Fron%ers in Chemistry Seminar

Size: px
Start display at page:

Download "Fron%ers in Chemistry Seminar"

Transcription

1 Fron%ers in Chemistry eminar Transi%on Metal- Catalyzed Func%onaliza%on of C sp3 via C- bond ac%va%on Presented by: Jared T. ammill Wipf Group Mee%ng University of PiGsburgh eptember 22, 2012 Jared Wipf Group Page 1 of 73 9/28/2012

2 utline A. Introduction B. C sp3 C- Bond Functionalization A. C- Bond Formation B. C- Bond Formation C. C-C Bond Formation D. C-X Bond Formation C. Conclusions and Future Directions Jared Wipf Group 2 Jared Wipf Group Page 2 of 73 9/28/2012

3 What is Transition Metal-Catalyzed C- activation? [M] C C [M] -X -[M] C = C,,,, B, halogen Definition: The use of transition metals to increase the reactivity of a C- bond by replacement of the strong C- bond with a more readily functionalized C-[M] bond. Chem. ev. 1997, 97, Jared Wipf Group 3 Jared Wipf Group Page 3 of 73 9/28/2012

4 Advantages of C- ac%va%on nly requires prefunctionalization of one precursor Traditional C 2 FG 2 C FG 1 C FG 2 C 1 FG 1 C 1 C 2 C- activation C 2 FG C C FG C 1 C 1 C 2 cience, 2006, 312, Jared Wipf Group 4 Jared Wipf Group Page 4 of 73 9/28/2012

5 Advantages of C- ac%va%on Transition Metal Cataysis: FG Fe, h, u, Cu Pt, Pd FG Changing Metal we can get reactivity at 1º, 2º, and 3º C- bonds While many transition metals have been used today I will focus on Pt, Pd, Fe, h, u Jared Wipf Group 5 Jared Wipf Group Page 5 of 73 9/28/2012

6 Challenges of C- ac%va%on Inertness of alkanes Formerly known as paraffins, derived from the latin parum affinis (without affinity), products more reactive than M Ubiquitous nature of C- bonds electivity challenging: little difference in reactivity between C- bonds C BDE (kcal/mol) pka ( 2 ) pka s were reproduced from BDE s were reproduced based on Jared Wipf Group Chem. ev. 1997, 97, Jared Wipf Group Page 6 of 73 9/28/2012

7 Background C- Inser%on 1962: Chatt (dmpe) 2 u ap Initally proposed structure u(dmpe) 2 dmpe = Me 2 PC 2 C 2 PMe 2 Me 2 P Me 2 P P PMe 2 u u P PMe 2 PMe 2 Actual structure J. Chem. oc. 1962, 2545 J. rganomet. Chem. 2004, 689, : hilov Pt II D + D 1982: Bergmann J. Phys. Chem. 1969, 73, 1525 Ir Me 3 P hv Ir Me 3 P C- insertion Ir Me 3 P Jared Wipf Group cience, 1984, 223, Jared Wipf Group Page 7 of 73 9/28/2012

8 utline A. Introduction B. C sp3 C- Bond Functionalization A. C- Bond Formation B. C-C Bond Formation C. C- Bond Formation D. C-X Bond Formation C. Conclusions and Future Directions Jared Wipf Group 8 Jared Wipf Group Page 8 of 73 9/28/2012

9 hilov Chemistry C 4 [M] 3 C [M] FG 3 C FG Functionalization of Methane Methane = main constituent of natural gas eed way to functionalize for transport (gas à liquid) eed to use for synthesis of fine chemicals hilov chemistry C 4 Pt II (cat.) Pt IV (stoich) C 3 Methanol = industrial M for plastics and paints Poor efficiency Jared Wipf Group ature, 2007, 446, ew J. Chem. 1983, 7, Jared Wipf Group Page 9 of 73 9/28/2012

10 hilov Chemistry Mechanism: Cl 2 Pt II 2 Cl + C 4 - Cl Cl 2 Pt II 2 C 3 C 3 Cl 2 *Pt IV Cl 6 2- *Pt II Cl 4 2- xidation C 3 Cl Pt IV 2 2 Cl C 3 Key observation: toichiometric amount of Pt (needed for oxidation) Jared Wipf Group 10 Jared Wipf Group Page 10 of 73 9/28/2012

11 Current tate of the Art C 4 Pt II Cl Cl 2 4, 180 ºC C % Mechanism: Pt II X X C 4 -Cl Pt II C 3 X 2 4 Cat. Pt w/ 2 4 for x. C Ligand stabilized Pt II In Conc ºC >50 h 2 4 X Pt C IV 3 X X X = Cl, 4 Jared Wipf Group cience, 1998, 280, Jared Wipf Group Page 11 of 73 9/28/2012

12 White s Pd II Allylic C- Ac%va%on elective Allylic C- Insertion: Ph Pd(Ac) 2 (10 mol%) 'C 2 (2-4 equiv) BQ (1.5 equiv), air dioxane, 72 h, 45 ºC A ' C B ' examples: 53-77% yield 16:1 to 46:1 A:B BDE (kcal/mol) pka ( 2 ) J. Am. Chem. oc. 2005, 127, 6970 Ph Ph Pd(Ac) 2 (10 mol%) 'C 2 (2-4 equiv) BQ (2 equiv), air dioxane, h, 45 ºC ArB() 2 (1.5 equiv) 4-7 h, 45 ºC ' Ar 13 examples: 53-77% yield >20:1 E:Z >20:1 internal:terminal Jared Wipf Group J. Am. Chem. oc. 2006, 128, Jared Wipf Group Page 12 of 73 9/28/2012

13 Mechanism of Allylic C- Ac%va%on Electrophillic Pd II /Pd 0 Catalysis xidation BQ = ' L n Pd 0 eductive Elimination L n Pd II Ac L n Pd II ' L n Pd II C- Activation Ac 'C 2 Ligand Exchange Jared Wipf Group 13 Jared Wipf Group Page 13 of 73 9/28/2012

14 Complex Product Allylic C- PMP PMP a b Ph Ph Pd(Ac) 2 1. p- 2 Bz, BQ, 45 ºC 2. Li 3. K 2 C 3, Me 71% combined yield PMP at. Chem., 2009, 1, 547 Jared Wipf Group 14 Jared Wipf Group Page 14 of 73 9/28/2012

15 6- Deoxyerthronolide B PMP a b Ph Ph Pd(Ac) 2 BQ, 45 ºC PMP (56%, 2 recycles) > 40:1 dr TBAF breaks chelation to acid (outer sphere vs. inner sphere) "chelate" "non-chelate" Ph Ph Pd(Ac) 2 TBAF, BQ, 45 ºC PMP Pd vs. Pd (44% 2 recycles) 1:1.3 dr Jared Wipf Group at. Chem., 2009, 1, Jared Wipf Group Page 15 of 73 9/28/2012

16 xazoline Directed C- ac%va%on Direct the Palladium where to go: Pd(Ac) 2 (10 mol%) Ac Ac 2, MeCtBu 69% Pd(Ac) 2 (10 mol%) Ac Ac 2, MeCtBu 71% Pd(Ac) 2 (10 mol%) Ac Ac 2, MeCtBu Ac 50% Jared Wipf Group Angew. Chem. Int. Ed. 2005, 44, Jared Wipf Group Page 16 of 73 9/28/2012

17 anford s xime Me Pd(Ac) 2 (10 mol%) Me Ac PhI(Ac) 2 Ac/AC 2 75% Me Pd(Ac) 2 (10 mol%) PhI(Ac) 2 Ac/AC 2 Ac Me 75% Me Pd(Ac) 2 (10 mol%) Me Ac PhI(Ac) 2 Ac/AC 2 81% Jared Wipf Group J. Am. Chem. oc. 2004, 126, Jared Wipf Group Page 17 of 73 9/28/2012

18 Directed C- ac%va%on Pd II /Pd IV Catalysis Me C- Activation Ac Me Ac Pd II (Ac) 2 Me Pd II LL eductive Elimination Me Ac Ac Pd IV L PhI(Ac) 2 xidative L PhI Jared Wipf Group 18 Jared Wipf Group Page 18 of 73 9/28/2012

19 White s Fe C- ac%va%on (bf 6 ) 2 Piv Fe(,-PDP) (5 mol%) Ac (0.5 equiv) 2 2 (1.2 equiv) C 3 C, rt Piv 51% >99:1 dr Fe CC 3 CC 3 Fe(,-PDP) Jared Wipf Group cience, 2007, 318, 783 cience, 2010, 327, 566 at. Chem., 2011, 3, 216 cience, 2012, 335, 807 J. Am. Chem. oc. 2012, 143, Jared Wipf Group Page 19 of 73 9/28/2012

20 White s Fe C- ac%va%on (bf 6 ) 2 L n Fe III Fe CC 3 CC 3 L n Fe III LnFe III Fe(,-PDP) - L n Fe IV L n Fe V - Jared Wipf Group 20 Jared Wipf Group Page 20 of 73 9/28/2012

21 Predictable selec%vity General reactivity trends mirror BDE: 1º 2º 3º << <! EWG < " < EWG Want: electron rich, 3º C- bonds Does it work? Jared Wipf Group cience, 2007, 318, Jared Wipf Group Page 21 of 73 9/28/2012

22 Predictable selec%vity General reactivity trends mirror BDE: 1º 2º 3º << <! EWG < " < EWG Want: electron rich, 3º C- bonds Does it work: remote proximal remote:proximal X X X = Ac, X = Br, 5:1 9:1 X X X = Ac X = Br 29:1 20:1 = C 3 = C 3 >99:1 >99:1 Jared Wipf Group cience, 2007, 318, Jared Wipf Group Page 22 of 73 9/28/2012

23 Methylene reac%vity selec%vity Fe(,-PDP) (5 mol%) Ac (0.5 equiv) 2 2 (1.2 equiv) C 3 C, rt Yield 56% electivity 1.1:1 tereoelectronic Me 2 C Me 2 C Me 2 C 72% 2:1 teric Me 2 C Me 2 C Me 2 C 69% 3.5:1 70% 10:2:1 79% 1:1:1 Electronic 62% 9:1:1 41% Jared Wipf Group cience, 2010, 327, Jared Wipf Group Page 23 of 73 9/28/2012

24 Methylene reac%vity selec%vity Fe(,-PDP) (5 mol%) Ac (0.5 equiv) 2 2 (1.2 equiv) C 3 C, rt Yield 56% electivity 1.1:1 tereoelectronic Me 2 C Me 2 C Me 2 C 72% 2:1 teric Me 2 C Me 2 C Me 2 C 69% 3.5:1 70% 10:2:1 79% 1:1:1 Electronic 62% 9:1:1 41% Jared Wipf Group cience, 2010, 327, Jared Wipf Group Page 24 of 73 9/28/2012

25 Methylene reac%vity selec%vity Fe(,-PDP) (5 mol%) Ac (0.5 equiv) 2 2 (1.2 equiv) C 3 C, rt Yield 56% electivity 1.1:1 tereoelectronic Me 2 C Me 2 C Me 2 C 72% 2:1 teric Me 2 C Me 2 C Me 2 C 69% 3.5:1 70% 10:2:1 79% 1:1:1 Electronic 62% 9:1:1 41% Jared Wipf Group cience, 2010, 327, Jared Wipf Group Page 25 of 73 9/28/2012

26 Methylene reac%vity selec%vity Ac Fe(,-PDP) (5 mol%) Ac (0.5 equiv) Ac Ac 2 2 (1.2 equiv) C 3 C, rt 50% 11:1 DFT calculation à 3º C- bonds equal electronically electivity comes from sterics Jared Wipf Group cience, 2010, 327, Jared Wipf Group Page 26 of 73 9/28/2012

27 Methylene reac%vity selec%vity Ac Fe(,-PDP) (5 mol%) Ac (0.5 equiv) Ac Ac 2 2 (1.2 equiv) C 3 C, rt 50% 11:1 1 Fe(,-PDP) (5 mol%) Ac (0.5 equiv) 2 2 (1.2 equiv) C 3 C, rt 54% + 1 recycle 2X = sterically or electronically deactivated 3º C- Jared Wipf Group cience, 2010, 327, Jared Wipf Group Page 27 of 73 9/28/2012

28 verriding inherent selec%vity eme on-eme (bf 6 ) 2 Fe DG Fe DG Fe(,-PDP) General selectivity: E - rich, sterically accessible, 3º C- bonds Can we direct C- oxidation to less reactive groups? Jared Wipf Group J. Am. Chem. oc. 2012, 143, Jared Wipf Group Page 28 of 73 9/28/2012

29 Yes we can! t-bu C 2 Fe(,-PDP) (5 mol%) Ac (0.5 equiv) 2 2 (1.2 equiv) C 3 C, rt t-bu t-bu = Me 9% 36% = 54% -- C 2 Fe(,-PDP) (5 mol%) Ac (0.5 equiv) 2 2 (1.2 equiv) C 3 C, rt = Me = 2% 58% Jared Wipf Group J. Am. Chem. oc. 2012, 134, Jared Wipf Group Page 29 of 73 9/28/2012

30 Yes we can! Fe(,-PDP) (5 mol%) Ac (0.5 equiv) 2 2 (1.2 equiv) C 3 C, rt L n Fe C- Abstraction L n Fe hydroxyl rebound L n Fe Jared Wipf Group J. Am. Chem. oc. 2012, 134, Jared Wipf Group Page 30 of 73 9/28/2012

31 artwig s Ir Catalysis 3,4,7,8-Me 4 phen [Ir(cod)Me] 2 (0.5 mol%) Et 2 i Et 2 i [Ir(cod)Me] 2 (0.5 mol%) 3,4,7,8-Me 4 phen (1.2 mol%) 1 2 Et 2 i (1.2 equiv) KC 3, 2 2, TF/Me, 50 ºC 1 2 iet 2 Me 1 2 Ac 2, Et 3 C 2 Cl 2, rt 1 2 Ac Ac Tamao-Fleming xidation ature, 2012, 483, 70 Jared Wipf Group 31 Jared Wipf Group Page 31 of 73 9/28/2012

32 cope * ** [Ir(cod)Me] 2 (0.5 mol%), Et 2 i 2, rt then [Ir(cod)Me] 2 (0.5 mol%) 3,4,7,8-Me 4 phen (1.2 mol%) norbornene (1.2 equiv), TF, ºC 2. KC 3, 2 2, TF/Me, 50 ºC 3. Ac 2, Et 3, C 2 Cl 2, rt 1 2 Ac X Ac X = Cl** X = Br** X = CF 3 ** Ac 72% 72% 72% C Ac = t-bu = Me = Et2 = ipr Ac 71%** 71%* 53%* 69%* Ac = TIP** = TB** Ac 73% 55% Ac Ac Ac Ac 53%* 69%* ature, 2012, 483, 70 Jared Wipf Group 32 Jared Wipf Group Page 32 of 73 9/28/2012

33 cope * ** [Ir(cod)Me] 2 (0.5 mol%), Et 2 i 2, rt then [Ir(cod)Me] 2 (0.5 mol%) 3,4,7,8-Me 4 phen (1.2 mol%) norbornene (1.2 equiv), TF, ºC 2. KC 3, 2 2, TF/Me, 50 ºC 3. Ac 2, Et 3, C 2 Cl 2, rt 1 2 Ac Cbz Ac *60% Ac 76%* Ac 70%* Ac Ac Ac Ac Ac Ac Bu Ac 68%* 70%* 60%** (8:2 dr) Jared Wipf Group ature, 2012, 483, Jared Wipf Group Page 33 of 73 9/28/2012

34 C- oxygentaion ummary 1º C- Bonds Directed Pd or Ir catalysis Me º C- Bonds Allylic or Directed Pd catalysis Me 3º C- Bonds elective Fe cataylsis 1º 2º 3º << <! EWG < " < EWG Jared Wipf Group 34 Jared Wipf Group Page 34 of 73 9/28/2012

35 utline A. Introduction B. C sp3 C- Bond Functionalization A. C- Bond Formation B. C- Bond Formation C. C-C Bond Formation D. C-X Bond Formation C. Conclusions and Future Directions Jared Wipf Group 35 Jared Wipf Group Page 35 of 73 9/28/2012

36 C- Bond forma%on 1) eed to preoxidize C- bond for either displacement or reductive exchange 2) eliance on protection/deprotection to mask polar/acidic nature of nitrogens Breslow 1968: Cl Cl Zn Cyclohexane ZnCl 2 +! sulfonyl nitrene Early work of Gellman and. Breslow ( ) Tet. Lett., 1968, 51, 5349 i Pr IPh ML n C 3 C i Pr MLn = Mn(TPP)Cl Fe(TPP)Cl [Fe(cyclam)Cl 2 ]Cl FeCl 3 h 2 (Ac) 4 16% 77% 42% 16% 86% Jared Wipf Group Top Curr. Chem. 2010, 292, Jared Wipf Group Page 36 of 73 9/28/2012

37 Du Bois s h itrenoid h 2 (Ac) 4 (2 mol%) PhI(Ac) 2 Mg 1 2 Cbz X 1 2 X =, 2,, 3 3º 90% 86% C 2 Me 80% 2º TB 75% 78% pening: Cbz Ph C 3 C, rt Cbz Ph 88% Cbz Ph C 2 Me KAc DM, 40 ºC Cbz Ph Ac C 2 Me Jared Wipf Group J. Am. Chem. oc. 2001, 123, Jared Wipf Group Page 37 of 73 9/28/2012

38 Du Bois s h itrenoid h 2 (Ac) 4 (2 mol%) PhI(Ac) 2 Mg 1 2 Cbz X 1 2 X =, 2,, 3 2º C- Bond selectivity derived from chair-like T: u Favored u Disfavored Jared Wipf Group J. Am. Chem. oc. 2001, 123, Jared Wipf Group Page 38 of 73 9/28/2012

39 h itrenoid 2 1 K 2 C 3 Ts h 2 (TPA) 4 (5 mol%) acetone, rt h % 84% 64% Ph 60% From Allylic ubstrates: n-pr 67% 79% 62% Jared Wipf Group J. Am. Chem. oc. 2005, 127, Jared Wipf Group Page 39 of 73 9/28/2012

40 Du Bois s allylic solu%on u 2 (hp) 4 Cl 2 (2.5 mol%) PhI(C t 2 Bu) 2 5 Å M, C 2 Cl 2 Insertion (I) + Aziridine (A) 35% 2:1 (I/A) Ph 66% 8:1 (I/A) i 3 i Pr 71% 20:1 (I/A) 75% 20:1 (I/A) [u 2 (Ac) 24 Cl] C 6 5 Cl, reflux Cl u u Jared Wipf Group J. Am. Chem. oc. 2011, 133, Jared Wipf Group Page 40 of 73 9/28/2012

41 u itrenoid a radical approach tepwise biradical formation and recombination: Ph 2 u 2 (hp) 4 Cl (2.5 mol%) PhI(C 2 t Bu) 2 5 Å M, C 2 Cl 2 Ph o ring-opening 2-3% cis-trans isomerization Picosecond radical lifetime u 2 (hp) 4 Cl (2.5 mol%) 2 PhI(C t 2 Bu) 2 Ph D 5 Å M, C 2 Cl 2 D Ph + Ph D k /k D = 4.9 upports radical abstraction ebound mechanism Jared Wipf Group J. Am. Chem. oc. 2011, 133, Jared Wipf Group Page 41 of 73 9/28/2012

42 White s Fe Catalysis 2 Fe cat (10 mol%) AgbF 6 (10 mol%) allylic + 3º 1 2 PhI(Ac)2 (2 equiv) PhMe/MeC (4:1) rt 6 h 2 2 bf 6 Fe X [FePc] bf 6 Yields superior to h 2 (Ac) 4 and o aziridination observed Jared Wipf Group J. Am. Chem. oc. 2012, 134, Jared Wipf Group Page 42 of 73 9/28/2012

43 Fe Catalyst cope 2 Fe cat (10 mol%) AgbF 6 (10 mol%) allylic + 3º 1 2 PhI(Ac)2 (2 equiv) PhMe/MeC (4:1) rt 6 h 2 2 Ph Ph 70% d.r. 3.5:1 53% d.r. 3:1 >20:1 E/Z retained 66% d.r. 17:1 45% d.r. 97:3 72% >20:1 (allyl/3º) 62% 5:1 (allyl/benzy) Ph 53% 7:1 selectivity sterics Jared Wipf Group J. Am. Chem. oc. 2012, 134, Jared Wipf Group Page 43 of 73 9/28/2012

44 Intermolecular h itrenoid Troc Ts Cl 3 C 1 2 Troc h 2 (TPA) 2 (5-6 mol%) K 2 C 3 Troc Troc 1 2 Troc Troc Troc 92% 86% 68% 68% 61% 35% rg. Lett. 2007, 9, 639 Jared Wipf Group 44 Jared Wipf Group Page 44 of 73 9/28/2012

45 Cu Catalysis C- Bond forma%on Ts 2 /PhI(Ac) 2 or PhI=Ts Ts ab 4 Ts 10 mol% Cu(CF 3 3 ) 2 C 2 Cl 2, 40 ºC TF, rt Ts 86% Ts 42% Cl Ts Ts + 40% 35% Ts Ts Ts 85% 52% 70% pening: Ts Ts Ts Jared Wipf Group 90% 94% 92% rg. Lett., 2007, 9, Jared Wipf Group Page 45 of 73 9/28/2012

46 Cu itrenoid Cu(CF 3 3 ) 2 PhI=Ts or PhI(Ac) 2 + Ts 2 Ts itrene Formation PhI Ts=Cu(CF 3 3 ) 2 Ts Cu(CF 3 3 ) 2 Concerted C- Insertion Jared Wipf Group rg. Lett., 2007, 9, Jared Wipf Group Page 46 of 73 9/28/2012

47 Baran s Cu Catalysis iger- Type F-TEDA-PF 6 1. CuBr 2 (0.25 equiv) Zn(Tf) 2 (0.5 equiv) 2. a (1 equiv) 1 4 MeC, rt, 1-2 h 3 MeC/ 2 (1:1) 80 ºC, 2 h Ac 4 3 Mechanism (itter xn): Cl PF 6 - PF 6 - F F-TEDA-PF 6 {CuBr 2, F - TEDA + } Cu n+1 MeC {CuBr 2 TEDA + } +F Cu n n = 1 or 2 Jared Wipf Group J. Am. Chem. oc., 2012, 134, Jared Wipf Group Page 47 of 73 9/28/2012

48 Baran s Cu Catalysis iger- Type F-TEDA-PF 6 1. CuBr 2 (0.25 equiv) Zn(Tf) 2 (0.5 equiv) 2. a (1 equiv) 1 4 MeC, rt, 1-2 h 3 MeC/ 2 (1:1) 80 ºC, 2 h Ac 4 3 cope: M Product (Yield) M Product (Yield) Ac (91%) (65%) Ac (61%) Ac Ac (90%) n Bu n Bu Ac (53%) Ac (51%) Jared Wipf Group J. Am. Chem. oc., 2012, 134, Jared Wipf Group Page 48 of 73 9/28/2012

49 Che s Directed Pd Catalysis Me Pd(Ac) 2 (5 mol%) K 2 2 8, DCE Me Pd II LL 2 2 (p-cl-c 6 4 ) Me 2(p-Cl-C64) M amide Product yield Me 2 2 (p-cl-c 6 4 ) Me 2 (p-cl-c 6 4 ) 88% Me Me 2 CCF 3 89% CCF 3 2 (p-cl-c 6 4 ) Me 2 2 (p-cl-c 6 4 ) Me 93% Me 2 2 (p-cl-c 6 4 ) Me 2 (p-cl-c 6 4 ) 76% Jared Wipf Group 2 2 (p-cl-c 6 4 ) 79% 2 (p-cl-c 6 4 ) J. Am. Chem. oc. 2006, 128, Jared Wipf Group Page 49 of 73 9/28/2012

50 White s Pd Catalyst Ph Ph Pd(Ac) 2 (10 mol%) DIPEA MeC 2 Ts (2 equiv) BQ (2 equiv), air dioxane, h, 45 ºC Ts Me Me 2 C Ts Me 61% Ac Ts Me 64% Ts Me 54-89% = EWG, EDG Bn Ts Me 76% Ts Me 48% C 2 Ts = Me = Bn = t-bu = Fm 84% 87% 69% 55% Jared Wipf Group J. Am. Chem. oc. 2009, 131, Jared Wipf Group Page 50 of 73 9/28/2012

51 Allylic C- Mechanism Electrophillic Pd II /Pd 0 Catalysis xidation Ph L n Pd II Ph C- Activation BQ = + 2 Ac L n Pd 0 L n Pd II L n u Functionalization u = Me pk a ~ 3.5 Ts DIPEA + u DIPEA + - Ac - u Ac DIPEA + u Jared Wipf Group J. Am. Chem. oc. 2009, 131, Jared Wipf Group Page 51 of 73 9/28/2012

52 C- Amina%on ummary 1º C- Bonds Directed Pd catalysis Me 2º C- Bonds Directed Fe, h, u, or Cu Catalysis L n M 1 2 Allylic h, u, Pd Catalysis 3º C- Bonds Directed Fe, h, u, or Cu Catalysis L n M L n M Troc Jared Wipf Group 52 Jared Wipf Group Page 52 of 73 9/28/2012

53 utline A. Introduction B. C sp3 C- Bond Functionalization A. C- Bond Formation B. C- Bond Formation C. C-C Bond Formation D. C-X Bond Formation C. Conclusions and Future Directions Jared Wipf Group 53 Jared Wipf Group Page 53 of 73 9/28/2012

54 Davies s Carbenoid Approach 2 C 2 Me Ar + n h 2 (-DP) 4 (1 mol%) n = 1 n = 2 n C 2 Me Ar 72%, 96% ee 80%, 95% ee u u 2 Ar Ar = p-(c )C C 2 Me Ar h 2 (-DP) 4 (1 mol%) C 2 Me Ar h 2 (-DP) 4 74%, 98% ee 2 C 2 Me Ar + h 2 (-DP) 4 C 2 Me (1 mol%) Ar 60%, 68% ee Jared Wipf Group J. Am. Chem. oc. 2000, 122, Jared Wipf Group Page 54 of 73 9/28/2012

55 C- carbon bond forma%on 2 h 2 hl n + h h or h Chem. ev. 2010, 110, 704 Chem. oc. ev. 2011, 40, 1857 Jared Wipf Group 55 Jared Wipf Group Page 55 of 73 9/28/2012

56 C- carbon bond forma%on 2 h 2 (4-MEX) 4 C 2 Cl 2, 71% = Me, t Bu = Me, t Bu 2 Piv h 2 (CCPh 3 ) 4 CCl 4 TB Piv >75% (-)-tetrodotoxin Jared Wipf Group cience 2006, 312, 67 J. Am. Chem. oc. 2003, 125, Chem. Eur. J. 1998, 6, Jared Wipf Group Page 56 of 73 9/28/2012

57 White s C- C- C forma%on Ph Ph Pd(Ac) 2 (10 mol%) dioxane:dm (4:1) DMBQ/Ac 45 ºC, 3.5 h Pd II uc: Linear (L) uc uc Branched (B) = Me = Me = C 2 Me = CF 3 2 C 2 Me 50% 1.7:1 (L:B) 61% 3:1 (L:B) 61% 10:1 (L:B) 65% 12:1 (L:B) = TB = Me = CF 3 2 C 2 Me 62% 5:1 (L:B) 58% 3:1 (L:B) 59% >20:1 (L:B) Me 2 C Tf C 2 Me 2 Me 63% 7:1 (L:B) 2 C 2 Me 42% 1:5 (L:B) C 2 Me Zn dust conc. aq Cl C 2 Me 2 Me r.t., 20 min 99% 2 Jared Wipf Group J. Am. Chem. oc. 2008, 130, Jared Wipf Group Page 57 of 73 9/28/2012

58 Yu s C- C- C forma%on 1 2 Me Pd(Ac) 2 (10 mol%) B() 2 (1.6 equiv) K 2 C 3, Ag 2 BQ, t-bu 70 ºC, 18 h 1 2 Me CA 1 2 Me Ph 85% Me = C 2 Me 62% = CC 3 41% Can use air in place of Ag 2 Me Ph 75% Me 60% Et Me i Bu 58% Me Me 40% Jared Wipf Group Me Me 52% 41% J. Am. Chem. oc. 2008, 130, Jared Wipf Group Page 58 of 73 9/28/2012

59 Yu s C- C- C forma%on 1 2 Ar + C 2 Bn [Ar = C 6 F 5 ] Pd(Ac) 2 (10 mol%) LiCl (2 equiv) Cu(Ac) 2 (1.1 equiv) AgAc (1.1 equiv) DMF, 120 ºC 12 h, Ar C 2 Bn 1 2 Bn 2 C Ar Ar Bn 2 C Bn 2 C Ar 84% Ar Me Bn 2 C Ar Bn 2 C 87% 66% 61% J. Am. Chem. oc. 2010, 132, 3680 Jared Wipf Group 59 Jared Wipf Group Page 59 of 73 9/28/2012

60 anford s C- C- C forma%on + C 2 Et Pd(MeC) 4 (BF 4 ) 2 (10 mol%) 4 [PMo 11 V 40 ] (3 mol%) atf (10 mol%) Ac, 110 ºC, air EWG Et 2 C Tf - Et 2 C Tf - Et 2 C Tf - Et 2 C BF 4 - Et 2 C BF 4-89% 70% 43% (dr = 2.4:1) 3 C 2 Et 49% (dr = 1:1) J. Am. Chem. oc. 2011, 133, 6541 Jared Wipf Group 60 Jared Wipf Group Page 60 of 73 9/28/2012

61 anford s C- C- C forma%on + C 2 Et Pd(MeC) 4 (BF 4 ) 2 (10 mol%) 4 [PMo 11 V 40 ] (3 mol%) atf (10 mol%) Ac, 110 ºC, air Et 2 C Tf - Et 2 C BF 4 - Pt 2 (10 mol%) 1 atm M Et 12 h, rt Et 2 C Et 2 C BF 4 - ab 4 (2.5 equiv) Et, 0 ºC Et 2 C 75% 81% 2.3:1 cis:trans Et 2 C BF 4 - DBU (2 equiv.) 1 h, rt C 2 Et = Me = 85% 95% Jared Wipf Group J. Am. Chem. oc. 2011, 133, Jared Wipf Group Page 61 of 73 9/28/2012

62 Yu s C- C- C forma%on + Ph B Pd(Ac) 2 (10 mol%) Ag 2 C 3, K 2 P 4 aac, t-bu 130 ºC, 3 h Ph Ph Ph Ph Bn(C 2 ) 3 Me 2 C(C 2 ) 2 Ph 38% 30% 30% 20% + Ar-I Pd(Ac) 2 (10 mol%) Ag 2 C 3, K 2 P 4 aac, t-bu 130 ºC, 3 h Ar A + Ar Ar B = Me Ar = Ph 70% 5:2 (A:B) = (C 2 ) 3 Bn Ar = Ph 45% 5:1 (A:B) = i Bu Ar = Ph 62% 4:1 (A:B) = (C 2 ) 2 C 2 Me Ar = Ph 42% 5:1 (A:B) Jared Wipf Group J. Am. Chem. oc. 2007, 129, Jared Wipf Group Page 62 of 73 9/28/2012

63 alogen Directed C- C- C Forma%on Ar X I Pd(Ac) 2 (10 mol%) K 2 C 3, nbu 4 Br DMF, o C, 4 d Ar 37-59% Yield Angew. Chem. Int. Ed. 2003, 33, 103 Br C 2 Et Pd(Ac) 2 (10 mol%) P(o-tol) 3, K 2 C 3 (2 equiv) DMF, 150 o C, 30 min 93% Yield C 2 Et Angew. Chem. Int. Ed. 2003, 42, 5736 Z X 1 2 Pd (0) /P 3 base, 140 ºC Z examples 47-96% X = Cl, Br Z = no atom, C 2, -, C= Jared Wipf Group 1 = alkyl 2 =, C 2 Me, C J. Am. Chem. oc. 2010, 132, Jared Wipf Group Page 63 of 73 9/28/2012

64 Fagnou s C- C- C forma%on X Br Pd(Ac) 2 (10 mol%) PCy 3 -BF 4 (10 mol%) carbonate base, PiV Mesitylene, 150 ºC, 16 h X Me F 76% 56% 70% 62% 71% Jared Wipf Group J. Am. Chem. oc. 2010, 132, Jared Wipf Group Page 64 of 73 9/28/2012

65 C- C- C forma%on L n Pd 0 Br eductive Elimination Fast x. Add. Fast Pd L n Me 2 PCy 3 Pd Cy 3 P Br CsPiv CsBr + PCy3 Pd Cy 3 P Me 2 Pd Cy 3 P Pd Cy 3 P Ligand Exchange Fast if Piv - :Pd >3:1 Jared Wipf Group Concerted Metalation-Deprotonation low J. Am. Chem. oc. 2010, 132, Jared Wipf Group Page 65 of 73 9/28/2012

66 Buchwald s C- C- C forma%on X + X = Br or Cl Pd(Ac) (1 mol%) Ligand 2 3 a t Bu, olvent Typical solvents: toluene, TF, dioxane Typical rxn temperatures: ºC A PCy 2 P( t Bu) 2 B Me n Bu o Ligand 93% o Ligand 46% A 93% A 61% C 2 Et C 2 Me Et Et 2 t Bu A 64% Jared Wipf Group A 85% A 70% B 92% B 76% J. Am. Chem. oc. 2000, 122, Jared Wipf Group Page 66 of 73 9/28/2012

67 C- C- C forma%on Enolate equivalents work too: Ar 2 1 Pd 0 ArX 1 2 ime 3 3 M L n (Ar)Pd 2 1 L n (Ar)Pd 2 1 L n Pd X Ar M = Zn, Cu MX 2 1 Chem ev. 2010, 132, 1360 Angew. Chem. Int. Ed. 2010, 49, 676 Jared Wipf Group 67 Jared Wipf Group Page 67 of 73 9/28/2012

68 C- C bond forma%on summary 1º C- Bonds Directed Pd catalysis Z X Pd 1 2 Ar 1 2 Me 2º C- Bonds Directed Pd or h Catalysis Pd 2 C 2 Me Allylic, Pd Catalysis 3º C- Bonds Directed Pd, h, Catalysis C 2 Me Pd 2 Jared Wipf Group 68 Jared Wipf Group Page 68 of 73 9/28/2012

69 utline A. Introduction B. C sp3 C- Bond Functionalization A. C- Bond Formation B. C- Bond Formation C. C-C Bond Formation D. C-X Bond Formation C. Conclusions and Future Directions Jared Wipf Group 69 Jared Wipf Group Page 69 of 73 9/28/2012

70 Yu s C- C- I forma%on 1 2 t Bu Pd(Ac) 2 (10 mol%) I 2, PhI(Ac) 2 C 2 Cl 2, 24 ºC I 1 2 t Bu n t Bu Pd(Ac) 2 (10 mol%) I 2, PhI(Ac) 2 C 2 Cl 2, 24 ºC n I t Bu I 1 2 t Bu 1, 2 = Me or Et 88-92% t Bu n I n = % t Bu 67% I t Bu t Bu 98% I t Bu t Bu 32% I I xa 65% 99:1 dr I TB xa 62% 93:7 dr I t Bu xa 83% 91:9 dr Ph xa I 98% 99:1 dr Angew. Chem. Int. Ed. 2005, 44, 2112 Jared Wipf Group 70 Jared Wipf Group Page 70 of 73 9/28/2012

71 ummary C- xygenation Pt, Pd, Fe, Ir DG 1 2 DG C- Amination Cu, h, u Pd, Fe DG 1 2 DG 1 2 L n M C- C-C Formation Pd, h Z X DG 1 2 Pd 2 C 2 Me Jared Wipf Group 71 Jared Wipf Group Page 71 of 73 9/28/2012

72 Conclusion and Future Direc%ons ot Topic >600 journal articles (not reviews) published since 2000 Ground work has been laid Continued mechanistic elucidation à rational catalyst design ew catalysts/ligands igher levels of predictable selectivity Implementation in complex molecule synthesis If we can find ways to use C- bonds as versatile functional groups we can revolutionize the rules that have influenced our strategies for assembling molecules over the last 100 years. Jared Wipf Group Chem. oc. ev. 2011, 40, Jared Wipf Group Page 72 of 73 9/28/2012

73 Transi%on Metal- Catalyzed Func%onaliza%on of C sp3 C- bond ac%va%on Thanks for your attention! Questions? Jared Wipf Group 73 Jared Wipf Group Page 73 of 73 9/28/2012

Palladium-Catalyzed Oxygenation of Unactivated sp 3 C-H Bonds

Palladium-Catalyzed Oxygenation of Unactivated sp 3 C-H Bonds Palladium-Catalyzed xygenation of Unactivated sp 3 C- Bonds Pd(Ac) 2 5 mol% PhI(Ac) 2 1.1 eq. Pd 2 Ac Desai, L. P.; ull, K. L.; Sanford *, M. S. University of Michigan J. Am. Chem. Soc. 2004, 126, ASAP

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

Additions to Metal-Alkene and -Alkyne Complexes

Additions to Metal-Alkene and -Alkyne Complexes Additions to tal-alkene and -Alkyne Complexes ecal that alkenes, alkynes and other π-systems can be excellent ligands for transition metals. As a consequence of this binding, the nature of the π-system

More information

Rhodium Catalyzed Alkyl C-H Insertion Reactions

Rhodium Catalyzed Alkyl C-H Insertion Reactions Rhodium Catalyzed Alkyl C-H Insertion Reactions Rh Rh Jeff Kallemeyn 5/17/05 1. Cyclopropanation The Versatile and Reactive Rhodium Carbene R + Et Rh 2 (Ac) 4 R C 2 Et N 2 2. [2,3] sigmatropic rearrangement

More information

Sp 3 C-H Bond Activation Catalyzed by Transition Metal. Reporter: Wan Xiaobing Supervisor: Prof. Shi Zhangjie

Sp 3 C-H Bond Activation Catalyzed by Transition Metal. Reporter: Wan Xiaobing Supervisor: Prof. Shi Zhangjie Sp 3 C- Bond Activation Catalyzed by Transition Metal Reporter: Wan Xiaobing Supervisor: Prof. Shi Zhangjie Academic: high bond energy Practical: abundant, cheap, clean 2 hv C n 2n+2 Cl 2 C n 2n+2-m Cl

More information

Reductive Elimination from High-Valent Palladium. Kazunori Nagao MacMillan Group Meeting

Reductive Elimination from High-Valent Palladium. Kazunori Nagao MacMillan Group Meeting Reductive Elimination from igh-valent Palladium Kazunori agao MacMillan Group eting Why do people focus on rging with C activation Facile reductive elimination DG C palladacycle oxidant complex C etero

More information

Cu- Catalyzed Synthesis of Diaryl Thioethers and S- Cycles by reaction of Aryl Iodides with Carbon Disul;ide in the Presence of DBU.

Cu- Catalyzed Synthesis of Diaryl Thioethers and S- Cycles by reaction of Aryl Iodides with Carbon Disul;ide in the Presence of DBU. Cu- Catalyzed ynthesis of Diaryl Thioethers and - Cycles by reaction of Aryl odides with Carbon Disul;ide in the Presence of DBU. Peng Zhao, Hang Yin, Hongxin, Gao, Chanjuan Xi.; J. rg. Chem. ArCcle AAP

More information

ASYMMETRIC PALLADIUM-CATALYZED ALKENE CARBOAMINATION REACTIONS FOR THE SYNTHESIS OF CYCLIC SULFAMIDES

ASYMMETRIC PALLADIUM-CATALYZED ALKENE CARBOAMINATION REACTIONS FOR THE SYNTHESIS OF CYCLIC SULFAMIDES AYMMETIC PALLADIUM-CATALYZED ALKEE CABAMIATI EACTI F TE YTEI F CYCLIC ULFAMIDE Chem. Eur. J. 2016, 22, 5919 5922 Zachary J. Garlets, Kaia. Parenti, and John P. Wolfe James Johnson Wipf Group Current Literature

More information

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines Current Literature - May 12, 2007 Direct, Catalytic ydroaminoalkylation of Unactivated lefins with -Alkyl ylamines ' '' Ta[ 2 ] 5 (4-8 mol%), 160-165 o C 24-67h 66-95% ' '' S. B. erzon and J. F. artwig,

More information

A Stereoselective Synthesis of (+)-Gonyautoxin 3

A Stereoselective Synthesis of (+)-Gonyautoxin 3 A Stereoselective Synthesis of (+)-Gonyautoxin 3 Mulcahy, J. V.; Du Bois, J. J. Am. Chem. Soc. 2008, 130, 12630-12631 Total Synthesis of (+)-Lithospermic Acid by Asymmetric Intramolecular Alkylation via

More information

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129,

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129, Intramolecular Ene Reactions Utilizing xazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129, 3058-3059 - versus -Arylation of Aminoalcohols: rthogonal Selectivity in Copper-Based

More information

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Lecture 6: Transition-Metal Catalysed C-C Bond Formation Lecture 6: Transition-Metal Catalysed C-C Bond Formation (a) Asymmetric allylic substitution 1 u - d u (b) Asymmetric eck reaction 2 3 Ar- d (0) Ar 2 3 (c) Asymmetric olefin metathesis alladium π-allyl

More information

Direct Oxidative Heck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans

Direct Oxidative Heck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans Direct xidative eck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans by Zhang,.; Ferreira, E. M.; Stoltz, B. M. Angewandte

More information

Catalytic Reactions in Organic Synthesis

Catalytic Reactions in Organic Synthesis 17 April, 2008 Catalytic eactions in rganic Synthesis hodium Complexes and edox Catalysts Koichi AASAKA, Motoki YAMAE, Shunsuke CIBA Division of Chemistry and Biological Chemistry, School of ysical and

More information

James D. White. A very productive professor 64 students graduated from his lab 94 postdocs have worked in his lab. Education Experience

James D. White. A very productive professor 64 students graduated from his lab 94 postdocs have worked in his lab. Education Experience A very productive professor 64 students graduated from his lab 94 postdocs have worked in his lab Education Experience Fraser Fleming University of Drexel Pavel agory University of Michigan Cambridge University,

More information

Total Synthesis of Oxazolomycin A

Total Synthesis of Oxazolomycin A Total Synthesis of xazolomycin A Me xazolomycin A Me Eto, K.; Yoshino, M.; Takahashi K.; Ishihara, J.; atakeyama S. rg. Lett. 2011, 13, 5398 Dimas Paz Wipf group- Current Literature ctober 8, 2011 Dimas

More information

Organocopper Reagents

Organocopper Reagents rganocopper eagents General Information!!! why organocopper reagents? - Efficient method of C-C bond formation - Cu less electropositive than Li or Mg, so -Cu bond less polarized - consequences: 1. how

More information

Enantioselective Synthesis of (+)-Cephalostatin 1

Enantioselective Synthesis of (+)-Cephalostatin 1 1 Cephalostatin 1 Enantioselective Synthesis of (+)-Cephalostatin 1 Tingting Mo Wipf Group Current Lit. Dec. 26 2009 Tingting Mo @ Wipf Group Page 1 of 9 /28/2009 2 Background 1972, marine worm Cephalodiscus

More information

Tips for taking exams in 852

Tips for taking exams in 852 Comprehensive Tactical Methods in rganic Synthesis W. D. Wulff 1) Know the relative reactivity of carbonyl compounds Tips for taking exams in 852 Cl > > ' > > ' N2 eg: 'Mg Et ' 1equiv. 1equiv. ' ' Et 50%

More information

VI. Metal alkyls from oxidative addition / insertion

VI. Metal alkyls from oxidative addition / insertion V. Metal alkyls from oxidative addition / insertion A. Carbonylation - C insertion very facile, metal acyls easily cleaved, all substrates which undergo oxidative addition can in principle be carbonylated.

More information

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0 1. (a) rovide a reasonable mechanism for the following transformation. I S 2 C 3 C 3 ( 3 ) 2 2, CuI C 3 TMG, DMF 3 C 2 S TMG = Me 2 Me 2 ICu ( 3 ) 2 0 I S 2 C 3 S 2 C 3 Cu I 3 3 3 C 2 S I 3 3 3 C 2 S 3

More information

Asymmetric Radical Reactions. Zhen Liu 08/30/2018

Asymmetric Radical Reactions. Zhen Liu 08/30/2018 Asymmetric adical eactions Zhen Liu 08/30/2018 Contents Introduction eactions Using Chiral Auxiliary Chiral Lewis Acid-diated eactions Transition tal-catalyzed eactions eactions Using Chiral rganocatalysts

More information

Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes

Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes Selective Synthesis of Multisubstituted Cycloheptadienes 1 2 Cat. Ni 0 1 2 Komagawa, S.; Saito, S. Angew.

More information

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group Literature eport Functionalization of C(sp 3 ) Bonds Using a Transient Directing Group eporter: Mu-Wang Chen Checker: Yue Ji Date: 2016-04-05 Yu, J.-Q. et al. Science 2016, 351, 252-256. Scripps esearch

More information

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. akatani, Y.; Koizumi, Y.; Yamasaki, R.; Saito, S. rg. Lett. 2008, 10, 2067-2070. An Annulation Reaction for the Synthesis

More information

Organic Electron Donors

Organic Electron Donors rganic Electron onors Yang Li Zakarian esearch Group epartment of Chemistry and Biochemistry University of California, anta Barbara 11/15/2018 2 2 2 2 2 2 TAF1 TAE TAF2 TTF BPL utlines rganic Electron

More information

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H adical eactions adical Stability!!! bond dissociation energies X Y X Y bond BDE (kcal/mol) bond BDE (kcal/mol) C 3 104 108 C 3 C 2 98 110 95 2 C 102 (-) 93 (C-) 92 C 3 C 3 36 89 85 C 3 C 3 80 adical eactions

More information

Selectivity in Non-Directed C H Functionalization of sp 3 C H Bonds

Selectivity in Non-Directed C H Functionalization of sp 3 C H Bonds Selectivity in on-directed C Functionalization of sp 3 C Bonds aromatic C primary C benzylic C Ac secondary C α-heteroatom C tertiary C gan Shaw MacMillan Group eting C Functionalization: Challenges for

More information

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed CEM 330 Final Exam December 5, 2014 Your name: ASWERS This a closed-notes, closed-book exam The use of molecular models is allowed This exam consists of 12 pages Time: 2h 30 min 1. / 30 2. / 30 3. / 30

More information

Arylhalide-Tolerated Electrophilic Amination of Arylboronic Acids with N-Chloroamides Catalyzed by CuCl at Room Temperature

Arylhalide-Tolerated Electrophilic Amination of Arylboronic Acids with N-Chloroamides Catalyzed by CuCl at Room Temperature Current Literature July 19, 08 Jitendra Mishra Arylhalide-Tolerated Electrophilic Amination of Arylboronic Acids with -Chloroamides Catalyzed by CuCl at Room Temperature Aiwen Lei et.al. College of the

More information

Chapter 5 Three and Four-Membered Ring Systems

Chapter 5 Three and Four-Membered Ring Systems Chapter 5 Three and Four-mbered ing ystems 5.1 Aziridines Aziridines are good alkylating agents because of their tendency to undergo ring-opening reaction with nucleophiles 例 mitomycin C antibiotic and

More information

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Stable gold(iii) catalysts by oxidative addition of a carboncarbon Stable gold(iii) catalysts by oxidative addition of a carboncarbon bond Chung-Yeh Wu, Takahiro oribe, Christian Borch Jacobsen & F. Dean Toste ature, 517, 449-454 (2015) presented by Ian Crouch Literature

More information

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides ickel-catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides Eunjae Shim Zakarian Group Literature Talk / Dec 13 th, 2018 University of California, Santa Barbara Table of Contents

More information

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives Direct rganocatalytic Enantioselective Mannich eactions of Ketimines: An Approach to ptically Active Quaternary α-amino Acid Derivatives Wei Zhang, Steen Saaby, and Karl Anker Jorgensen The Danish ational

More information

Hennoxazole A. Philip Williams Group Meeting December 12, OMe. OMe 1 6 O H

Hennoxazole A. Philip Williams Group Meeting December 12, OMe. OMe 1 6 O H ennoxazole A 1 6 11 17 24 Philip Williams Group eting December 12, 2007 Discovered Discovered by Paul cheuer at the University of awaii in 1991. Isolated 480mg ennoxazole A from 4.5kg from the sponge Polyfibrospongia

More information

Wilkinson s other (ruthenium) catalyst

Wilkinson s other (ruthenium) catalyst Wilkinson s other (ruthenium) catalyst Cl 3 ; 2 h 3, reflux 3h h 3 Cl h 3 h Cl 3 Good catalyst especially for 2 1-alkenes 2, base toluene Cl h 3 h 3 h 3 Et 3 Cl h 3 Cl h 3 h 3 R h 3 h 3 Cl h 3 R RC 2 C

More information

Recent Advancement in Ag Mediated C-F Bond Formation. Chem 535 Literature Seminar Jiabao Zhang 02/21/2017

Recent Advancement in Ag Mediated C-F Bond Formation. Chem 535 Literature Seminar Jiabao Zhang 02/21/2017 ecent Advancement in Ag diated C- Bond ormation Chem 535 Literature Seminar Jiabao Zhang 02/21/2017 1 Why Would You Want luorination? igh redox potential: block possible metabolic oxidation. 2 Why Would

More information

Recent Advances in Directed and Intramolecular Transition Metal Catalyzed Oxidative Functionalizations of Carbon- Hydrogen Bonds

Recent Advances in Directed and Intramolecular Transition Metal Catalyzed Oxidative Functionalizations of Carbon- Hydrogen Bonds Recent Advances in Directed and Intramolecular Transition Metal Catalyzed xidative Functionalizations of Carbon- ydrogen Bonds 1 step R C cat [M] oxidant R X C X = R 2, R, halogen John eemstra Jr. April

More information

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute lefin Metathesis MP: ing-opening metathesis polymerization Thermodynamically favored for 3,4, 8, larger ring systems Bridging groups (bicyclic olefins) make ΔG polymerization more favorable as a result

More information

CuI CuI eage lic R tal ome rgan gbr ommon

CuI CuI eage lic R tal ome rgan gbr ommon Common rganometallic eagents Li Et 2 Li Mg Et 2 Li alkyllithium rignard Mg Mg Li Zn TF ZnCl 2 TF dialkylzinc Zn 2 2 Zn Li CuI TF ganocuprate CuI 2 2 CuI common electrophile pairings ' Cl ' '' ' ' ' ' '

More information

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH Asymmetric Total Synthesis of ( )-Plicatic Acid via a Highly Enantioselective and Diastereoselective Nucleophilic Epoxidation of Acyclic Trisubstituted lefins H H H H CH ( )-Plicatic Acid H H Sun, B.F.;

More information

Catalytic alkylation of remote C H bonds enabled by proton-coupled electron transfer

Catalytic alkylation of remote C H bonds enabled by proton-coupled electron transfer Catalytic alkylation of remote C bonds enabled by proton-coupled electron transfer Reporter: Ji Zhou Checker: Shubo u Date: 2016/11/14 Choi, G. J.; Zhu, Q.-L.; Miller, D. C.; Gu, C. J.; Knowles, R. R.

More information

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides Negishi Coupling of Secondary Alkylzinc alides with Aryl Bromides and Chlorides X X = Br, Cl 2 1 ZnBr 1, 2 = Alkyl Cat. Pd(OAc) 2 Ligand TF/Toluene rt or 60 o C 1 2 J. Am. Chem. Soc. 2009, ASAP Article

More information

C H Bond Functionalization: New Strategies for the Synthesis of Complex Natural Products and Pharmaceuticals. Phil Knutson Ferreira Group 12/3/2015

C H Bond Functionalization: New Strategies for the Synthesis of Complex Natural Products and Pharmaceuticals. Phil Knutson Ferreira Group 12/3/2015 C H Bond Functionalization: New Strategies for the Synthesis of Complex Natural Products and Pharmaceuticals Phil Knutson Ferreira Group 12/3/2015 New strategies in organic synthesis nsf-cchf.com What

More information

Palladium-catalyzed sp 3 C H activation. Yan Xu Dong Group Meeting Apr. 2, 2014

Palladium-catalyzed sp 3 C H activation. Yan Xu Dong Group Meeting Apr. 2, 2014 Palladium-catalyzed sp 3 C H activation, Yan Xu Dong Group Meeting Apr. 2, 2014 Content 1 Allylic C H activation 2 Benzylic C H activation Palladiumcatalyzed sp 3 C H activation 3 4 Common sp 3 C H activation:

More information

Total Syntheses of Minfiensine

Total Syntheses of Minfiensine Total Syntheses of Minfiensine Douany, A. B.; umphreys, P. G.; verman, L. E.*; Wrobelski, A. D., J. Am. Chem. Soc. 2008, ASAP. D: 10.1021/ja800163v Shen, L.; Zhang, M.; Wu, Y.; Qin, Y.*, Angew. Chem. nt.

More information

HYDROGENATION. Concerned with two forms of hydrogenation: heterogeneous (catalyst insoluble) and homogeneous (catalyst soluble)

HYDROGENATION. Concerned with two forms of hydrogenation: heterogeneous (catalyst insoluble) and homogeneous (catalyst soluble) YDGEATI Concerned with two forms of hydrogenation: heterogeneous (catalyst insoluble) and homogeneous (catalyst soluble) eterogeneous Catalysis Catalyst insoluble in reaction medium eactions take place

More information

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris 1 ew Catalytic Asymmestric eactions Karl Anker Jørgensen Danish ational eserach Foundation: Center for Catalysis Department of Chemistry, Aarhus University Denmark kaj@chem.au.dk When something goes wrong

More information

The Mechanistic Studies of the Wacker Oxidation. Tyler W. Wilson SED Group Meeting

The Mechanistic Studies of the Wacker Oxidation. Tyler W. Wilson SED Group Meeting The Mechanistic Studies of the Wacker xidation Tyler W. Wilson SE Group Meeting 11.27.2007 Introduction xidation of ethene by (II) chloride solutions (Phillips, 1894) -First used as a test for alkenes

More information

Functionalization of C O Bonds. Stefan McCarver. MacMillan Lab Group Meeting

Functionalization of C O Bonds. Stefan McCarver. MacMillan Lab Group Meeting Functionalization of C Bonds Stefan McCarver MacMillan Lab Group eting November 23 rd, 2016 Functionalization of C Bonds "X" X homolytic cleavage catalyst M oxidative addition Why is C Bond Manipulation

More information

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent Copper-Catalyzed eaction of Alkyl Halides with Cyclopentadienylmagnesium eagent Mg 1) cat. Cu(Tf) 2 i Pr 2, 25 o C, 3 h 2) H 2, Pt 2 Masahiro Sai, Hidenori Someya, Hideki Yorimitsu, and Koichiro shima

More information

o-palladated cat. [Chem. Comm (1999)] [Org. Lett. 2, 1826 (2000)] [Org. Lett. 2, 2881 (2000)] [JACS 41, 9550 (1999)]

o-palladated cat. [Chem. Comm (1999)] [Org. Lett. 2, 1826 (2000)] [Org. Lett. 2, 2881 (2000)] [JACS 41, 9550 (1999)] 3. Boron -- eview [Suzuki Chem. ev. 95, 2457 (1995)] U77b ydroboration also attractive but B Pd transmetallation difficult - must produce stable B product - solved (by Suzuki) by adding base to make Borates

More information

Catalytic Functionalization of Allylic C-H Bonds

Catalytic Functionalization of Allylic C-H Bonds M.C. White,.M. Paradine, Chem 153 C- Activation -33- Week of ctober 16, 2012 Early stoichiometric studies C- eavage: Pd(TFA) 2 ; Bu 4 Acetone, r.t. Early catalytic oxidations Pd/ 2 trong, basic nucleophiles

More information

Zr-Catalyzed Carbometallation

Zr-Catalyzed Carbometallation -Catalyzed Carbometallation C C C C ML n C C ML n ML n C C C C ML n ML n C C ML n Wipf Group esearch Topic Seminar Juan Arredondo November 13, 2004 Juan Arredondo @ Wipf Group 1 11/14/2004 Carbometallation

More information

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements C 2 (F 203) Lecture 3 Prof. Bode edox eutral eactions and earrangements Types of edox eutral rganic eactions. eactions with no external reducing or oxidizing agent In this case, one part of the starting

More information

Chiral Brønsted Acid Catalysis

Chiral Brønsted Acid Catalysis Chiral Brønsted Acid Catalysis Aryl Aryl Aryl Aryl S CF 3 2 P Fe CF 3 CF 3 2 Jack Liu ov. 16, 2004 CF 3 Introduction Chiral Brønsted acid catalysis in nature: enzymes and peptides Chiral Brønsted acid

More information

Asymmetric Nucleophilic Catalysis

Asymmetric Nucleophilic Catalysis Asymmetric ucleophilic Catalysis Chiral catalyst X 2 Chiral catalyst X = alkyl, X 1 2 1 Vedejs, E.; Daugulis,. J. Am. Chem. Soc. 2003, 125, 4166-4173 Shaw, S. A.; Aleman,.; Vedejs, E. J. Am. Chem. Soc.

More information

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models CEM 203 Final Exam December 15, 2010 Your name: ANSWERS This a closed-notes, closed-book exam You may use your set of molecular models This test contains 15 pages Time: 2h 30 min 1. / 16 2. / 15 3. / 24

More information

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Molybdenum-Catalyzed Asymmetric Allylic Alkylation Molybdenum-Catalyzed Asymmetric Allylic Alkylation X MoL n u u * Tommy Bui 9/14/04 Asymmetric Allylic Alkylation from a Synthetic Viewpoint X X M u u * and/or u form a C-C bond with the creation of a new

More information

Oxidative Addition and Reductive Elimination

Oxidative Addition and Reductive Elimination xidative Addition and Reductive Elimination red elim coord 2 ox add ins Peter.. Budzelaar xidative Addition Basic reaction: n + X Y n X Y The new -X and -Y bonds are formed using: the electron pair of

More information

Memory of Chirality: A Strategy for Asymmetric Synthesis

Memory of Chirality: A Strategy for Asymmetric Synthesis Memory of Chirality: A trategy for Asymmetric ynthesis David J. Richard eptember 14, 2005 Two Forms of Chirality Absolute (tatic) Chirality 2 - Absolute chirality - orientation of functional groups at

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis rganometallic hemistry and omogeneous atalysis Dr. Alexey Zazybin Lecture N8 Kashiwa ampus, December 11, 2009 Types of reactions in the coordination sphere of T 3. Reductive elimination X-L n -Y L n +

More information

Strained Molecules in Organic Synthesis

Strained Molecules in Organic Synthesis Strained Molecules in rganic Synthesis 0. Introduction ~ featuring on three-membered rings ~ Tatsuya itabaru (M) Lit. Seminar 08068 for cyclobutadienes : see Mr. Yamatsugu's Lit. Sem. 069 eat of Formation

More information

Total Syntheses of Manzamine A.

Total Syntheses of Manzamine A. Total yntheses of Manzamine. R E Winkler, 1998 hv D B R akagawa, 2000 [4+2] B R Me P 2 Me B TBDP Pandit, 1991 [4+2] E manzamine Martin, 1999 [4+2] R Me 2 B R R Ramil Baiazitov. ED group meeting. February

More information

Dr. P. Wipf Page 1 of 5 10/7/2009. Cl Ru. Kingsbury, J. S.; Harrity, J. P. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 791.

Dr. P. Wipf Page 1 of 5 10/7/2009. Cl Ru. Kingsbury, J. S.; Harrity, J. P. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 791. Dr. P. Wipf Page 1 of 5 10/7/2009 Alkene Metathesis Grubbs II published The Catalysts Me Mo F 3C CF3 Me F 3C CF3 C(Me) 2 chrock, R. R.; Murdzek, J..; Bazan, G. C.; Robbins, J.; DiMare, M.; 'Reagan, M.

More information

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6 Chem 634 Introduction to Transition etal Catalysis eading: eg Ch 1 2 CS-B 7.1, 8.2 8.3, 11.3 Grossman Ch 6 Announcements Problem Set 1 due Thurs, 9/24 at beginning of class ffice our: Wed, 10:30-12, 220

More information

Literature Report IX. Cho, S. H. et al. Org. Lett. 2016, 18, Cho, S. H. et al. Angew. Chem. Int. Ed. 2017, 56,

Literature Report IX. Cho, S. H. et al. Org. Lett. 2016, 18, Cho, S. H. et al. Angew. Chem. Int. Ed. 2017, 56, Literature Report IX ynthesis of β-aminoboronates by Copper(I)- Catalyzed Addition of Diborylalkanes to Imines Reporter Checker Date : hubo Hu : Xiaoyong Zhai : 2017-9-1818 Cho,. H. et al. rg. Lett. 2016,

More information

OC II (FS 2013) Lecture 1 Prof. Bode. Oxidation

OC II (FS 2013) Lecture 1 Prof. Bode. Oxidation C (F 2013) Lecture 1 Prof. Bode 1 xidation state of carbon xidation xidation is a process in which a chemical species loses electron. eduction is a process in which a chemical species gains electron. 3

More information

11-Step Enantioselective Synthesis of ( )-Lomaiviticin Aglycon

11-Step Enantioselective Synthesis of ( )-Lomaiviticin Aglycon 11-Step Enantioselective Synthesis of ( )-Lomaiviticin Aglycon Seth B. erzon, Liang Lu, Christina M. Woo, and Shivajirao L. Gholap J. Am. Chem. Soc. ASAP DI 10.1021/ja200034b Melissa Sprachman Current

More information

Palladium-Mediated Functionalization of Heteroaromatic Cations: Comparative Study on Quinolizinium Cations

Palladium-Mediated Functionalization of Heteroaromatic Cations: Comparative Study on Quinolizinium Cations Palladium-Mediated Functionalization of Heteroaromatic Cations: Comparative Study on Quinolizinium Cations Domingo Garcia-Cuadrado, Ana M. Cuadro, Bernado M. Barchin, Ana unez, Tatiana Caneque, Julio Alvarez-

More information

Chap. 8 Substitution Reactions

Chap. 8 Substitution Reactions Chap. 8 Substitution Reactions Y + R X R' Y + X Nucleophilic not necessarily the same as R Electrophilic S N 1 slow (C 3 ) 3 CCl (C + Cl - 3 ) 3 C + (C 3 ) 3 C + OC 2 C 3 C 3 C 2 O C 3 C 2 O d[( C ) 3CCl]

More information

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R eaction using diarylprolinol silyl ether derivatives as catalyst 1) C Et K C 3, ) MgBr, TF TMS hexane, 0 o C TBS p- C 6 4, T C Et 85%, 99% ee Angew. Chem., nt. Ed., 44, 41 (005). rg. Synth., 017, 94, 5.

More information

Iridium-Catalyzed Hydrogenation with Chiral P,N Ligands

Iridium-Catalyzed Hydrogenation with Chiral P,N Ligands Iridium-Catalyzed Hydrogenation with Chiral P, Ligands 贾佳 utline Brief Introduction Hydrogenation of C=C Bonds Hydrogenation of C= Bonds Hydrogenation of C= Bonds Conclusion Brief Introduction First example

More information

Carbenes and Carbene Complexes I Introduction

Carbenes and Carbene Complexes I Introduction Carbenes and Carbene Complexes I Introduction A very interesting (honest) class of radical-like molecules Steadily becoming more important as they find far more synthetic applications We will primarily

More information

Chapter 8 Reactions of Alkenes

Chapter 8 Reactions of Alkenes Chapter 8 Reactions of Alkenes Electrophilic Additions o Regio vs stereoselectivity Regio where do the pieces add? Markovnikov s rule hydrogen will go to the side of the double bond with most hydrogens.

More information

CEM 852 Final Exam. May 6, 2010

CEM 852 Final Exam. May 6, 2010 CEM 852 Final Exam May 6, 2010 This exam consists of 7 pages. Please make certain that your exam has all of the necessary pages. Total points possible for this exam are 150. n answering your questions,

More information

Carbonyl Ylide Cycloadditions

Carbonyl Ylide Cycloadditions Carbonyl Ylide Cycloadditions cond. icholas Anderson Denmark Group eting 07/13/10 Carbonyl Ylides Uncharged 1,3-Dipole Conjugated π-system ighly reactive on-isolable Generate in-situ Carbonyl Ylide Stability

More information

Facile preparation of α-amino ketones from oxidative ring-opening of aziridines by pyridine N-oxide

Facile preparation of α-amino ketones from oxidative ring-opening of aziridines by pyridine N-oxide Facile preparation of α-amino ketones from oxidative ring-opening of aziridines by pyridine -oxide rg. Biomol. Chem., 2007, 5, 3428 Luo, Z.-B.; Wu, J.-Y.; ou, X.-L.; Dai, L.-X. Ts toluene Ts 80 o C John

More information

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading rganic Tutorials 3 rd Year Michaelmas 2010 Transition Metals in rganic Synthesis: (General paper level) Reading 1. Lecture Course, and suggested references from this. 2. Clayden, Greaves, Warren and Wothers.

More information

Ready; Catalysis Conjugate Addition

Ready; Catalysis Conjugate Addition eady; Catalysis Conjugate Addition Topics covered 1. 1,4 addition involving copper a. stoichiometric reactions b. catalytic reactions c. allylic substitution. Conjugate addition without copper a. Ni-based

More information

Total Synthesis of Saxitoxin

Total Synthesis of Saxitoxin Total ynthesis of axitoxin 2 2 2 John Baird April 11, 2006 1 First isolated in 1957 by chantz et al Isolation and Properties X-Ray tructure obtained in 1975 Freely soluble in water and methanol ptical

More information

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine ine-step nantioselective Total Synthesis of (+)-Minfiensine Jones, S. B.; Simmons, B.; MacMillan, D. W. C.* J. Am. Chem. Soc. 2009, ASAP. DI: 10.1021/ja906472m Kara George Wipf Group - Current Literature

More information

Studies on Heck and Suzuki Reactions Catalyzed by Palladium(0) and Wacker- Type Oxidative Cyclization Catalyzed by Palladium(II)

Studies on Heck and Suzuki Reactions Catalyzed by Palladium(0) and Wacker- Type Oxidative Cyclization Catalyzed by Palladium(II) Studies on eck and Suzuki Reactions Catalyzed by Palladium(0) and Wacker- Type xidative Cyclization Catalyzed by Palladium() Zuhui Zhang enmark Group Meeting 10/21/2008 1 Part ne: Palladium(0)-Catalyzed

More information

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Spiro Monophosphite and Monophosphoramidite Ligand Kit Spiro Monophosphite and Monophosphoramidite Ligand Kit metals inorganics organometallics catalysts ligands custom synthesis cgm facilities nanomaterials 15-5162 15-5150 15-5156 15-5163 15-5151 15-5157

More information

Coupling Reactions Using Excited State Organonickel Complex _LS_Daiki_Kamakura

Coupling Reactions Using Excited State Organonickel Complex _LS_Daiki_Kamakura Coupling eactions Using Excited State rganonickel Complex 171118_LS_Daiki_Kamakura i Catalysis in Coupling eactions 9 10 11 Co 28 i Cu h Pd Ag Ir Pt Au Features of i d electrons: 8 relatively inexpensive

More information

"-Amino Acids: Function and Synthesis

-Amino Acids: Function and Synthesis "-Amino Acids: Function and Synthesis # Conformations of "-Peptides # Biological Significance # Asymmetric Synthesis Sean Brown MacMillan Group eting ovember 14, 2001 Lead eferences: Cheng,. P.; Gellman,

More information

Shi Asymmetric Epoxidation

Shi Asymmetric Epoxidation Shi Asymmetric Epoxidation Chiral dioxirane strategy: R 3 + 1 xone, ph 10.5, K 2 C 3, H 2, C R 3 formed in situ catalyst (10-20 mol%) is prepared from D-fructose, and its enantiomer from L-sorbose oxone,

More information

Iodide-Mediated Synthesis of Spirooxindolo dihydrofurans from Iodonium Ylides and 3-Alkylidene- 2-oxindoles

Iodide-Mediated Synthesis of Spirooxindolo dihydrofurans from Iodonium Ylides and 3-Alkylidene- 2-oxindoles Iodide-Mediated Synthesis of Spirooxindolo dihydrofurans from Iodonium Ylides and 3-Alkylidene- 2-oxindoles Benjamin A. Laevens, Jason Tao and Graham K. Murphy* Department of Chemistry, University of Waterloo,

More information

Transition Metal-Catalyzed 1,2-Diamination of Alkenes. Group Meeting Timothy Chang

Transition Metal-Catalyzed 1,2-Diamination of Alkenes. Group Meeting Timothy Chang Transition Metal-Catalyzed 1,2-Diamination of Alkenes Group Meeting Timothy Chang 04-27-10 Valuable 1,2-Diamine Motif H H S Biotin CH H H Pt Eloxatin (Anticaner) H 2 AcH CHEt 2 Tamiflu (Antiviral) Et Ph

More information

Short Literature Presentation 10/4/2010 Erika A. Crane

Short Literature Presentation 10/4/2010 Erika A. Crane Copper-Catalyzed Enantioselective Synthesis of trans-1- Alkyl-2-substituted Cyclopropanes via Tandem Conjugate Additions-Intramolecular Enolate Trapping artog, T. D.; Rudolph, A.; Macia B.; Minnaard, A.

More information

both substrate : activated wastes derived from M and X one substrate : activated wastes derived from X

both substrate : activated wastes derived from M and X one substrate : activated wastes derived from X October 20th, 2007 Lit. Seminar Transition Metal Catalyzed Intermolecular ormations of - Bond : post-cross Coupling i) Cross Coupling reaction -M + '- -' (M = Zn, Sn, B,,,) ii) Direct ylation - + '- -'

More information

Reporter: Yue Ji. Date: 2016/12/26

Reporter: Yue Ji. Date: 2016/12/26 Literature Report (11) Total Synthesis of Rubriflordilactone B Reporter: Yue Ji Checker: Mu-Wang Chen Date: 2016/12/26 Yang, P.; Yao, M.; Li, J.; Li, Y.; Li, A.* Angew. Chem. Int. Ed. 2016, 55, 6964. Laboratory

More information

Roxanne Atienza Short Literature Presentation January 24, 2011

Roxanne Atienza Short Literature Presentation January 24, 2011 Aza-xy-Carbanion elay via on-brook earrangement: Efficient ynthesis of Furo[3,2-c] pyridinones Liang, F.; Lin,.; Wei, Y. J. Am. Chem. oc. 2011, AAP. Double Isocyanide Cyclization: A ynthetic trategy for

More information

!"#$%&&'!&(!)*+,-./!01"2.3$*4!"!#$!%$!%&'(') *+,!-$!%&'(').!'/ *&%&*,$.&-!"!3$!4$!5)01+!.*!06'2

!#$%&&'!&(!)*+,-./!012.3$*4!!#$!%$!%&'(') *+,!-$!%&'(').!'/ *&%&*,$.&-!!3$!4$!5)01+!.*!06'2 !"#$%&&'!&(!)*+,-./!01"2.3$*4!"!#$!%$!%&'(') *+,!-$!%&'(').!'/012 546*&%&*,$.&-!"!3$!4$!5)01+!.*!06'2 C-C Bond Formation: Cross-coupling Reaction of rganometal Compounds with rganic alids M C-m + X-C C-C

More information

Lewis Base Catalysis: the Aldol Reaction (Scott Denmark) Tom Blaisdell Friday, January 17 th 2014 Topic Talk

Lewis Base Catalysis: the Aldol Reaction (Scott Denmark) Tom Blaisdell Friday, January 17 th 2014 Topic Talk Lewis Base Catalysis: the Aldol eaction (Scott Denmark) Tom Blaisdell Friday, January 17 th 2014 Topic Talk Scott E. Denmark 1975 - S.B. in Chemistry MIT (ichard. olm and Daniel S. Kemp) 1980 - D.Sc in

More information

Palladium-Catalyzed Electrophilic Aromatic C H Fluorination

Palladium-Catalyzed Electrophilic Aromatic C H Fluorination Palladium-Catalyzed Electrophilic Aromatic C luorination +2 Pd II 2 B 4 C (5 mol %) SI (2 eq) MeC, rt 61%, 69:31 o:p C Yamamoto, K; Li, J.; Garber, J. A..; Rolfes, J. D.; Boursalian, G. B.; Borghs, J.

More information

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts Synthetic Methodology Using Tertiary osphines as Nucleophilic Catalysts 1 3 2 u 2 (P 3 ) 3 4 1 2 D. Ma, X. Lu 1988 1 2 Pd 2 (dba) 3.CCl 3 /P 3 /Ac or Pd(Ac) 2 /P 3 1 2 B. M. Trost 1988 1 3 2 u 2 (P 3 )

More information

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of X 2. Addition of and addition of Y X 3. Addition to allene and alkyne 4. Substitution at α-carbon 5. eactions via organoborane

More information

CHEM 153 PRACTICE TEST #1 ANSWER KEY

CHEM 153 PRACTICE TEST #1 ANSWER KEY CEM 153 PACTICE TEST #1 ASWE KEY Provide a mechanism for the following transformation, indicating the electron count and oxidation state of each organometallic intermediate: u 3 (C) 12 (5 mol%) TF, 135

More information

Requirements for an Effective Chiral Auxiliary Enolate Alkylation

Requirements for an Effective Chiral Auxiliary Enolate Alkylation Requirements for an Effective Chiral Auxiliary Enolate Alkylation 1. Xc must be low cost, and available in both enentiomeric forms 2. The cleavage of Xc from the substrate must occur under mild enough

More information