Constructing Minimal Spanning/Steiner Trees. with Bounded Path Length. Department of EE-Systems

Size: px
Start display at page:

Download "Constructing Minimal Spanning/Steiner Trees. with Bounded Path Length. Department of EE-Systems"

Transcription

1 Construting Miniml pnning/tinr Trs with Boun Pth Lngth Iksoo Pyo Jwon Oh n Mssou Prm JF1-61 Dprtmnt o EE-ystms Intl Corporttion Univrsity o outhrn Cliorni Hillsoro, OR 9714 Los Angls, CA Astrt This ppr prsnts n xt lgorithm n two huristis or solving th Boun pth lngth Miniml pnning Tr (BMT) prolm. Th xt lgorithm whih is s on itrtiv ngtiv-sum-xhng(s) hs polynomil sp omplxity n is hn mor prtil thn th mtho prsnt y Gow. Th rst huristi mtho (BKRU) is s on th lssil Kruskl MT onstrution. For ny givn vlu o prmtr, th lgorithm onstruts routing tr with th longst intronntion pth lngth t most (1 + ) R, n mpirilly with ost t most 1.19 tims ost(bmt ) whr R is th lngth o th irt pth rom th sour to th rthst sink n BMT is th optiml oun pth lngth MT. Th son huristi omins BKRU n ngtiv-sum-xhng(s) o pth to improv rsults. Extnsions o ths thniqus to th oun pth lngth Miniml tinr Trs, using th Elmor ly mol r prsnt s wll. Empiril rsults monstrt th tivnss o ths lgorithms on lrg nhmrk st. 1 Introution In th sign o high-prormn VLI systms, iruit sp n powr onsumption r importnt onsirtions. Routing optimiztion plys n importnt rol in hiving optiml iruit sp n miniml powr onsumption. In, ritil pth ly is untion o mximum intronntion pth lngth whil powr onsumption is untion o th totl intronntion lngth. A linr RC mol (whr intronntion ly twn sour n sink is proportionl to th wir lngth twn th two trminls) is otn us s simpl pproximtion or intronntion ly. First, w lso us wir lngth to pproximt intronntion ly uring th onstrution o routing trs. Ltr, w xtn this ly mol to mor urt RC ly mol. A routing tr us in synhronous systm hs n input, ll th rivr or sour, tht sns signls to h sink. Critil pth ly is n s th mximum ly rom th sour to ny sink. Th ritil pth ly o th hortst Pth Tr (PT) is minimum(in PT, h sink is onnt to th sour y th shortst possil pth.), ut PT hs xssiv routing ost n powr issiption s th powr onsum y th rivr hs linr rltion with This rsrhws un in prt y RC unr ontrt No. 94-DJ-559 n y NF NYI unr ontrt No. M/P th routing pitn. Miniml pnning Tr (MT) hs miniml routing ost, ut my ontin vry long sour-tosink pths whih gr th prormn. Alprt t l. [8] show how to tr th vrg sour-to-sink pth lngth or lowr totl routing ost y using linr omining ost untion onsisting o th sour-to-sink pth lngth n th wight o th g to uring th tr onstrution. In this ppr, w prsnt lgorithms or onstruting Boun pth lngth Miniml pnning Tr (BMT). Th routing tr hivs oun pth lngth, tht is, th lngth o th pth rom th sour to h trminl is oun. uh oun pth lngth tr provis goo initil topology or signrs to just or minimizing ritil pths using mor urt RC ly mol. Also, th tr hs smll routing ost whih is importnt rom r n powr onsumption viwpoints. Lt R th lngth o irt pth rom th sour to th rthst sink n non-ngtiv usr-spi prmtr. Our mtho onstruts spnning tr with rius t most (1+) R y using n nlogu o th lssil Kruskl MT onstrution [1]. W will show th sm mtho n xtn to Elmor ly mol n to oun pth lngth tinr tr. Furthrmor, th tr ost is mpirilly osrv to t most 1.19 o tht o n optiml BMT. W nxt sri n xt lgorithm u to Gow [5] whih prous n optiml BMT with xponntil tim n sp omplxity. Thn, w propos nw xt lgorithm whih rquirs xponntil tim ut hs polynomil sp omplxity. This mtho onstruts n optiml tr y ngtiv-sum-xhng(s) on n initil sil solution. W lso propos nothr huristi whih rsolvs th omplxity prolms o th xt lgorithm n prous ttr vrg rsults thn th Kruskl s mtho. Bkgroun On Mhttn (L 1 mtri) or n Eulin (L mtri) pln, lt G =(V;E) (jvj=n)ntwork whr V is st o rnomly istriut trminl pins ll sinks with istinguish pin ll th sour(s), n E is th st o gs onnting V. BMT sks to onnt ll nos o V in G y st o gs in E o miniml totl lngth with oun pth lngth rom th sour to ny sink. This prolm is known to NP-omplt [7]. W propos novl lgorithm - tht is, Boun pth lngth Kruskl (BKRU) - or solving this prolm huristilly. A tr gnrt y our BKRU mtho is ll Boun pth ED&TC /96 $ IEEE

2 lngth Kruskl miniml spnning Tr (BKT). Cong t l. [] propos two huristis or solving th BMT prolm. In th rst mtho o Cong t l., i.. th Boun Prim (BPRIM) lgorithm, vn though th mpiril rsults r promising, th worst-s prormn rtio is unoun whr prormn rtio is n s ost(bprim)/ost(mt) (s Tl n Figur 5). In th son mtho o Cong t l., i.. th Boun Rius, Boun Cost (BRBC) lgorithm, th worst-s prormn rtio is oun. Howvr, BRBC mtho uss minimum pth (shortst pth) rom th sour to sink whnvr th sour-to-sink pth lngth violts th lngth oun ost(; sink) uring th pth rst tr trvrsl. Hn, it my introu unnssry routing ost. Thir nhmrk rsults [] show outworst-s prormn rtio o :66 n n vrg prormn rtio o 1:57. 3 A Huristi: BKRU Bor sriing our pproh, w giv som nitions. Th sum o ll g wights o T is th ost o th tr, ost(t ). Th shortst pth istn twn u n v in grph G is ist G(u; v). Th shortst pth istn twn u n v in tr T is ist T (u; v). Th rius o no v G is rius G(v) (i.. mxist G(v; u)g, 8 u V ). imilrly, th rius o no v T is rius T (v) (i.. mxist T (v; u)g, 8 u V ). Th prtil tr whih ontins no v is rprsnt y t v. nots th sour. BKRU lgorithm solvs th BMT prolm y solving th ollowing prolm: Givn th routing grph G(V;E) in L 1 or L sp, n miniml ost routing tr BKT with rius BKT () (1 + ) R. Th lssil Kruskl lgorithm s n g (u; v) in G to MT, or quivlntly, mrgs two prtil trs t u n t v y th g (u; v) i: (1) (u; v) is th lst wight g mong th vill gs n () t u 6= tv. For (1), ll th gs r sort in nonrsing orr. For (), isjoint st on V is implmnt. Thr oprtions on th st r MAKE ET, FIND ET n UNION, th mnings o whih r sl-xplntory. Mrging two prtil trs is on y th UNION oprtion ollow y th Mrg routin to isuss ltr, whil onition () is sily tst y th FIND ET oprtion. BKRU lgorithm s on mor onition s ollows: (3) th mrg tr stiss th pth lngth oun (1 + ) R rom th sour to th rthst sink. Lt t M th mrg tr, i.., t M = t u [ tv [ (u; v). Two ss r possil: (3-) I t u ontins th sour, thn th ollowing onition shoul stis: ist t u(; u)+ist G(u; v)+rius t v (v) (1 + ) R in nos in t u lry stisy th uppr oun onstrint, this onition nsurs tht nos in t v will lso stisy th uppr oun onstrint tr th mrg. Th s whr t v ontins th sour is similr. (3-) I nithr t u nor t v ontins th sour, thn thr must no x t M suh tht: ist G(; x)+rius tm (x) (1 + ) R This onition nsurs tht ll th nos in th mrg tr t M n onnt to th sour without violting th uppr oun pth lngth onstrint y hving t lst irt pth rom th sour to no x. Tht is, th xistn o suh noxgurnts tht ll nos in t M n stisy th uppr oun onstrint. I no suh no xists in t M, thn (u; v) shoul rjt s thr is no wy to stisy th upproun onstrint or ll th nos in t M.W n now giv two importnt nitions. Dnition 3.1 A sil no: I thr xists no x in t M suh tht istg(,x) + riustm (x) (1 + ) R, thn noxissil no in t M. Dnition 3. A sil g: I g (u; v) stiss onitions () n (3), thn it is sil g. Fsil gs n sly to th spnning tr unr onstrution. BKRU mintins th rius o h no in th prtil tr it longs to, n th pth lngths twn vry pir o nos within th prtil tr thy long to. Lt th rry D[V,V] ontin inormtion out th Mnhttn or th Eulin istns twn vry pir o nos, i.. D[x; y] = ist G(x; y). Lt th rry P[V,V] th pth lngth twn vry pir o nos in th routing tr, i.. P[x; y] =ist T (x; y). Also lt th vtor r[v] th rii o nos in th tr thy long to. Initilly, th rry P n th vtor r r initiliz to zro. As th tr grows, P n r r upt y th Mrg routin givn low: // Mrg two sutrs tu n tv y g (u; v) Algorithm Mrg(u; v) 1 or h x tu n y tv o P[x; y] =P[y; x] =P[x; u] +D[u; v] +P[v; y] 3 n or 4 or h x tu o 5 r[x] = mx(r[x], P[x; i], 8 i tv) 6 n or 7 or h y tv o 8 r[y] = mx(r[y], P[i; y], 8 i tu) 9 n or Figur 1 shows n xmpl o how Mrg routin works. Th two prtil trs r mrg y th g (; ). Th lthn si tr is t n th righthn si tr is t. Bor th mrging tks pl, ll o th non-zro lmnts (xpt th igonl lmnts) in mtrix P n th vtor rwr omput rom prvious mrgings. Not tht lmnts o r r th mximum o h rowop. Th Mrg routin lvs thos non-zro lmnts unhng n upts P[x; y] only whn x n y r in irnt prtil trs. For xmpl, P[; ] n omput y P[; ] =P[; ] + D[; ] +P[; ]. On th P mtrix is upt y lin 1-3 in th lgorithm, nw rius r[x] n oun y tking th mximum mong th ol rius (ol r[x]) n th P[x; y]s or ll y t v.for xmpl, nw r[] n oun y tking th mximum mong ol r[], P[; ], P[; ]g, whih is9,

3 4 3 5 Bor Mrg P = Atr Mrg P = r = r = Figur 1: Exmpl o Mrging Two Prtil Trs 11, 13g. o th nw r[] is 13. W n sily s tht th tim omplxity o Mrg is O(V ). in w n nw rius o no x in th mrg tr to tst th siility ox, it sms tht mrging is n or th siility tst is prorm. Howvr, w n n th nw rius o ny no without n tul mrging. Using th sm nottion s or, suppos x longs to t u. Thn it n sily sn tht nw rius o x = mx r[x], P[x; u] +D[u; v] +r[v]g whr r n P vlus r r rom th rrys or th mrg. Th s whr x longs to t v is similr. With this, siility tst or no n on in O(1). o th onition (3-) n tst in O(V ). W lso not tht onition (3-) n tst in O(1). Th omplt BKRU lgorithm is summriz in th ollowing: Algorithm BKRU(G) 1 or h vrtx x V o MAKE ET(x) 3 r[x] =0 4 n or 5 or vry pir o vrtis x; y V o 6 P[x; y] =0 7 n or 8 sort th g st E in nonrsing orr o wights 9 or h g (u; v) in th sort g list o 10 i FIND ET(u) 6= FIND ET(v) thn 11 i ithr onition (3-) or (3-) is stis thn 1 UNION(u; v) 13 Mrg(u; v) 14 output th g (u; v) 15 n i 16 n i 17 n or Th ominting omplxity o BKRU is on lin 11 n 13. in lin 11 is xut E tims n lin 13 is xut V 1 tims, th omplxity o BKRU is oun y O(EV + V V )=O(V 3 ). Hr, w xplin BKRU lgorithm with simpl xmpl. uppos w hv sour n thr sinks s shown in () o Figur. I th uppr oun pth lngth is st to (1 + ) R = 8, BKRU works in th orr o (), (), n () n prous BKT with totl ost 8 whih is optiml. Th slt lightst g - o () stiss ov thr onitions sin is th sil no. o th g - is sil g. Th nxt lightst g - o () stiss () () () () Figur : BKRU Exmpl ov thr onitions sin is th sil no. Finlly, g - is inlu sin is th sil no. 3.1 Extnsion o BKRU to us th Elmor Dly Mol Th BKRU lgorithm n xtn to th Elmor ly mol so tht th pth lngth rom th sour to ny sink is rpl with th signl propgtion ly. To nsur th xistn o solution, th sour shoul l to supply vry lrg mount o urrnt, i.. it must hv vry smll rivr rsistn so tht PT n solution. R is st to th longst -sink lys o PT. For two nos u n v, th ly rom u to v is not simply proportionl to th pth lngth twn u n v, ut lso pnnt on th tr topology. o th mtho in BKRU or omputing th rius o no os not work. Th nw rii r in BKRU lgorithm must ompltly romput tr tmporrily mrging th two sutrs. Th rius r[v] onovis th longst ly rom v to ny sink in th mrg tr root t v, n n oun in linr tim. At th sm tim, th totl pitn, whih is sum o th wir n lo pitns in th mrg tr (not y C(mrg tr)) is lso omput. Th siility tsts (3-) n (3-) r thn rstt s: (3-) 0 r[sour] (1 + ) R in th mrg tr (3-) 0 thr xists no x in th mrg tr suh tht R s istg(; x) (C s istg(; x)=+c(mrg tr)) + r[x] < (1 + ) R, whr R s n C s not th sht rsistn n pitn o th wir, rsptivly. (3-) 0 tks O(V ) whil (3-) 0 tks O(V ). As rsult o ths moitions to BKRU, th siility tst omints th totl omplxity o th lgorithm, whos omplxity oms O(EV ). 3. Construting Boun Pth Lngth tinr Trs: BKT Boun Pth Lngth tinr Trs n onstrut on hnnl intrstion grph or on Hnn's gri grph [9] using moi BKRU. A spnning tr tht spns ll th sinks n th sour on ths routing grphs oms tinr tr. W ll this vrition o Boun Kruskl mtho Boun Kruskl Tinr (BKT). Initilly, th istns twn vry pir o sinks on th routing grph r omput n stor in hp. Ths istns r nlogous to th g wights in BKRU. Thn w xtrt th smllst istn rom th hp n hk its siilty. I it is sil, th pth in th routing grph tht hivs

4 our our our Initil olution Tr g () () () our our T-xhng T-xhng T-xhng T-xhng pth 1 () i h g i h g () Figur 3: Exmpl o tinr BKRU (BKT) this istn is oun n to th tinr tr unr onstrution. I thr r multipl suh pths, w hoos only L-shp pths (no zigzg pths). Also, mong th two possil L-shp pths, whoos th pth whos ornr is losst to th sour. Th nos tht li on th pth whih wr just to th tinr tr, r trt s nw sinks. Nxt, th istns twn th nw sinks n ll othr sinks whih r not in th urrnt mrg tr r omput n stor in th hp. Th nxt itrtion piks th smllst istn rom th hp. This ontinus until vry sink is ovr. I thr r m sinks (oth givn n sinks) in th tinr tr, th omplxity o BKRU is O(V m ). In th worst s, m is o O(V ). Howvr, in prti, m is not lrg. In our nhmrk iruits, m ws usully no mor thn 10 tims o V. In mny VLI signs, spilly in stnr ll signs, th sink lotions r rgulr. o thr r not so mny Hnn points. Ths ts nl us to run BKT on lrg nhmrks s wll. Figur 3 shows n xmpl o this lgorithm on Hnn gri grph. In th Figur, () shows th givn sour n our sink lotions. Th ott lins n thir intrstion points r th gs n nos o th Hnn gri grph. Initilly, th istns twn th 5 points (our,,,, ) r omput n stor in th hp. From th hp, th shortst istn (,) is xtrt. Assum tht it is sil. Thn th pth pth(; ) shown in () is to th tinr tr. W thn hv two nw sinks n. Th istns rom, to our,, r omput n stor in th hp. Th nxt shortst istn in th hp is (,) n it is sil, so pth(;) is to th tinr tr in (). Th nxt shortst istn pth(; ), howvr, is not sil, so it is rjt. Th nxt shortst n sil istn is pth(our; g), so it is in (). Finlly, pth(i; ) is inlu in (). 4 Gow's Ext Mtho: BMT G Lt us sri n optiml lgorithm or th Boun pth lngth Miniml pnning Tr (BMT) prolm. This optiml lgorithm is opt rom [5], lthough our implmnttion is somwht irnt. Gow's lgorithm prous ll spnning trs in orr o inrsing ost with tim omplxity oo(kelog (1+E=V ) V ) j pth Figur 4: BKEX Ngtiv-sum-Exhng rh Tr n sp omplxity oo(k) whr K is th totl numr o spnning trs gnrt 1. W riy sri his lgorithm, omitting mny tils. Intrst rrs my rr to [5]. Lt T spnning tr o G. A T-xhng is pir o gs (, ) whr T, G T n T [ is spnning tr. Th wight o xhng (, ) iswight() wight(). Th g pir (, ) whih hivs th minimum wight oxhng is miniml T-xhng. Not tht i T is miniml spnning tr, thr is no ngtiv wight T- xhng. I T is miniml spnning tr n (, ) is miniml T -xhng, thn T [ is spnning tr with th nxt smllst ost. This is th sis o th lgorithm. W trmint Gow's lgorithm whn th gnrt spnning tr stiss th uppr oun. Th mjor shortoming o Gow's lgorithm is th sp omplxity. Totl numr o spnning trs in omplt grph is V V [6]. This mks Gow's lgorithm imprtil vn or s w s 10 nos. W hv n l to somwht ru th sp n tim omplxitis y liminting som gs s prprossing to th Gow's lgorithm tht nnot l to solution tr. Using this thniqu, whv us Gow's lgorithm on trs with s mny s 15 sinks. In prtil CMO iruit, gt usully rivs lss thn 10 gts. o this lgorithm n us in most prtil ss. 5 Yt Anothr Ext Mtho n Huristi: BKEX n BKH Boun Kruskl EXhng (BKEX) is post-prossing lgorithm tht strts rom n initil solution tr n rus th routing ost towr th optiml. I th initil tr is not n optiml solution, BKEX ns g xhng(s) suh tht routing ost is ru. W ll suh xhng(s) ngtiv-sum-xhng(s). Dnition 5.1 Ngtiv-sum-xhng(s): A squn o T-xhng(s) whr th sum o th wight(s) o xhng(s) is ngtiv. BKEX strts rom ny solution tr, ns ngtiv-sumxhng(s), onvrts th solution tr to nw solution tr y xhnging gs, n itrts until no mor possil xhng(s) r oun. Lt's not th srh tr in Figur 4 s. Eh no in rprsnts spnning tr. 1 W liv this is th orrt tim omplxity inst o Gow's lim o O(KE(E;V )).

5 Th root o is th initil solution. A hil no is gnrt y T-xhng rom its prnt no. Th gs o r ll with th wight ot-xhng. BKEX srhs ngtiv-sum-xhng(s) in pth rst srh mnnr. Not tht on n rh ny spnning tr rom th root y sris o t most V 1 T -xhngs. o srhing own to th pth o V 1 lwys ns th optiml solution. Howvr, in most ss, BKEX ns n optiml solution in muh smllr pth. BKEX kps trk o th sum o T -xhng wights rom th root to th urrnt no uring th pth rst srh. I th sum t rtin no is ngtiv, nw tr with lss ost is onstrut t tht no n w stor th nw tr s minimum ost tr. Whnvr ttr solution is oun uring th srh, this nw tr is put on th root o n nw srh gins. in th numr o possil T -xhngs in tr T is O(EV ), no in hs O(EV ) hilrn. o hs O(E n V n ) nos whr n is th pth o. For h no in, BKEX ns to hk i th urrnt spnning tr is sil, whih tks O(V ). o th tim omplxity o BKEX is O(E n V n+1 ). This is highr tim omplxity thn Gow's, ut sp omplxity is only O(E). Th initil solution signintly ts th prormn o BKEX. Whn BKEX strts rom vry goo initil solution (suh s BKT), th tul srh sp is muh smllr thn E n V n. In our xprimntl rsults show tht BKEX is muh str thn Gow's mtho. Bsis, BKEX ns th solution whn Gow's lgorithm ils or lrgr nhmrks u to its xponntil sp omplxity. W tst BKEX with,750 rnomly gnrt nhmrks. Th numr o sinks o ths nhmrks r twn 5 n 15. Th vlu hs rng rom 0.0 to 1.0. BKEX rhs optiml solutions o %, % n % with pth two, thr n our rsptivly. Only on nhmrk ws lt unoptiml with pth v n it ws solv y pth six. W implmnt nothr huristi mtho BKH whih limits th pth o th srh tr y two. It n shown tht BKT is lol optimum with rspt to singl T -xhng. To otin ttr lol optimum thn BKT, t lst oul T -xhngs r n. Thus BKH is propos to n lol optimum with rspt to two T -xhngs. Th omplxity o BKH is O(E V 3 ). in this omplxity is rltivly high, w oun tht BKH is niil whn V is lss thn 300 (s Tl 1). 6 Exprimntl Rsults W implmnt BKRU, BMT G, BKEX, BKH, n BKT lgorithms in C on HPPA n UN worksttions in th UNIX nvironmnt. W us thr sts o nhmrks: (1) th sink plmnts or MCNC Primry1 n Primry nhmrks us in [3]; n () th sink plmnts or th v nhmrks r1-r5 us in [4]; n (3) v sts o 5 to 15 sinks n 50 rnom tst ss or h st. W on mor no s th sour to th r* n primry* nhmrks us thy i not om with sour. All th rsults r omput in Mnhttn mtri. BKRU BKH pr. pth pr. pth pr. r. rtio rtio pu rtio rtio pu % pr k k 9.37 pr k k k 0.18 r k k r k k k.58 r k k 1.71 r k k k k 0.00 r k k k k k 0.00 pr. rtio (Tr) = ost(tr) = ost(mt) pth rtio (Tr) = longst pth(tr) = longst pth(pt) pr. ruttion = (1 BKH/BKRU) 100 CPU tim is msur in sons. BKH limits CPU tim to out 1 hours. GABOW, BKEX n BPRIM r imprtil to gnrt outputs. Tl 1: BKRU n BKH rsults or lrg nhmrks BPRIM BKT ε= 0.0 MT n BKT ε= ε = 0.5 Cost = Cost = Cost = BKT ε = 0.0 Cost = Figur 5: Exmpl whr th prormn rtio o BRPIM is not oun or ny As xplin in [], BPRIM n gnrt solution whos ost is not oun or ny. BPRIM gnrts 4: ost(mt) n 3:3 ost(bkt) or th nhmrk shown in Figur 5 whn =0. A omprison o BKRU n BKH ovr MT is givn in Tl 1 or nhmrks (1), (). Th rsults show tht th prormn rtio o BKT ovr MT is t most For (3) nhmrks, th omprison o BPRIM, BRBC, BKRU, BKH, BMT G n BKT in trms o routing ost is shown in Tl. Th nhmrk rsults show out vrg prormn rtios o 1.8, 1.45, 1.0, 1.0 n 1.03 or BPRIM, BKRU, BKH, BMT G n BKT rsptivly in th worst s. In th s o 15 points with = 0:1, th vrg ost rutions r 18.19%, 10.9%, 10.6% n 6.5% ovr BPRIM or BKT, BMT G (BKEX), BKH n BKRU rsptivly. BKRU mtho ors ontinuous, smooth tr-o twn th ompting rquirmnts o longst pth lngth n totl wir lngth in trms o.

6 nt BPRIM BRBC BKRU BKH BMT G BKT siz v mx mx v mx pu v mx pu v mx pu min v mx pu rnom tst ss wr gnrt or h point. CPU tim is th vrg o 50 rnom tst ss msur in sons. Minimum vlus r 1.008, 1.038, n or BPRIM, BKRU, BKH n BMT G rsptivly t = 0.0 o nt 1. Th othrs r BRBC is shown only with mximum vlus sin minimum n vrg vlus o BRBC r lwys wors thn thos o BPRIM. Tl : Th Rtio o th Routing Cost ovr MT MT BMT_G BKEX BKH BKRU PT Mximl pnning Tr Figur 6: Routing Cost Chrt From ths rsults, th vrious BMT mthos n orr y thir routing osts s shown in Figur 6. This hrt shows th vrg rltiv positions. Th rsult o Boun Kruskl tinr Tr (BKT) on nhmrk st (3) shows tht its ost is lowr thn ny othr spnning tr huristis. Th svings r 5% to 30% ovr othr huristis. Not tht th svings r vn grtr whn is los to zro. This is u to th t tht whn is los to zro, thr r mny irt sour-to-sink pths in th spnning tr solutions whil in th tinr solutions, ths irt pths r rpl y wr irt sour-to-sink pths. Although BKT prous lowr ost trs, w l tht spnning tr huristis r worthwhil us thy run muh str. 7 Conlusion W hv prsnt oun pth lngth miniml spnning/tinr tr shms whih n ontrol longst pth lngth n routing ost. Our mtho hivs smllr ost thn tht o BPRIM n BRBC. Futur rsrh inlus onsiring th ts o uring n wir sizing, xtning this work to lowr n uppr oun tinr Trs n prsrving plnrity uring th onstrution prour. Rrns [1] J. B. Kruskl, \On th shortst spnning sutr o grph n th trvling slsmn prolm," Proings o th Amrin Mthmtil oity, Vol. 7, pp , [] Jingshng Cong, A. Khng, G. Roins, M. rrzh, n C. K. Wong, \Provly Goo Prormn-Drivn Glol Routing," IEEE Trnstions on Computr Ai Dsign, Vol. 11, NO. 6, pp , Jun, 199. [3] M. A. B. Jkson, A. rinivsn, n E.. Kuh, \Clok routing or high-prormn ICs," 7th Dsign Automtion Conrn, pp , [4] R- Tsy, \Ext zro skw," Intrntionl Conrn on Computr-Ai Dsign, pp , [5] Hrol N. Gow, \Two lgorithms or gnrting wight spnning trs in orr," IAM J. Comput.,Vol. 6, No. 1, pp , Mrh [6] F. Hrry, \Grph Thory," Aison-Wsly, Msshustts, pp , [7] J. Ho, D. T. L, C. H. Chng, n C. K. Wong, \Boun imtr spnning trs n rlt prolms," Proings o ACM ymposium Computtionl Gomtry, pp. 76-8, [8] C.J. Alprt, T.C. Hu, J.H. Hung n A.B. Khng, \A irt omintion o th Prim n Dijkstr onstrutions or improv prormn-rivn glol routing," Intrntionl ymposium on Ciruit n ystms, pp , [9] M. Hnn, \On tinr's prolm with rtilinr istn," IAM Journl o Appli Mthmtis, pp , Mrh 1966.

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications Proings of th 6th WSEAS Intrntionl Confrn on Miroltronis, Nnoltronis, Optoltronis, Istnul, Turky, My 27-29, 27 32 A Low Nois n Rlil CMOS I/O Buffr for Mix Low Voltg Applitions HWANG-CHERNG CHOW n YOU-GANG

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method:

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method: Dinition: GREEDY TECHNIQUE Gry thniqu is gnrl lgorithm sign strtgy, uilt on ollowing lmnts: onigurtions: irnt hois, vlus to in ojtiv untion: som onigurtions to ithr mximiz or minimiz Th mtho: Applil to

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Clustering Techniques for Coarse-grained, Antifuse-based FPGAs

Clustering Techniques for Coarse-grained, Antifuse-based FPGAs Clustring Thniqus or Cors-grin, Antius-s FPGAs Chng-woo Kng n Mssou Prm Astrt In this ppr, w prsnt r n prormn-rivn lustring thniqus or ors-grin, ntius-s FPGAs. A mro logi ll in this lss o FPGAs hs multipl

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

Clustering for Processing Rate Optimization

Clustering for Processing Rate Optimization Clustring for Prossing Rt Optimiztion Chun Lin, Ji Wng, n Hi Zhou Eltril n Computr Enginring Northwstrn Univrsity Evnston, IL 60208 Astrt Clustring (or prtitioning) is ruil stp twn logi synthsis n physil

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

C-201 Sheet Bar Measures 1 inch

C-201 Sheet Bar Measures 1 inch Janine M. lexander, P.. P.. No. 9, L 0 N. PRK RO, SUIT 0 HOLLYWOO, LORI 0 PHON: (9) - X: (9) 08- No.: 9 I ST SRIPTION Y GT VLVS SHLL RSILINT ST, MNUTUR TO MT OR X TH RQUIRMNTS O WW 09 (LTST RVISION) N

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently?

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently? Rgistr Allotion Rgistr Allotion How to ssign vrils to initly mny rgistrs? Wht to o whn it n t on? How to o so iintly? Mony, Jun 3, 13 Mmory Wll Disprity twn CPU sp n mmory ss sp improvmnt Mony, Jun 3,

More information

RAM Model. I/O Model. Real Machine Example: Nehalem : Algorithms in the Real World 4/9/13

RAM Model. I/O Model. Real Machine Example: Nehalem : Algorithms in the Real World 4/9/13 4//3 RAM Mol 5-853: Algorithms in th Rl Worl Lolity I: Ch-wr lgorithms Introution Sorting List rnking B-trs Bur trs Stnr thortil mol or nlyzing lgorithms: Ininit mmory siz Uniorm ss ost Evlut n lgorithm

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

CSI35 Chapter 11 Review

CSI35 Chapter 11 Review 1. Which of th grphs r trs? c f c g f c x y f z p q r 1 1. Which of th grphs r trs? c f c g f c x y f z p q r . Answr th qustions out th following tr 1) Which vrtx is th root of c th tr? ) wht is th hight

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

10/30/12. Today. CS/ENGRD 2110 Object- Oriented Programming and Data Structures Fall 2012 Doug James. DFS algorithm. Reachability Algorithms

10/30/12. Today. CS/ENGRD 2110 Object- Oriented Programming and Data Structures Fall 2012 Doug James. DFS algorithm. Reachability Algorithms 0/0/ CS/ENGRD 0 Ojt- Orint Prormmin n Dt Strutur Fll 0 Dou Jm Ltur 9: DFS, BFS & Shortt Pth Toy Rhility Dpth-Firt Srh Brth-Firt Srh Shortt Pth Unwiht rph Wiht rph Dijktr lorithm Rhility Alorithm Dpth Firt

More information

Register Allocation and Binding for Low Power. Jui-Ming Chang and Massoud Pedram. function of signal statistics and correlations, and hence is

Register Allocation and Binding for Low Power. Jui-Ming Chang and Massoud Pedram. function of signal statistics and correlations, and hence is Rgistr Allotion n ining or Low Powr Jui-Ming hng n Mssou Prm Dprtmnt o Eltril Enginring-Systms Univrsity o Southrn liorni Los Angls, A 989 Astrt This ppr sris thniqu or lulting th swithing tivity o st

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

Multi-Way VLSI Circuit Partitioning Based on Dual Net Representation

Multi-Way VLSI Circuit Partitioning Based on Dual Net Representation Multi-Wy VLSI Ciruit Prtitioning Bs on Dul Nt Rprsnttion Json Cong Dprtmnt of Computr Sin Univrsity of Cliforni, Los Angls, CA 90024 Wilurt Lio n Nrynn Shivkumr Dprtmnt of Computr Sin Stnfor Univrsity,

More information

Construction 11: Book I, Proposition 42

Construction 11: Book I, Proposition 42 Th Visul Construtions of Euli Constrution #11 73 Constrution 11: Book I, Proposition 42 To onstrut, in givn rtilinl ngl, prlllogrm qul to givn tringl. Not: Equl hr mns qul in r. 74 Constrution # 11 Th

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

Module 2 Motion Instructions

Module 2 Motion Instructions Moul 2 Motion Instrutions CAUTION: Bor you strt this xprimnt, unrstn tht you r xpt to ollow irtions EXPLICITLY! Tk your tim n r th irtions or h stp n or h prt o th xprimnt. You will rquir to ntr t in prtiulr

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information