting Information for. Near infrared-to-blue photon upconversion by exploiting direct. S-T absorption of a molecular sensitizer

Supporting Information for. Near infrared-to-blue photon upconversion by exploiting direct. S-T absorption of a molecular sensitizer Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Supporting Information for Near infrared-to-blue photon upconversion by

More information

1. Photoreduction of Benzophenone in 2-Propanol

1. Photoreduction of Benzophenone in 2-Propanol 1. Photoreduction of Benzophenone in 2-Propanol Topic: photochemistry, photophysics, kinetics, physical-organic chemistry Level: undergraduate physical chemistry Time: 2 x 2 hours (separated by ~24 hours)

More information

Supramolecular Free Radicals: Near-infrared Organic Materials with Enhanced Photothermal Conversion. Supporting Information

Supramolecular Free Radicals: Near-infrared Organic Materials with Enhanced Photothermal Conversion. Supporting Information Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2015 Supramolecular Free Radicals: Near-infrared Organic Materials with Enhanced Photothermal

More information

10. 6 Photochemistry. Out-class reading: Levine, pp photochemistry

10. 6 Photochemistry. Out-class reading: Levine, pp photochemistry Out-class reading: Levine, pp. 800-804 photochemistry 6.1 Brief introduction of light 1) Photochemistry The branch of chemistry which deals with the study of chemical reaction initiated by light. 2) Energy

More information

1. Transition dipole moment

1. Transition dipole moment 1. Transition dipole moment You have measured absorption spectra of aqueous (n=1.33) solutions of two different chromophores (A and B). The concentrations of the solutions were the same. The absorption

More information

Lecture 3: Light absorbance

Lecture 3: Light absorbance Lecture 3: Light absorbance Perturbation Response 1 Light in Chemistry Light Response 0-3 Absorbance spectrum of benzene 2 Absorption Visible Light in Chemistry S 2 S 1 Fluorescence http://www.microscopyu.com

More information

Spectroscopy Problem Set February 22, 2018

Spectroscopy Problem Set February 22, 2018 Spectroscopy Problem Set February, 018 4 3 5 1 6 7 8 1. In the diagram above which of the following represent vibrational relaxations? 1. Which of the following represent an absorbance? 3. Which of following

More information

Supporting Information

Supporting Information Supporting Information A Low-Temperature Solid-Phase Method to Synthesize Highly Fluorescent Carbon Nitride Dots with Tunable Emission Juan Zhou, Yong Yang, and Chun-yang Zhang* Single-Molecule Detection

More information

Supplementary Information. depending on the atomic thickness of intrinsic and chemically doped. MoS 2

Supplementary Information. depending on the atomic thickness of intrinsic and chemically doped. MoS 2 Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary Information Confocal absorption spectral imaging of MoS 2 : Optical transitions

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is The Royal Society of Chemistry 2018 A Series of Two-photon Absorption Pyridinium Sulfonate Inner Salts Targeting

More information

Electrogenerated Upconverted Emission from Doped Organic Nanowires

Electrogenerated Upconverted Emission from Doped Organic Nanowires Electrogenerated Upconverted Emission from Doped Organic Nanowires Qing Li, Chuang Zhang, Jian Yao Zheng, Yong Sheng Zhao*, Jiannian Yao* Electronic Supplementary Information (ESI) 1 Experimental details

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is The Royal Society of Chemistry and Owner Societies 2014 Supporting Information 1. General procedure

More information

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) variable light emission created via direct ultrasonic exfoliation of

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) variable light emission created via direct ultrasonic exfoliation of Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) High quantum-yield luminescent MoS 2 quantum dots

More information

Electronic Supporting Information. for

Electronic Supporting Information. for Electronic Supplementary Material (ESI) for ChemComm. Supplementary material for Chemical Communications Electronic Supporting Information for Self-exothermic reaction prompted synthesis of single-layered

More information

Supporting Information

Supporting Information Supporting Information Remarkable Photothermal Effect of Interband Excitation on Nanosecond Laser-induced Reshaping and Size Reduction of Pseudo-spherical Gold Nanoparticles in Aqueous Solution Daniel

More information

Single-Molecule Methods I - in vitro

Single-Molecule Methods I - in vitro Single-Molecule Methods I - in vitro Bo Huang Macromolecules 2014.03.10 F 1 -ATPase: a case study Membrane ADP ATP Rotation of the axle when hydrolyzing ATP Kinosita group, 1997-2005 Single Molecule Methods

More information

[Supporting Information]

[Supporting Information] Transmittance (a.u.) Intensity (a.u.) Intensity (a.u.) [Supporting Information] New methods of synthesis and varied properties of carbon quantum dots with high nitrogen content Sunita Dey, P. Chithaiah,

More information

Effects of Temperature and Concentration on the Rate of Photo-bleaching of Erythrosine in Water

Effects of Temperature and Concentration on the Rate of Photo-bleaching of Erythrosine in Water Supporting Information for: Effects of Temperature and Concentration on the Rate of Photo-bleaching of Erythrosine in Water Joshua K. G. Karlsson, Owen J. Woodford, Roza Al-Aqar and Anthony Harriman* Molecular

More information

Luminescent Terbium and Europium Probes for Lifetime Based Sensing of Temperature between 0 and 70 C

Luminescent Terbium and Europium Probes for Lifetime Based Sensing of Temperature between 0 and 70 C Supporting Information of Luminescent Terbium and Europium Probes for Lifetime Based Sensing of Temperature between 0 and 70 C Jiangbo Yu *a, d, e Lining Sun a, b, d, Hongshang Peng a, c, Matthias I. J.

More information

Excited State Processes

Excited State Processes Excited State Processes Photophysics Fluorescence (singlet state emission) Phosphorescence (triplet state emission) Internal conversion (transition to singlet gr. state) Intersystem crossing (transition

More information

Strikingly different miscibility of n-octanol in highly-confined and quasi-confined water

Strikingly different miscibility of n-octanol in highly-confined and quasi-confined water Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Strikingly different miscibility of n-octanol in highly-confined and quasi-confined water Aparajita

More information

Sensitive and Recyclable Substrates of Surface-enhanced Raman Scattering

Sensitive and Recyclable Substrates of Surface-enhanced Raman Scattering Supporting Information Cyclic Electroplating and Stripping of Silver on Au@SiO 2 Core/Shell Nanoparticles for Sensitive and Recyclable Substrates of Surface-enhanced Raman Scattering Dan Li a, Da-Wei Li

More information

Supporting Information

Supporting Information Supporting Information Highly Sensitive, Reproducible, and Stable SERS Sensors Based on Well-Controlled Silver Nanoparticles Decorated Silicon Nanowire Building Blocks Xue Mei Han, Hui Wang, Xue Mei Ou,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Rapid detection of intracellular Cys

More information

Making OLEDs efficient

Making OLEDs efficient Making OLEDs efficient cathode anode light-emitting layer η = γ EL r ηpl k st External Efficiency Outcoupling Internal efficiency of LEDs η = γ EL r ηpl k st γ = excitons formed per charge flowing in the

More information

Supporting Information The Effect of Temperature and Gold Nanoparticle Interaction on the Lifetime and Luminescence of Upconverting Nanoparticles

Supporting Information The Effect of Temperature and Gold Nanoparticle Interaction on the Lifetime and Luminescence of Upconverting Nanoparticles Supporting Information Synthesis and Characterization Supporting Information The Effect of Temperature and Gold Nanoparticle Interaction on the Lifetime and Luminescence of Upconverting Nanoparticles Ali

More information

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation Zhigang Xiong, Li Li Zhang, Jizhen Ma, X. S. Zhao* Department of Chemical and Biomolecular Engineering,

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance Fan Dong *a, Yanjuan

More information

Photonics applications II. Ion-doped ChGs

Photonics applications II. Ion-doped ChGs Photonics applications II Ion-doped ChGs 1 ChG as a host for doping; pros and cons - Important - Condensed summary Low phonon energy; Enabling emission at longer wavelengths Reduced nonradiative multiphonon

More information

Introduction ENERGY. Heat Electricity Electromagnetic irradiation (light)

Introduction ENERGY. Heat Electricity Electromagnetic irradiation (light) Photochemistry Introduction ENERGY Heat Electricity Electromagnetic irradiation (light) Vision: Triggered by a photochemical reaction Is red in the dark? The answer must be NO - Since what we see as colour

More information

single-molecule fluorescence resonance energy transfer

single-molecule fluorescence resonance energy transfer single-molecule fluorescence resonance energy transfer (2) determing the Förster radius: quantum yield, donor lifetime, spectral overlap, anisotropy michael börsch 26/05/2004 1 fluorescence (1) absorbance

More information

Supplementary Materials: Size Control and Fluorescence Labeling of Polydopamine Melanin Mimetic Nanoparticles for Intracellular Imaging

Supplementary Materials: Size Control and Fluorescence Labeling of Polydopamine Melanin Mimetic Nanoparticles for Intracellular Imaging Supplementary Materials: Size Control and Fluorescence Labeling of Polydopamine Melanin Mimetic Nanoparticles for Intracellular Imaging Devang R. Amin 1,2, Caroline Sugnaux 1, King Hang Aaron Lau 3 and

More information

A Novel Fluorescent Chemosensor Based on Tetra-peptide for Measuring Zinc Ions in Aqueous Solutions and Live Cells

A Novel Fluorescent Chemosensor Based on Tetra-peptide for Measuring Zinc Ions in Aqueous Solutions and Live Cells Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. Supporting Information A Novel Fluorescent Chemosensor

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supporting Information Nitrogen and Sulfur Co-doped Carbon Dots with Strong Blue Luminescence

More information

CHEM Outline (Part 15) - Luminescence 2013

CHEM Outline (Part 15) - Luminescence 2013 CHEM 524 -- Outline (Part 15) - Luminescence 2013 XI. Molecular Luminescence Spectra (Chapter 15) Kinetic process, competing pathways fluorescence, phosphorescence, non-radiative decay Jablonski diagram

More information

Supporting Information

Supporting Information Supporting Information Engineering Lysosome-Targeting BODIPY Nanoparticles for Photoacoustic Imaging and Photodynamic Therapy under Near-Infrared Light Wenbo Hu, a Hengheng Ma, a Bing Hou, a Hui Zhao,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

Supplementary Figure 1. Potential energy, volume, and molecular distribution of the

Supplementary Figure 1. Potential energy, volume, and molecular distribution of the 1 2 3 4 5 6 7 8 Supplementary Figure 1. Potential energy, volume, and molecular distribution of the organic substrates prepared by MD simulation. (a) Change of the density and total potential energy of

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 7 Electronic Supplementary Information Modulation in the Acidity Constant of

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

Effect of Addition Au Nanoparticles on Emission Spectra of Laser Dye

Effect of Addition Au Nanoparticles on Emission Spectra of Laser Dye International Journal of Applied Engineering Research ISSN 973-462 Volume 2, Number 24 (27) pp. 4833-484 Effect of Addition Au Nanoparticles on Emission Spectra of Laser Dye Sara Ali Razzak, Lazem Hassan

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018. Supporting Information for Small, DOI: 10.1002/smll.201801523 Ultrasensitive Surface-Enhanced Raman Spectroscopy Detection Based

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 Electronic Supplementary Information Bright, Stable, and Tunable Solid-State Luminescence

More information

Microwave-Assisted Synthesis of BSA-Protected Small Gold. Nanoclusters and Their Fluorescence-Enhanced Sensing of Silver(Ι) Ions

Microwave-Assisted Synthesis of BSA-Protected Small Gold. Nanoclusters and Their Fluorescence-Enhanced Sensing of Silver(Ι) Ions Microwave-Assisted Synthesis of BSA-Protected Small Gold Nanoclusters and Their Fluorescence-Enhanced Sensing of Silver(Ι) Ions (Supporting Information) Yuan Yue, a,b Tian-Ying Liu, a Hong-Wei Li,* a Zhongying

More information

Optical Spectroscopy of Single-Walled Carbon Nanotubes

Optical Spectroscopy of Single-Walled Carbon Nanotubes Optical Spectroscopy of Single-Walled Carbon Nanotubes Louis Brus Chemistry Department, Columbia University Groups: Heinz, O Brien, Hone, Turro, Friesner, Brus 1. SWNT Luminescence dynamics psec pump-probe

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2017 Supplementary Information Supramolecular interactions via hydrogen bonding contributing to

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

doi: /PhysRevLett

doi: /PhysRevLett doi: 10.1103/PhysRevLett.77.494 Luminescence Hole Burning and Quantum Size Effect of Charged Excitons in CuCl Quantum Dots Tadashi Kawazoe and Yasuaki Masumoto Institute of Physics and Center for TARA

More information

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample.

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample. Luminescence Topics Radiative transitions between electronic states Absorption and Light emission (spontaneous, stimulated) Excitons (singlets and triplets) Franck-Condon shift(stokes shift) and vibrational

More information

Chap. 12 Photochemistry

Chap. 12 Photochemistry Chap. 12 Photochemistry Photochemical processes Jablonski diagram 2nd singlet excited state 3rd triplet excited state 1st singlet excited state 2nd triplet excited state 1st triplet excited state Ground

More information

Supplementary information for. Observation of photovoltaic action from photoacid-modified Nafion due to light-driven ion transport

Supplementary information for. Observation of photovoltaic action from photoacid-modified Nafion due to light-driven ion transport Supplementary information for Observation of photovoltaic action from photoacid-modified Nafion due to light-driven ion transport William White, a# Christopher D. Sanborn, a# Ronald S. Reiter, a David

More information

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES 42 CHAPTER 3 OPTICAL STUDIES ON SnS NANOPARTICLES 3.1 INTRODUCTION In recent years, considerable interest has been shown on semiconducting nanostructures owing to their enhanced optical and electrical

More information

'GEOi-C GIST Exam-^0> A-GSE-P-DIB Serial No. CHEMISTRY Paper II Time Allowed': Three Hours Maximum Marks : 200

'GEOi-C GIST Exam-^0> A-GSE-P-DIB Serial No. CHEMISTRY Paper II Time Allowed': Three Hours Maximum Marks : 200 Serial No. 'GEOi-C GIST Exam-^0> 11148 A-GSE-P-DIB CHEMISTRY Paper II Time Allowed': Three Hours Maximum Marks : 200 INSTRUCTIONS Please read each o f the following instructions carefully before attempting

More information

Visible Light Assisted Photocatalytic Hydrogen Generation and Organic Dye Degradation by CdS Metal Oxide hybrids in presence of Graphene Oxide

Visible Light Assisted Photocatalytic Hydrogen Generation and Organic Dye Degradation by CdS Metal Oxide hybrids in presence of Graphene Oxide Visible Light Assisted Photocatalytic Hydrogen Generation and Organic Dye Degradation by CdS Metal Oxide hybrids in presence of Graphene Oxide Ziyauddin Khan, Tridip Ranjan Chetia, Anil Kumar Vardhaman,

More information

Hybrid Gold Superstructures: Synthesis and. Specific Cell Surface Protein Imaging Applications

Hybrid Gold Superstructures: Synthesis and. Specific Cell Surface Protein Imaging Applications Supporting Information Hybrid Gold Nanocube@Silica@Graphene-Quantum-Dot Superstructures: Synthesis and Specific Cell Surface Protein Imaging Applications Liu Deng, Ling Liu, Chengzhou Zhu, Dan Li and Shaojun

More information

Solar desalination coupled with water remediation and molecular hydrogen production: A novel solar water-energy nexus

Solar desalination coupled with water remediation and molecular hydrogen production: A novel solar water-energy nexus Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 17 Supporting Information Solar desalination coupled with water remediation and

More information

General Considerations on the Radiation and Photochemistry of Resists

General Considerations on the Radiation and Photochemistry of Resists Chapter 8 General Considerations on the Radiation and otochemistry of Resists Here the boundaries meet and all contradictions exist side by side. Fyodor Dostoevsky, The Brothers Karamazov 8.1 Interaction

More information

Supporting Information for:

Supporting Information for: Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Supporting Information for: Hydroxyl-Triggered Fluorescence for Location of Inorganic Materials

More information

Photo-Reactivity. Jerusalem, Israel. Israel

Photo-Reactivity. Jerusalem, Israel. Israel Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 CsPbBr 3 and CH 3 NH 3 PbBr 3 Promote Visible-light Photo-Reactivity Shankar Harisingh

More information

Dihedral Angle Control of Blue Thermally-

Dihedral Angle Control of Blue Thermally- Supplementary Information Dihedral Angle Control of Blue Thermally- Activated Delayed Fluorescent Emitters through Donor Substitution Position for Efficient Reverse Intersystem Crossing Chan Seok Oh 1,

More information

Supplementary Figure 1. Fullerence has poor solubility in water while the C60S and LC60S nanoparticles can be stably dispersed in water.

Supplementary Figure 1. Fullerence has poor solubility in water while the C60S and LC60S nanoparticles can be stably dispersed in water. Supplementary Figure 1. Fullerence has poor solubility in water while the C60S and LC60S nanoparticles can be stably dispersed in water. (a) A typical photograph of fullerence (C60), C60S nanoparticles,

More information

5.33 Lecture Notes: Introduction to Spectroscopy

5.33 Lecture Notes: Introduction to Spectroscopy 5.33 Lecture Notes: ntroduction to Spectroscopy What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. Latin:

More information

Chapter 29 Molecular and Solid-State Physics

Chapter 29 Molecular and Solid-State Physics Chapter 29 Molecular and Solid-State Physics GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and

More information

Metal-Catalyzed Chemical Reaction of. Single Molecules Directly Probed by. Vibrational Spectroscopy

Metal-Catalyzed Chemical Reaction of. Single Molecules Directly Probed by. Vibrational Spectroscopy Supporting Information to: Metal-Catalyzed Chemical Reaction of Single Molecules Directly Probed by Vibrational Spectroscopy Han-Kyu Choi, Won-Hwa Park, Chan Gyu Park, Hyun-Hang Shin, Kang Sup Lee and

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. Photographs show the titration experiments by dropwise adding ~5 times number of moles of (a) LiOH and LiOH+H 2 O, (b) H 2 O 2 and H 2 O 2 +LiOH, (c) Li

More information

Highly Specific near-infrared Fluorescent probe for the Real-Time Detection of β-glucuronidase in Various Living Cells and Animals

Highly Specific near-infrared Fluorescent probe for the Real-Time Detection of β-glucuronidase in Various Living Cells and Animals Supplementary information Highly Specific near-infrared Fluorescent probe for the Real-Time Detection of β-glucuronidase in Various Living Cells and Animals Yinzhu Jin,, Xiangge Tian,, Lingling Jin, Yonglei

More information

Chem Homework Set Answers

Chem Homework Set Answers Chem 310 th 4 Homework Set Answers 1. Cyclohexanone has a strong infrared absorption peak at a wavelength of 5.86 µm. (a) Convert the wavelength to wavenumber.!6!1 8* = 1/8 = (1/5.86 µm)(1 µm/10 m)(1 m/100

More information

The photoluminescent graphene oxide serves as an acceptor rather. than a donor in the fluorescence resonance energy transfer pair of

The photoluminescent graphene oxide serves as an acceptor rather. than a donor in the fluorescence resonance energy transfer pair of Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 20XX The photoluminescent graphene oxide serves as an acceptor rather than a donor in the fluorescence

More information

Absorbance (a. u.) Wavelength (nm) Wavelength (nm) Intensity (a. u.) Wavelength (nm) Wavelength (nm)

Absorbance (a. u.) Wavelength (nm) Wavelength (nm) Intensity (a. u.) Wavelength (nm) Wavelength (nm) Intensity (a. u.) Absorbance (a. u.) a UV UV b Wavelength (nm) Wavelength (nm) UV UV Wavelength (nm) Wavelength (nm) Supplementary Figure 1. UV-Vis absorbance spectral changes of (a) SP-Gal (left, 10 μm),

More information

Supporting Information

Supporting Information Supporting Information In Situ Ratiometric Quantitative Tracing Intracellular Leucine Aminopeptidase Activity via an Activatable Near- Infrared Fluorescent Probe Kaizhi Gu, Yajing Liu, Zhiqian Guo,*,,#

More information

Chapter 11. Basics in spin-orbit couplings

Chapter 11. Basics in spin-orbit couplings 1- The Jablonski diagram (or the state diagram of diamagnetic molecules) 2- Various natures of excited states and basics in molecular orbitals 3- Vibronic coupling and the Franck-Condon term 4- Excited

More information

Time Resolved Pulsed Laser Photolysis Study of Pyrene Fluorescence Quenching by I - Anion

Time Resolved Pulsed Laser Photolysis Study of Pyrene Fluorescence Quenching by I - Anion 1 Time Resolved Pulsed Laser Photolysis Study of Pyrene Fluorescence Quenching by I - Anion Cameron Incognito, Ryan Bella, Cassandra Smith, Brandon Alexander Department of Chemistry, The Pennsylvania State

More information

Electronic Supplementary Information Band-Structure-Controlled BiO(ClBr) (1-x)/2 I x Solid Solutions for Visible-Light Photocatalysis

Electronic Supplementary Information Band-Structure-Controlled BiO(ClBr) (1-x)/2 I x Solid Solutions for Visible-Light Photocatalysis Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Band-Structure-Controlled BiO(ClBr)

More information

Fluorescence (Notes 16)

Fluorescence (Notes 16) Fluorescence - 2014 (Notes 16) XV 74 Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

Room temperature phosphorescence vs thermally activated delayed fluorescence in carbazole pyrimidine cored compounds

Room temperature phosphorescence vs thermally activated delayed fluorescence in carbazole pyrimidine cored compounds Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Room temperature phosphorescence vs

More information

Efficient Hydrogen Evolution. University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816,

Efficient Hydrogen Evolution. University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816, Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2017 MoS 2 /TiO 2 Heterostructures as Nonmetal Plasmonic Photocatalysts for Highly

More information

Excited States in Organic Light-Emitting Diodes

Excited States in Organic Light-Emitting Diodes Excited States in Organic Light-Emitting Diodes The metal-to-ligand charge transfer (MLCT) excited states of d 6 π coordination compounds have emerged as the most efficient for solar harvesting and sensitization

More information

Full-Color Light-Emitting Carbon Dots with a Surface-State

Full-Color Light-Emitting Carbon Dots with a Surface-State Supporting information Full-Color Light-Emitting Carbon Dots with a Surface-State -Controlled Luminescence Mechanism Hui Ding, Shang-Bo Yu, Ji-Shi Wei and Huan-Ming Xiong* Department of Chemistry, Fudan

More information

What is spectroscopy?

What is spectroscopy? Absorption Spectrum What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. With light, you aren t looking directly

More information

Supplementary Figure 1 Transient absorption (TA) spectrum pumped at 400 nm in the FAPbI3 sample with different excitation intensities and initial

Supplementary Figure 1 Transient absorption (TA) spectrum pumped at 400 nm in the FAPbI3 sample with different excitation intensities and initial Supplementary Figure 1 Transient absorption (TA) spectrum pumped at 400 nm in the FAPbI3 sample with different excitation intensities and initial carrier concentrations: (a) N0 = 4.84 10 18 cm -3 ; (c)

More information

Lectures Spectroscopy. Fall 2012

Lectures Spectroscopy. Fall 2012 Lectures 19-20 Spectroscopy Fall 2012 1 spectroscopic principles (Chem 1M/1N exps. #6 and #11) 4 1 spectroscopic excitations ( E = h = hc/ ; = c ) (nm) (sec -1 ) radiation technique molecular excitation

More information

Supporting Information. CdS/mesoporous ZnS core/shell particles for efficient and stable photocatalytic hydrogen evolution under visible light

Supporting Information. CdS/mesoporous ZnS core/shell particles for efficient and stable photocatalytic hydrogen evolution under visible light Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supporting Information CdS/mesoporous ZnS core/shell particles for efficient

More information

Lectures Spectroscopy. Fall 2012

Lectures Spectroscopy. Fall 2012 Lectures 19-20 Spectroscopy Fall 2012 1 spectroscopic principles (Chem 1M/1N exps. #6 and #11) 4 spectroscopic excitations ( E = h = hc/ ; = c ) (nm) (sec -1 ) radiation technique molecular excitation

More information