Chapter 3 Calculations with Chemical Formulas and Equations

Size: px
Start display at page:

Download "Chapter 3 Calculations with Chemical Formulas and Equations"

Transcription

1 Chapter 3 Calculations with Chemical Formulas and Equations

2 Contents and Concepts Mass and Moles of Substances Here we will establish a critical relationship between the mass of a chemical substance and the quantity of that substance (in moles). 1. Molecular Mass and Formula Mass 2. The Mole Concept Copyright Cengage Learning. All rights reserved. 3 2

3 Determining Chemical Formulas Explore how the percentage composition and mass percentage of the elements in a chemical substance can be used to determine the chemical formula. 3. Mass Percentages from the Formula 4. Elemental Analysis: Percentages of C, H, and O 5. Determining Formulas Copyright Cengage Learning. All rights reserved. 3 3

4 Stoichiometry: Quantitative Relations in Chemical Reactions Develop a molar interpretation of chemical equations, which then allows for calculation of the quantities of reactants and products. 6. Molar Interpretation of a Chemical Equation 7. Amounts of Substances in a Chemical Equation 8. Limiting Reactant: Theoretical and Percentage Yield Copyright Cengage Learning. All rights reserved. 3 4

5 Learning Objectives Mass and Moles of Substances 1. Molecular Mass and Formula Mass a. Define the terms molecularand formula mass of a substance. b. Calculate the formula mass from a formula. c. Calculate the formula mass from molecular models. Copyright Cengage Learning. All rights reserved. 3 5

6 2. The Mole Concept a. Define the quantity called the mole. b. Learn Avogadro s number. c. Understand how the molar mass is related to the formula mass of a substance. d. Calculate the mass of atoms and molecules. e. Perform calculations using the mole. f. Convert from moles of substance to grams of substance. g. Convert from grams of substance to moles of substance. h. Calculate the number of molecules in a given mass of a substance. Copyright Cengage Learning. All rights reserved. 3 6

7 Determining Chemical Formulas 3. Mass Percentages from the Formula a. Define mass percentage. b. Calculate the percentage composition of the elements in a compound. c. Calculate the mass of an element in a given mass of compound. Copyright Cengage Learning. All rights reserved. 3 7

8 4. Elemental Analysis: Percentages of C, H, and O a. Describe how C, H, and O combustion analysis is performed. b. Calculate the percentage of C, H, and O from combustion data. Copyright Cengage Learning. All rights reserved. 3 8

9 5. Determining Formulas a. Define empirical formula. b. Determine the empirical formula of a binary compound from the masses of its elements. c. Determine the empirical formula from the percentage composition. d. Understand the relationship between the molecular mass of a substance and its empirical formula mass. e. Determine the molecular formula from the percentage composition and molecular mass. Copyright Cengage Learning. All rights reserved. 3 9

10 Stoichiometry: Quantitative Relations in Chemical Reactions 6. Molar Interpretation of a Chemical Equation a. Relate the coefficients in a balanced chemical equation to the number of molecules or moles (molar interpretation). Copyright Cengage Learning. All rights reserved. 3 10

11 7. Amounts of Substances in a Chemical Equation a. Use the coefficients in a balanced chemical equation to perform calculations. b. Relate the quantities of reactant to the quantity of product. c. Relate the quantities of two reactants or two products. Copyright Cengage Learning. All rights reserved. 3 11

12 8. Limiting Reactant: Theoretical and Percentage Yield a. Understand how a limiting reactant determines how many moles of product are formed during a chemical reaction and how much excess reactant remains. b. Calculate with a limiting reactant involving moles. c. Calculate with a limiting reactant involving masses. d. Define and calculate the theoretical yield of chemical reactions. e. Determine the percentage yield of a chemical reaction. Copyright Cengage Learning. All rights reserved. 3 12

13 Molecular Mass The sum of the atomic masses of all the atoms in a molecule of the substance. Formula Mass The sum of the atomic masses of all atoms in a formula unit of the compound, whether molecular or not. Copyright Cengage Learning. All rights reserved. 3 13

14 Calculate the formula weight of the following compounds from their formulas. Report your answers to three significant figures. calcium hydroxide, Ca(OH) 2 methylamine, CH 3 NH 2 Copyright Cengage Learning. All rights reserved. 3 14

15 Ca(OH) 2 1 Ca 1(40.08) = amu 2 O 2(16.00) = amu 2 H 2(1.008) = amu Total significant figures 74.1 amu CH 3 NH 2 1 C 1(12.01) = amu 1 N 1(14.01) = amu 5 H 5(1.008) = amu Total significant figures 31.1 amu Copyright Cengage Learning. All rights reserved. 3 15

16 What is the mass in grams of the nitric acid molecule, HNO 3? First, find the molar mass of HNO 3 : 1 H 1(1.008) = N 1(14.01) = O 3(16.00) = (2 decimal places) g/mol Copyright Cengage Learning. All rights reserved. 3 16

17 Mole, mol The quantity of a given amount of substance that contains as many molecules or formula units as the number of atoms in exactly 12 g of carbon-12. Avogadro s Number, N A The number of atoms in exactly 12 g of carbon-12 N A = (to three significant figures). Copyright Cengage Learning. All rights reserved. 3 17

18 Next, convert this mass of one mole to one molecule using Avogadro s number: g mol x 6.02 x10 1mol 23 molecules x10 22 g Themassof one HNO 22 3 molecule is 1.05 x10 g. (3 significant figures) Copyright Cengage Learning. All rights reserved. 3 18

19 Molar Mass The mass of one mole of substance. For example: Carbon-12 has a molar mass of 12 g or 12 g/mol Copyright Cengage Learning. All rights reserved. 3 19

20 A sample of nitric acid, HNO 3, contains mol HNO 3. How many grams is this? First, find the molar mass of HNO 3 : 1 H 1(1.008) = N 1(14.01) = O 3(16.00) = (2 decimal places) g/mol Copyright Cengage Learning. All rights reserved. 3 20

21 Next, using the molar mass, find the mass of mole: mole x = g 15.9g (3 significant g 1mole figures) Copyright Cengage Learning. All rights reserved. 3 21

22 Calcite is a mineral composed of calcium carbonate, CaCO 3. A sample of calcite composed of pure calcium carbonate weighs 23.6 g. How many moles of calcium carbonate is this? First, find the molar mass of CaCO 3 : 1 Ca 1(40.08) = C 1(12.01) = O 3(16.00) = decimal places g/mol Copyright Cengage Learning. All rights reserved. 3 22

23 Next, find the number of moles in 23.6 g: 23.6 g x 1mole g x 10 1 g 2.36 x10 1 g or g (3 significant figures) Copyright Cengage Learning. All rights reserved. 3 23

24 The average daily requirement of the essential amino acid leucine, C 6 H 14 O 2 N, is 2.2 g for an adult. What is the average daily requirement of leucine in moles? First, find the molar mass of leucine: 6 C 6(12.01) = O 2(16.00) = N 1(14.01) = H 14(1.008) = decimal places g/mol Copyright Cengage Learning. All rights reserved. 3 24

25 Next, find the number of moles in 2.2 g: 2.2 g x 1mole g x10 2 mol 1.7 x10 2 mol or mol (2 significant figures) Copyright Cengage Learning. All rights reserved. 3 25

26 The daily requirement of chromium in the human diet is g. How many atoms of chromium does this represent? Copyright Cengage Learning. All rights reserved. 3 26

27 First, find the molar mass of Cr: 1 Cr 1(51.996) = Now, convert 1.0 x 10-6 grams to moles: 1.0 x10 6 g x 1mol g x 6.02 x mol atoms = x atoms 1.2 x atoms (2 significant figures) Copyright Cengage Learning. All rights reserved. 3 27

28 Lead(II) chromate, PbCrO 4, is used as a paint pigment (chrome yellow). What is the percentage composition of lead(ii) chromate? First, find the molar mass of PbCrO 4 : 1 Pb 1(207.2) = Cr 1(51.996) = O 4(16.00) = (1 decimal place) g/mol Copyright Cengage Learning. All rights reserved. 3 28

29 Now, convert each to percent composition: Pb: Cr: g x100% 64.11% g g x100% 16.09% g O : g g x100% 19.80% Check: = Copyright Cengage Learning. All rights reserved. 3 29

30 The chemical name of table sugar is sucrose, C 12 H 22 O 11. How many grams of carbon are in 68.1 g of sucrose. First, find the molar mass of C 12 H 22 O 11 : 12 C 12(12.01) = O 11(16.00) = H 22(1.008) = (2 decimal places) g/mol Copyright Cengage Learning. All rights reserved. 3 30

31 Now, find the mass of carbon in 61.8 g sucrose: 61.8 gsucrose x gcarbon gsucrose 26.0 gcarbon (3 significant figures) Copyright Cengage Learning. All rights reserved. 3 31

32 Percentage Composition The mass percentage of each element in the compound. The composition is determined by experiment, often by combustion. When a compound is burned, its component elements form oxides for example, CO 2 and H 2 O. The CO 2 and H 2 O are captured and weighed to determine the amount of C and H in the original compound. Copyright Cengage Learning. All rights reserved. 3 32

33 Benzene is a liquid compound composed of carbon and hydrogen; it is used in the preparation of polystyrene plastic. A sample of benzene weighing 342 mg is burned in oxygen and forms 1156 mg of carbon dioxide. What is the percentage composition of benzene? Copyright Cengage Learning. All rights reserved. 3 33

34 Strategy 1. Use the mass of CO 2 to find the mass of carbon from the benzene. 2. Use the mass of benzene and the mass of carbon to find the mass of hydrogen. 3. Use these two masses to find the percent composition. Copyright Cengage Learning. All rights reserved. 3 34

35 First, find the mass of C in 1156 mg of CO 2 : 1156 x 10 3 g CO 2 1mol CO g CO 2 x 1mol C 1mol CO 2 x g C 1mol CO mg 2 x10 gc 10 3 g = mg C Copyright Cengage Learning. All rights reserved. 3 35

36 Next, find the mass of H in the benzene sample: 342 mg benzene mg C 26.5 mg H (the decimal is not significant) Now, we can find the percentage composition: mg x100% 92.3% C 342 mg 26.5 mg x100% 7.7% H 342 mg Copyright Cengage Learning. All rights reserved. 3 36

37 Empirical Formula (Simplest Formula) The formula of a substance written with the smallest integer subscripts. For example: The empirical formula for N 2 O 4 is NO 2. The empirical formula for H 2 O 2 is HO Copyright Cengage Learning. All rights reserved. 3 37

38 Determining the Empirical Formula Beginning with percent composition: 1. Assume exactly 100 g so percentages convert directly to grams. 2. Convert grams to moles for each element. 3. Manipulate the resulting mole ratios to obtain whole numbers. Copyright Cengage Learning. All rights reserved. 3 38

39 Manipulating the ratios: Divide each mole amount by the smallest mole amount. If the result is not a whole number: Multiply each mole amount by a factor. For example: If the decimal portion is 0.5, multiply by 2. If the decimal portion is 0.33 or 0.67, multiply by 3. If the decimal portion is 0.25 or 0.75, multiply by 4. Copyright Cengage Learning. All rights reserved. 3 39

40 Benzene is composed of 92.3% carbon and 7.7% hydrogen. What is the empirical formula of benzene? 1mol C 92.3 g C mol g C 1mol H 7.7 g H 7.64 mol H g H C Empirical formula: CH Copyright Cengage Learning. All rights reserved. 3 40

41 Molecular Formula A formula for a molecule in which the subscripts are whole-number multiples of the subscripts in the empirical formula. Copyright Cengage Learning. All rights reserved. 3 41

42 To determine the molecular formula: 1. Compute the empirical formula weight. 2. Find the ratio of the molecular weight to the empirical formula weight. molecular weight n empirical formula weight 3. Multiply each subscript of the empirical formula by n. Copyright Cengage Learning. All rights reserved. 3 42

43 Benzene has the empirical formula CH. Its molecular weight is 78.1 amu. What is its molecular formula? Empirical formula weight amu Molecular formula C 6 H 6 Copyright Cengage Learning. All rights reserved. 3 43

44 Sodium pyrophosphate is used in detergent preparations. It is composed of 34.5% Na, 23.3% P, and 42.1% O. What is its empirical formula? 1mol Na 34.5 g Na g Na 1mol P 23.3 g P g P mol Na mol P 1mol O 42.1 g O mol O g O x x x Empirical formula Na 4 P 2 O Copyright Cengage Learning. All rights reserved. 3 44

45 Hexamethylene is one of the materials used to produce a type of nylon. It is composed of 62.1% C, 13.8% H, and 24.1% N. Its molecular weight is 116 amu. What is its molecular formula? 1mol C 62.1 g C g C mol H g H g H 1mol N 24.1 g N g N mol mol mol Copyright Cengage Learning. All rights reserved C H H Empirical formula C 3 H 8 N

46 The empirical formula is C 3 H 8 N. Find the empirical formula weight: 3(12.01) + 8(1.008) + 1(14.01) = amu n Molecular formula: C 6 H 16 N 2 Copyright Cengage Learning. All rights reserved. 3 46

47 Stoichiometry The calculation of the quantities of reactants and products involved in a chemical reaction. Interpreting a Chemical Equation The coefficients of the balanced chemical equation may be interpreted in terms of either (1) numbers of molecules (or ions or formula units) or (2) numbers of moles, depending on your needs. Copyright Cengage Learning. All rights reserved. 3 47

48 To find the amount of B (one reactant or product) given the amount of A (another reactant or product): 1. Convert grams of A to moles of A Using the molar mass of A 2. Convert moles of A to moles of B Using the coefficients of the balanced chemical equation 3. Convert moles of B to grams of B Using the molar mass of B Copyright Cengage Learning. All rights reserved. 3 48

49 Propane, C 3 H 8, is normally a gas, but it is sold as a fuel compressed as a liquid in steel cylinders. The gas burns according to the following equation: C 3 H 8 (g) + 5O 2 (g) 3CO 2 (g) + 4H 2 O(g) How many grams of CO 2 are produced when 20.0 g of propane is burned? Copyright Cengage Learning. All rights reserved. 3 49

50 Molar masses C 3 H 8 : 3(12.01) + 8(1.008) = g CO 2 : 1(12.01) + 2(16.00) = g 20.0 g C 3 H 8 1mol C 3 H g C 3 8 H 8 3 mol 1mol CO C 3 H g CO 1mol CO g CO g CO 2 (3 significant figures) Copyright Cengage Learning. All rights reserved. 3 50

51 Propane, C 3 H 8, is normally a gas, but it is sold as a fuel compressed as a liquid in steel cylinders. The gas burns according to the following equation: C 3 H 8 (g) + 5O 2 (g) 3CO 2 (g) + 4H 2 O(g) How many grams of O 2 are required to burn 20.0 g of propane? Copyright Cengage Learning. All rights reserved. 3 51

52 Molar masses: O 2 2(16.00) = g C 3 H 8 3(12.01) + 8(1.008) = g 20.0 g C 3 H 8 1mol C 3 H g C 3 8 H 8 5 mol 1mol C O 3 2 H mol g O O g O g O 2 (3 significant figures) Copyright Cengage Learning. All rights reserved. 3 52

53 Limiting Reactant The reactant that is entirely consumed when a reaction goes to completion. Once one reactant has been completely consumed, the reaction stops. Any problem giving the starting amount for more than one reactant is a limiting reactant problem. Copyright Cengage Learning. All rights reserved. 3 53

54 All amounts produced and reacted are determined by the limiting reactant. How can we determine the limiting reactant? 1. Use each given amount to calculate the amount of product produced. 2. The limiting reactant will produce the lesser or least amount of product. Copyright Cengage Learning. All rights reserved. 3 54

55 Magnesium metal is used to prepare zirconium metal, which is used to make the container for nuclear fuel (the nuclear fuel rods): ZrCl 4 (g) + 2Mg(s) 2MgCl 2 (s) + Zr(s) How many moles of zirconium metal can be produced from a reaction mixture containing 0.20 mol ZrCl 4 and 0.50 mol Mg? Copyright Cengage Learning. All rights reserved. 3 55

56 0.20 mol ZrCl 1mol Zr 4 1mol ZrCl mol Zr 1mol Zr 0.50 molmg 2molMg 0.25 mol Zr ZrCl 4 is the limiting reactant mol Zr will be produced. Copyright Cengage Learning. All rights reserved. 3 56

57 Urea, CH 4 N 2 O, is used as a nitrogen fertilizer. It is manufactured from ammonia and carbon dioxide at high pressure and high temperature: 2NH 3 + CO 2 (g) CH 4 N 2 O + H 2 O In a laboratory experiment, 10.0 g NH 3 and 10.0 g CO 2 were added to a reaction vessel. What is the maximum quantity (in grams) of urea that can be obtained? How many grams of the excess reactant are left at the end of the reactions? Copyright Cengage Learning. All rights reserved. 3 57

58 Molar masses NH 3 1(14.01) + 3(1.008) = g CO 2 1(12.01) + 2(16.00) = g CH 4 N 2 O 1(12.01) + 4(1.008) + 2(14.01) + 1(16.00) = g gnh gco 3 2 1mol mol NH CO gCO 3 gnh 2 3 1mol 1mol 1mol CH CH 2mol CO mol 13.6 gch CH CO 2 is the limiting reactant g CH 4 N 2 O will be produced. gch Copyright Cengage Learning. All rights reserved N N NH O 2 3 O mol gch CH 17.6 gch 4 4 N N 2 4 N 2 O 4 4 N 2 O N O N O O 2 O

59 To find the excess NH 3, we find how much NH 3 reacted: 1mol CO2 2molNH gnh 10.0 gco gCO2 1mol CO2 1molNH g NH gnh3 reacted Now subtract the amount reacted from the starting amount: 10.0 at start reacted 2.27 g remains 2.3 g NH 3 is left unreacted. (1 decimal place) 3 Copyright Cengage Learning. All rights reserved. 3 59

60 Theoretical Yield The maximum amount of product that can be obtained by a reaction from given amounts of reactants. This is a calculated amount. Copyright Cengage Learning. All rights reserved. 3 60

61 Actual Yield The amount of product that is actually obtained. This is a measured amount. Percentage Yield percentage yield actual yield theoretica l yield x100% Copyright Cengage Learning. All rights reserved. 3 61

62 2NH 3 + CO 2 (g) CH 4 N 2 O + H 2 O When 10.0 g NH 3 and 10.0 g CO 2 are added to a reaction vessel, the limiting reactant is CO 2. The theoretical yield is 13.6 of urea. When this reaction was carried out, 9.3 g of urea was obtained. What is the percent yield? Theoretical yield = 13.6 g Actual yield = 9.3 g 9.3g 13.6g x 100% = 68% yield (2 significant figures) Copyright Cengage Learning. All rights reserved. 3 62

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

AP Chemistry Chapter 3. Stoichiometry

AP Chemistry Chapter 3. Stoichiometry AP Chemistry Chapter 3 Stoichiometry Stoichiometry Is the study of the quantities of substances consumed and produced in chemical reactions Derived from the Greek words stoicheion meaning element and metron

More information

Chapter 5. Stoichiometry

Chapter 5. Stoichiometry Chapter 5 Stoichiometry Chapter 5 Table of Contents (5-1) Counting by weighing (5-2) Atomic masses (5-3) Learning to solve problems (5-4) The mole (5-5) Molar mass (5-6) Percent composition of compounds

More information

Chapter 3. Stoichiometry

Chapter 3. Stoichiometry Chapter 3 Stoichiometry Chapter 3 Chemical Stoichiometry Stoichiometry The study of quantities of materials consumed and produced in chemical reactions. Since atoms are so small, we must use the average

More information

Solutions to the Extra Problems for Chapter 8

Solutions to the Extra Problems for Chapter 8 Solutions to the Extra Problems for Chapter 8. The answer is 83.4%. To figure out percent yield, you first have to determine what stoichiometry says should be made: Mass of MgCl 4.3 amu + 35.45 amu 95.

More information

Chapter 3 Stoichiometry. Ratios of combination

Chapter 3 Stoichiometry. Ratios of combination Chapter 3 Stoichiometry Ratios of combination Topics Molecular and formula masses Percent composition of compounds Chemical equations Mole and molar mass Combustion analysis (Determining the formula of

More information

Stoichiometry Ratios of Combination

Stoichiometry Ratios of Combination Chapter 3 Stoichiometry Ratios of Combination Dr. A. Al-Saadi 1 Preview Concepts of atomic mass, molecular mass, mole, molar mass, and percent compositions. Balancing chemical equations. Stoichiometric

More information

Chapter 3 Molecules, Compounds, and Chemical Equations

Chapter 3 Molecules, Compounds, and Chemical Equations Chapter 3 Molecules, Compounds, and Chemical Equations 3.7 Formula Mass versus Molar mass Formula mass The average mass of a molecule or formula unit in amu also known as molecular mass or molecular weight

More information

Calculations with Chemical Formulas and Equations

Calculations with Chemical Formulas and Equations Calculations with Chemical Formulas and Equations Mass and Moles of a Substance Chemistry requires a method for determining the numbers of molecules in a given mass of a substance. This allows the chemist

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations Lecture Outline 3.1 Chemical Equations The quantitative nature of chemical formulas and reactions is called stoichiometry. Lavoisier

More information

Chapter 3. Mass Relationships in Chemical Reactions

Chapter 3. Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions In this chapter, Chemical structure and formulas in studying the mass relationships of atoms and molecules. To explain the composition of compounds and

More information

CHEMICAL ARITHMATICS MODULE - 1. Objectives. Chemical Arithmatics. Atoms, Molecules and Chemical Arithmatics. Notes

CHEMICAL ARITHMATICS MODULE - 1. Objectives. Chemical Arithmatics. Atoms, Molecules and Chemical Arithmatics. Notes 2 MODULE - 1 CHEMICAL ARITHMATICS W e know that atoms of different elements combine in simple whole-number ratios to form molecules. For example, hydrogen and oxygen atoms combine in the mass ratio of

More information

Practice questions for Ch. 3

Practice questions for Ch. 3 Name: Class: Date: ID: A Practice questions for Ch. 3 1. A hypothetical element consists of two isotopes of masses 69.95 amu and 71.95 amu with abundances of 25.7% and 74.3%, respectively. What is the

More information

Chapter 9. Chemical Quantities

Chapter 9. Chemical Quantities Chapter 9 Chemical Quantities Section 9.1 Information Given by Chemical Equations A balanced chemical equation gives relative numbers (or moles) of reactant and product molecules that participate in a

More information

Quantity Relationships in Chemical Reactions

Quantity Relationships in Chemical Reactions Chapter 10 Relationships in Chemical Reactions Section 10.1 Conversion Factors from a Chemical Equation Goal 1 The coefficients in a chemical equation give us the conversion factors to get from the number

More information

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units )

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units ) Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units ) N A 6.0 10 mol -1 1 mol substance contains N A Molar mass (g/mol)

More information

The Mole. Relative Atomic Mass Ar

The Mole. Relative Atomic Mass Ar STOICHIOMETRY The Mole Relative Atomic Mass Ar Relative Molecular Mass Mr Defined as mass of one atom of the element when compared with 1/12 of an atom of carbon-12 Some Ar values are not whole numbers

More information

Chapter 3. Mass Relations in Chemistry; Stoichiometry

Chapter 3. Mass Relations in Chemistry; Stoichiometry Chapter 3 Mass Relations in Chemistry; Stoichiometry Copyright 2001 by Harcourt, Inc. All rights reserved. Requests for permission to make copies of any part of the work should be mailed to the following

More information

Chapter 3 The Mole and Stoichiometry

Chapter 3 The Mole and Stoichiometry Chapter 3 The Mole and Stoichiometry Chemistry, 7 th Edition International Student Version Brady/Jespersen/Hyslop Brady/Jespersen/Hyslop Chemistry7E, Copyright 015 John Wiley & Sons, Inc. All Rights Reserved

More information

Chemical Equations. Law of Conservation of Mass. Anatomy of a Chemical Equation CH4(g) + 2O2(g) Chapter 3

Chemical Equations. Law of Conservation of Mass. Anatomy of a Chemical Equation CH4(g) + 2O2(g) Chapter 3 Chemical Equations Chemical equations are concise representations of chemical reactions. Chapter 3 : Calculations with Chemical Formulas and Equations Law of Conservation of Mass Anatomy of a Chemical

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Chemical Reactions, Chemical Equations, and Stoichiometry. Brown, LeMay Ch 3 AP Chemistry

Chemical Reactions, Chemical Equations, and Stoichiometry. Brown, LeMay Ch 3 AP Chemistry Chemical Reactions, Chemical Equations, and Stoichiometry Brown, LeMay Ch 3 AP Chemistry 1 3.: Types of reactions http://web.fuhsd.org/kavita_gupta/july.html 3.3: Atomic, Molecular & Formula Weights Atomic

More information

9/14/ Chemistry Second Edition Julia Burdge. Stoichiometry: Ratios of Combination. Molecular and Formula Masses

9/14/ Chemistry Second Edition Julia Burdge. Stoichiometry: Ratios of Combination. Molecular and Formula Masses 9/14/1 Chemistry Second Edition Julia Burdge Stoichiometry: Ratios of Combination Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Stoichiometry: Ratios

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations. Stoichiometry

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations. Stoichiometry Chapter 3 : Calculations with Chemical Formulas and Equations Anatomy of a Chemical Equation CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O (g) Anatomy of a Chemical Equation CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2

More information

Finding Formulas. using mass information about a compound to find its formula

Finding Formulas. using mass information about a compound to find its formula Finding Formulas using mass information about a compound to find its formula Molecular Formula Molecular formula is the actual formula of compounds which form molecules. For example, the molecular formula

More information

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Lecture Presentation

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Lecture Presentation Lecture Presentation Chapter 3 : Calculations with Chemical Formulas and Equations John D. Bookstaver St. Charles Community College Cottleville, MO Law of Conservation of Mass We may lay it down as an

More information

Chemistry 101 Chapter 8 Chemical Composition

Chemistry 101 Chapter 8 Chemical Composition Chemistry 101 Chapter 8 Chemical Composition Atomic mass unit (amu): a unit of the scale relative masses of atoms (1 amu = 1.66 10-24 g). Atomic weight (Atomic mass): the atomic weight of an element given

More information

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles Unit 8: Quantification of Chemical Reactions Chapter 10: The mole Chapter 12: Stoichiometry Counting by mass: The Mole Chemists can t count individual atoms Use moles to determine amounts instead mole

More information

Honors Chemistry Unit 6 Moles and Stoichiometry Notes. Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number?

Honors Chemistry Unit 6 Moles and Stoichiometry Notes. Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number? Honors Chemistry Unit 6 Moles and Stoichiometry Notes Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number? 3. What does it mean? 4. How is a mole like a dozen doughnuts? Formula

More information

2.9 The Mole and Chemical Equations:

2.9 The Mole and Chemical Equations: 2.9 The Mole and Chemical Equations: Stoichiometry Whether you are making omelettes in a kitchen or soap in a factory, you need to know the quantities of ingredients required to produce a certain quantity

More information

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017 General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy http://fac.ksu.edu.sa/melnewehy Chapter 3 Mass Relationships in Chemical Reactions 1 In this chapter, Chemical structure and formulas in studying

More information

The coefficients of a balanced chemical equation tell us how many of each species are involved in the reaction.

The coefficients of a balanced chemical equation tell us how many of each species are involved in the reaction. Stoichiometry Chemical Equations Reactants are written on the left side of the arrow and products are written on the right side of the arrow. The Law of Conservation of Mass tells us that the number of

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Chapter 3 : Calculations with Chemical Formulas and Equations AP Chemistry 2014-15 North Nova Education Centre Mr. Gauthier Law of Conservation of Mass We may lay it down as an incontestable axiom that,

More information

Chapter 3: Molecules, Compounds and Chemical Equations: (continue and finish chapter 3: 8-11)

Chapter 3: Molecules, Compounds and Chemical Equations: (continue and finish chapter 3: 8-11) C h e m i s t r y 1 A : C h a p t e r 3 P a r t B P a g e 1 Chapter 3: Molecules, Compounds and Chemical Equations: (continue and finish chapter 3: 8-11) Homework: Read Chapters 3. Work out sample/practice

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

A chemical reaction shows the process in which a substance (or substances) is changed into one or more new substances

A chemical reaction shows the process in which a substance (or substances) is changed into one or more new substances A chemical reaction shows the process in which a substance (or substances) is changed into one or more new substances Chang, R. 2002. Chemistry 7 th ed. Singapore: McGraw-Hill. A chemical equation uses

More information

Ch. 3 The Mole: Relating the Microscopic World of Atoms to Laboratory Measurements. Brady & Senese, 5th Ed.

Ch. 3 The Mole: Relating the Microscopic World of Atoms to Laboratory Measurements. Brady & Senese, 5th Ed. Ch. 3 The Mole: Relating the Microscopic World of Atoms to Laboratory Measurements Brady & Senese, 5th Ed. Index 3.1 The mole conveniently links mass to number of atoms or molecules 3.2 Chemical formulas

More information

Chapter 3 Test Bank. d. The decomposition of magnesium oxide produces 2.4 g of magnesium metal and 3.2 g of oxygen gas.

Chapter 3 Test Bank. d. The decomposition of magnesium oxide produces 2.4 g of magnesium metal and 3.2 g of oxygen gas. 1. Which of the following correctly provides evidence for the unit formula of magnesium oxide? a. The decomposition of magnesium oxide produces 1.2 g of magnesium metal and 1.6 g of oxygen gas. b. The

More information

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Matter Matter is anything that has mass and takes up space 2 Composition of Matter Atom number of protons = atomic number (Z)

More information

Chapter 3 Chemical Reactions and Reaction Stoichiometry

Chapter 3 Chemical Reactions and Reaction Stoichiometry Chapter 3 Chemical Reactions and Reaction Stoichiometry 2015 Pearson Education, Inc. Chemical Reactions and Reaction Stoichiometry 3.1 Chemical Equations 3.2 Simple Patterns of Chemical Reactivity 3.3

More information

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry Question 1.1: Calculate the molecular mass of the following: (i) H 2 O (ii) CO 2 (iii) CH 4 (i) H 2 O: The molecular mass of water, H 2 O = (2 Atomic mass of hydrogen) + (1 Atomic mass of oxygen) = [2(1.0084)

More information

1.2: Mole, Conversion Factors, Empirical & Molecular Formulas. Ms. Kiely Coral Gables Senior High IB Chemistry SL

1.2: Mole, Conversion Factors, Empirical & Molecular Formulas. Ms. Kiely Coral Gables Senior High IB Chemistry SL 1.2: Mole, Conversion Factors, Empirical & Molecular Formulas Ms. Kiely Coral Gables Senior High IB Chemistry SL TURN IN the Signed Syllabus and Topic 1 Exercises Bell-Ringer #2 What amount in grams is

More information

IGCSE (9-1) Edexcel - Chemistry

IGCSE (9-1) Edexcel - Chemistry IGCSE (9-1) Edexcel - Chemistry Principles of Chemistry Chemical Formulae, Equations and Calculations NOTES 1.25: Write word equations and balanced chemical equations (including state symbols): For reactions

More information

AP Chapter 3 Study Questions

AP Chapter 3 Study Questions Class: Date: AP Chapter 3 Study Questions True/False Indicate whether the statement is true or false. 1. The mass of a single atom of an element (in amu) is numerically EQUAL to the mass in grams of 1

More information

AP Chemistry: Chapter 3 Notes Outline

AP Chemistry: Chapter 3 Notes Outline AP Chemistry: Chapter 3 Notes Outline Objectives: Balance chemical equations Use dimensional analysis to solve stoichiometric problems Use dimensional analysis to do limiting reactant problems Use dimensional

More information

Chapter No. 1 BASIC CONCEPTS Short Question With Answer Q.1 Calculate the grams atoms in 0.4 gm of potassium. Gram atoms of potassium = = = 0.01 grams atoms Q.2 23 grams of sodium and 238 gram of uranium

More information

Chemistry I Notes Unit 7: Stoichiometry Notes

Chemistry I Notes Unit 7: Stoichiometry Notes Chemistry I Notes Unit 7: Stoichiometry Notes Stoichiometry Relating Mass to Numbers of Atoms The Mole The mole is the SI unit for amount of substance. A mole (abbreviated mol) is the amount of a substance

More information

Formulas and Models 1

Formulas and Models 1 Formulas and Models 1 A molecular formula shows the exact number of atoms of each element in the smallest unit of a substance An empirical formula shows the simplest whole-number ratio of the atoms in

More information

Stoichiometry. Chapter 3

Stoichiometry. Chapter 3 Stoichiometry Chapter 3 Chemical Stoichiometry Stoichiometry: The study of quantities of materials consumed and produced in chemical reactions. In macroworld, we can count objects by weighing assuming

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 3 : Calculations with Chemical Formulas and Equations John D. Bookstaver St. Charles Community

More information

Lecture 11 - Stoichiometry. Lecture 11 - Introduction. Lecture 11 - The Mole. Lecture 11 - The Mole. Lecture 11 - The Mole

Lecture 11 - Stoichiometry. Lecture 11 - Introduction. Lecture 11 - The Mole. Lecture 11 - The Mole. Lecture 11 - The Mole Chem 103, Section F0F Unit IV - Stoichiometry of Formulas and Equations Lecture 11 The concept of a mole, which is a very large group of atoms or molecules Determining the formulas for a compound Stoichiometry

More information

Question 1.1: Calculate the molecular mass of the following: (i) H 2 O (ii) CO 2 (iii) CH 4 (i) H 2 O: The molecular mass of water, H 2 O = (2 Atomic mass of hydrogen) + (1 Atomic mass of oxygen) = [2(1.0084)

More information

Chapter 2: Mass Relations in Formulas, Chemical Reactions, and Stoichiometry

Chapter 2: Mass Relations in Formulas, Chemical Reactions, and Stoichiometry Previous Chapter Table of Contents Next Chapter Chapter 2: Mass Relations in Formulas, Chemical Reactions, and Stoichiometry Section 2.1: The Atomic Mass The atomic mass is the mass of 1 atom. Atoms are

More information

7 Quantitative Composition of Compounds. Chapter Outline. The Mole. Slide 1. Slide 2. Slide 3

7 Quantitative Composition of Compounds. Chapter Outline. The Mole. Slide 1. Slide 2. Slide 3 1 7 Quantitative Composition of Compounds Black pearls are composed of calcium carbonate, CaCO 3. The pearls can be measured by either weighing or counting. Foundations of College Chemistry, 14 th Ed.

More information

Chapter 9. Slide 1. Chemical Quantities. Slide 2. Table of Contents

Chapter 9. Slide 1. Chemical Quantities. Slide 2. Table of Contents 1 Chapter 9 Chemical Quantities 2 Chapter 9 Table of Contents 9.1 Information Given by Chemical Equations 9.2 9.3 3 Copyright Cengage Learning. All rights reserved 2 Section 9.1 Information Given by Chemical

More information

Lesson (1) Mole and chemical equation

Lesson (1) Mole and chemical equation Lesson (1) Mole and chemical equation 1 When oxygen gas reacts with magnesium, magnesium oxide is formed. Such Reactions are described by balanced equations known as "chemical equations" Δ 2Mg(s) + O2(g)

More information

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard Chapter 1 IB Chemistry Warm Ups Stoichiometry Mrs. Hilliard Vocabulary 1. Atomic theory 2. Kelvin 3. Mole 4. Relative abundance 5. Molar Mass 6. Empirical formula 7. Molecular formula 8. Stoichiometry

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Chemistry, The Central Science, 10th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 3 : Calculations with Chemical Formulas and Equations John D. Bookstaver St. Charles Community

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Chemistry, The Central Science, 10th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 3 : Calculations with Chemical Formulas and Equations John D. Bookstaver St. Charles Community

More information

CH 221 Chapter Four Part I Concept Guide

CH 221 Chapter Four Part I Concept Guide 1. Balancing Chemical Equations CH 221 Chapter Four Part I Concept Guide Description When chlorine gas, Cl 2, is added to solid phosphorus, P 4, a reaction occurs to produce liquid phosphorus trichloride,

More information

Stoichiometry. Please take out your notebooks

Stoichiometry. Please take out your notebooks Stoichiometry Please take out your notebooks Stoichiometry stochio = Greek for element metry = measurement Stoichiometry is about measuring the amounts of elements and compounds involved in a reaction.

More information

REVIEW of Grade 11 Chemistry

REVIEW of Grade 11 Chemistry REVIEW of Grade 11 Chemistry SCH4U_08-09 NAME: Section A: Review of Rules for Significant Digits All measurements have a certain degree of associated with them. All the accurately known digits and the

More information

Notes: Unit 7 Moles & Stoichiometry

Notes: Unit 7 Moles & Stoichiometry Regents Chemistry: Notes: Unit 7 Moles & Stoichiometry 1 KEY IDEAS A compound is a substance composed of two or more different elements that are chemically combined in a fixed proportion. A chemical compound

More information

Multiple Choices: Choose the best (one) answer. Show in bold. Questions break-down: Chapter 8: Q1-8; Chapter 9: Q9-16: Chapter 10:

Multiple Choices: Choose the best (one) answer. Show in bold. Questions break-down: Chapter 8: Q1-8; Chapter 9: Q9-16: Chapter 10: HCCS CHEM 1405 textbook PRACTICE EXAM III (Ch. 8-10) 5 th and 6 th edition of Corwin s The contents of these chapters are more calculation-oriented and are the beginning of learning of the chemical language.

More information

Stoichiometry ( ) ( )

Stoichiometry ( ) ( ) Stoichiometry Outline 1. Molar Calculations 2. Limiting Reactants 3. Empirical and Molecular Formula Calculations Review 1. Molar Calculations ( ) ( ) ( ) 6.02 x 10 23 particles (atoms or molecules) /

More information

AQA Chemistry GCSE. Topic 3: Quantitative Chemistry. Flashcards.

AQA Chemistry GCSE. Topic 3: Quantitative Chemistry. Flashcards. AQA Chemistry GCSE Topic 3: Quantitative Chemistry Flashcards What is the law of conservation of mass? What is the law of conservation of mass? The law of conservation of mass states that no atoms are

More information

Chapter 8. Chemical Composition

Chapter 8. Chemical Composition Chapter 8 Chemical Composition Section 8.1 Counting by Weighing Objects do not need to have identical masses to be counted by weighing. All we need to know is the average mass of the objects. To count

More information

Vijaykumar N. Nazare

Vijaykumar N. Nazare Std-XI science Unit 1: Some Basic Concepts of Chemistry Vijaykumar N. Nazare Grade I Teacher in Chemistry (Senior Scale) vnn001@ chowgules.ac.in 1.1 IMPORTANCE OF CHEMISTRY Chemistry is the branch of science

More information

CHAPTER 9 AVOGADRO S NUMBER

CHAPTER 9 AVOGADRO S NUMBER CHAPTER 9 AVOGADRO S NUMBER Just like we count in dozens, gross or ream, we count atoms in groups because of their minute sizes. Like in finding the number of atoms in12.01g of C, Experiments have shown

More information

Mass Relationships in Chemical Reactions. Chapter 3 Chang & Goldsby Modified by Dr. Juliet Hahn

Mass Relationships in Chemical Reactions. Chapter 3 Chang & Goldsby Modified by Dr. Juliet Hahn Mass Relationships in Chemical Reactions Chapter 3 Chang & Goldsby Modified by Dr. Juliet Hahn Example 3.6 (3) We now write, 6.07 g CH 4 1 mol CH 4 16.04 g CH 4 = 0.378 mol CH 4 Thus, there is 0.378 mole

More information

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with Chapter 3: Chemical Formulae and Equations 1. Relative atomic mass, A r - The relative atomic mass of an element is the average mass of one atom of an element when compared with mass of an atom of carbon-12

More information

MOLE CONCEPT AND STOICHIOMETRY

MOLE CONCEPT AND STOICHIOMETRY MOLE CONCEPT AND STOICHIOMETRY Dear Reader You have studied about the term 'mole' in your previous class. It is defined as the amount of a substance containing as many constituting particles (atoms, molecules

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl & Donald J. DeCoste University of Illinois Chapter 8 Chemical Composition

More information

Chapter 10 Chemical Quantities

Chapter 10 Chemical Quantities Chapter 10 Chemical Quantities 10.1 The Mole: A Measurement of Matter OBJECTIVES: Describe methods of measuring the amount of something. Define Avogadro s number as it relates to a mole of a substance.

More information

Name Date Class STUDY GUIDE FOR CONTENT MASTERY

Name Date Class STUDY GUIDE FOR CONTENT MASTERY Stoichiometry Section 12.1 What is stoichiometry? In your textbook, read about stoichiometry and the balanced equation. For each statement below, write true or false. 1. The study of the quantitative relationships

More information

Balancing Chemical Reactions. CHAPTER 3: Quantitative Relationships in Chemical Reactions. Zn + HCl ZnCl 2 + H 2. reactant atoms product atoms

Balancing Chemical Reactions. CHAPTER 3: Quantitative Relationships in Chemical Reactions. Zn + HCl ZnCl 2 + H 2. reactant atoms product atoms CHAPTER 3: Quantitative Relationships in Chemical Reactions Stoichiometry: Greek for measure elements Stoichiometry involves calculations based on chemical formulas and chemical equations (reactions) quantitative.

More information

Chapter 4. Chemical Quantities and Aqueous Reactions

Chapter 4. Chemical Quantities and Aqueous Reactions Chapter 4 Chemical Quantities and Aqueous Reactions Stoichiometry The study of the numerical relationship between chemical quantities in a chemical reaction Making Pizza The number of pizzas you can make

More information

Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules)

Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules) Stoichiometry Introduction Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Or Avogadros Number: (number of Molecules) Or Moles (amount of a substance containing avogadros number

More information

Chemistry (www.tiwariacademy.com)

Chemistry (www.tiwariacademy.com) () Question 1.1: Calculate the molecular mass of the following: (i) H2O (ii) CO2 (iii) CH4 Answer 1.1: (i) H2O: The molecular mass of water, H2O = (2 Atomic mass of hydrogen) + (1 Atomic mass of oxygen)

More information

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations Stoichiometry Table of Contents Section 1 Introduction to Stoichiometry Section 2 Ideal Stoichiometric Calculations Section 3 Limiting Reactants and Percentage Yield Section 1 Introduction to Stoichiometry

More information

Chemistry Chapter 3. Stoichiometry. (three sections for this chapter)

Chemistry Chapter 3. Stoichiometry. (three sections for this chapter) Chemistry Chapter 3 Stoichiometry (three sections for this chapter) Chemistry Chapter 3 Stoichiometry Section 1 3.1-3.4 Average Atomic Mass The Mole Molar Mass Average Atomic Mass Average mass of objects

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Chemistry 4.1 - The Mole Concept The Atomic Mass Unit You need to know the atomic mass unit and the relative atomic mass. In Unit C3.3, 1 atomic mass unit

More information

7 Quan'ta've Composi'on of Compounds. Chapter Outline. The Mole. The Mole. The Mole. The Mole. Advanced Chemistry

7 Quan'ta've Composi'on of Compounds. Chapter Outline. The Mole. The Mole. The Mole. The Mole. Advanced Chemistry 7 Quan'ta've Composi'on of Compounds Chapter Outline 7.1 The Mole 7.2 7.3 Percent Composition of Compounds 7.4 Calculating Empirical Formulas 7.5 Calculating the Molecular Formula from Black pearls are

More information

CHEMICAL FORMULA COEFFICIENTS AND SUBSCRIPTS 3O 2 2O 3. ! Formula that gives the TOTAL number of elements in a molecule or formula unit.

CHEMICAL FORMULA COEFFICIENTS AND SUBSCRIPTS 3O 2 2O 3. ! Formula that gives the TOTAL number of elements in a molecule or formula unit. CHEMICAL FORMULA! Formula that gives the TOTAL number of elements in a molecule or formula unit. No Score from Exam 1? Go to 210 Whitmore and speak with Mike Joyce to get it straightened out. Which Skill

More information

Atoms, Molecules, and the Mole

Atoms, Molecules, and the Mole The Mole Now that we know how to write and name chemical compounds, we need to understand how chemists use these formulas quantitatively. As chemists, we need to know how many atoms or molecules are reacting

More information

Name AP Chemistry September 30, 2013

Name AP Chemistry September 30, 2013 Name AP Chemistry September 30, 2013 AP Chemistry Exam Part I: 40 Questions, 40 minutes, Multiple Choice, No Calculator Allowed Bubble the correct answer on the blue side of your scantron for each of the

More information

Chemistry 65 Chapter 6 THE MOLE CONCEPT

Chemistry 65 Chapter 6 THE MOLE CONCEPT THE MOLE CONCEPT Chemists find it more convenient to use mass relationships in the laboratory, while chemical reactions depend on the number of atoms present. In order to relate the mass and number of

More information

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances.

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Moles the SI base unit that describes the amount of particles in a substance. Mole is abbreviated

More information

Practice Problems: Set #3-Solutions

Practice Problems: Set #3-Solutions Practice Problems: Set #3-Solutions IIa) Balance the following equations:(10) 1) Zn (s) + H 3 PO 4 (aq) Zn 3 (PO 4 ) 2 (s) + H 2 (g) 3Zn (s) + 2H 3 PO 4 (aq) Zn 3 (PO 4 ) 2 (s) + 3H 2 (g) 2. Mg 3 N 2 (s)

More information

Chapter 3. Stoichiometry. Copyright 2018 Cengage Learning. All Rights Reserved.

Chapter 3. Stoichiometry. Copyright 2018 Cengage Learning. All Rights Reserved. Chapter 3 Stoichiometry Chapter 3 Table of Contents (3.1) (3.2) (3.3) (3.4) (3.5) (3.6) Counting by weighing Atomic masses The mole Molar mass Learning to solve problems (can read on own, not responsible

More information

Chapter 3. Chemical Equations & Reaction Stoichiometry. Symbolic representation of a chemical reaction

Chapter 3. Chemical Equations & Reaction Stoichiometry. Symbolic representation of a chemical reaction Chapter 3 Chemical Equations & Reaction Stoichiometry I) Chemical Equations Symbolic representation of a chemical reaction potassium + water v potassium hydroxide + hydrogen 2 K(s) + 2 H 2 O(R)! 2 KOH(aq)

More information

Chapter 9 Stoichiometry

Chapter 9 Stoichiometry Chapter 9 Stoichiometry Section 9.1 Intro to Stoichiometry 9.1 Objectives Define stoichiometry. Describe the importance of the mole ratio in stoichiometric calculations. Write a mole ratio relating two

More information

A TAKAMUL INTERNATIONAL SCHOOL CH.10 THE MOLE PREPARED BY MR. FAHAD AL-JARAH

A TAKAMUL INTERNATIONAL SCHOOL CH.10 THE MOLE PREPARED BY MR. FAHAD AL-JARAH A TAKAMUL INTERNATIONAL SCHOOL CH.10 THE MOLE PREPARED BY MR. FAHAD AL-JARAH Chapter Outline Section 10.1 Measuring Matter Key Concepts The mole is a unit used to count particles of matter indirectly.

More information

Chapter 3. Stoichiometry:

Chapter 3. Stoichiometry: Chapter 3. Stoichiometry: Watch Bozeman Videos & other videos on my website for additional help: Big Idea 1: Chemical Analysis Conservation of Atoms Balancing Equations Symbolic Representation Mole Big

More information

PRACTICE EXAMINATION QUESTIONS FOR 1.2 AMOUNT OF SUBSTANCE

PRACTICE EXAMINATION QUESTIONS FOR 1.2 AMOUNT OF SUBSTANCE PRACTICE EXAMINATION QUESTIONS FOR 1.2 AMOUNT OF SUBSTANCE 1. Nitroglycerine, C 3 H 5 N 3 O 9, is an explosive which, on detonation, decomposes rapidly to form a large number of gaseous molecules. The

More information

STOICHIOMETRY. Measurements in Chemical Reactions

STOICHIOMETRY. Measurements in Chemical Reactions STOICHIOMETRY Measurements in Chemical Reactions STOICHIOMETRY Stoichiometry is the analysis of the quantities of substances in a chemical reaction. Stoichiometric calculations depend on the MOLE-MOLE

More information

Stoichiometry Dr. M. E. Bridge

Stoichiometry Dr. M. E. Bridge Preliminary Chemistry Course Stoichiometry Dr. M. E. Bridge What is stoichiometry? The meaning of the word: The word stoichiometry comes from two Greek words: stoichon(meaning element ) and metron(meaning

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 9 REVIEW Stoichiometry SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. The coefficients in a chemical equation represent the (a) masses in grams of all reactants

More information