Topical Workshop MOF Catalysis. Microkinetics in Heterogeneous Catalysis. DFG Priority Program 1362

Size: px
Start display at page:

Download "Topical Workshop MOF Catalysis. Microkinetics in Heterogeneous Catalysis. DFG Priority Program 1362"

Transcription

1 Topical Workshop MOF Catalysis Microkinetics in Heterogeneous Catalysis DFG Priority Program 1362 Roger Gläser Institut für Technische Chemie Institut für Nichtklassische Chemie e.v. Universität Leipzig

2 Outline Introduction Microkinetics in Catalysis Fundamentals Kinetics and Reaction Mechnisms: Microkinetic Modelling Examples Rate Procurement: Catalytic Testing Testing Reactors and Set-ups Transient Methods Problems and Pitfalls Conclusions: MOFs and Microkinetics

3 References I. Chorkendorf, J.W. Niemantsverdiet: Concepts of Modern Catalysis and Kinetics, Wiley-VCH, Weinheim (2003). Handbook of Heterogeneous Catalysis, G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp, eds., 2 nd edition, Wiley-VCH (2008), Chapter 5.2, pp F. Kapteijn, R.J. Berger, J.A. Moulijn, Chapter 6.1, pp J. Weitkamp, R. Gläser, Chapter 9.2, pp

4 References

5 Steps in Heterogeneous Catalysis boundary layer gas phase A B 7 B A 1 B film diffusion pore diffusion 2 A 3 5 adsorption/ desorption A ads. B ads. 4 chemical reaction

6 Micro- versus Macrokinetics Microkinetics = kinetics of the chemical elmentary steps transport - mass and heat transfer - within and across phases - all reactants and products Macrokinetics = kinetics of combined reaction and transport H 2 or O 2 catalyst + solvent + reactants

7 Why Do Microkinetics? Catalyst and Reactor Design Nature and utilization of mass, surface area, porosity, active sites Kind and operating conditions of reactors Reaction rate occurs in design equations Heterogeneous Catalysis Engineering Elucidation of Reaction Mechanisms Microkinetic Modelling Falsification rather than proof Requires experimental data of sufficient amount and accuracy R O Ti O H O R O Ti O H O H 2 O H 2 O 2 R O H Ti OH O

8 Fundamentals

9 Fundamentals (II)

10 Fundamentals (III) Adsorption Models Adsorption Isotherms

11 Fundamentals (IV) Langmuir Isotherms - Derivation

12 Fundamentals (V) Langmuir Isotherm Derivation (II)

13 Microkinetic Modelling Kinetic Models

14 Microkinetic Modelling (II) Hougen-Watson-Kinetics

15 Microkinetic Modelling (III) surface reaction is rate-determining

16 Microkinetic Modelling (IV) surface reaction is rate-determining

17 Microkinetic Modelling (V) surface reaction is rate-determining

18 Microkinetic Modelling (V) surface reaction is rate-determining

19 Microkinetic Modelling (VI) surface reaction is rate-determining

20 Microkinetic Modelling (VI) surface reaction is rate-determining

21 Microkinetic Modelling (VI) surface reaction is rate-determining

22 Terms in Kinetics

23 Example 1: N 2 O-Decomposition elementary steps steady-state assumption

24 Example 1: N 2 O-Decomposition (II) site balance assumption: step 2 is rate limiting, steps 1, 3 in quasi-equilibrium

25 Example 2: CO-Oxidation application: automotive off-gas treatment active component: noble metals conversions: a) C n H m + (n + m/4) O 2 n CO 2 + (m/2) H 2 O b) 2 CO + O 2 2 CO 2 c) 2 NO + 2 CO N CO 2 2 (n + m/4) NO + C n H m (n + m/4) N 2 + (m/2) H 2 O+ n CO 2 noble metal particles washcoat (secundary particles) metal housing washcoat (primary particles) ceramic monolith J. Weitkamp, R. Gläser, "Katalyse", in: "Winnacker-Küchler: Chemische Technik", R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz, Eds., Vol. 1, Chapter 5, Wiley-VCH, Weinheim (2004), pp off-gas catalyst wive net

26 Example 2: CO-Oxidation (II) elementary steps surface coverages

27 Example 2: CO-Oxidation (III) rate low temperature high temperature temperature / K temperature / K

28 elementary steps Example 3: NH 3 -Synthesis

29 Example 3: NH 3 -Synthesis (II) surface coverages Figs. 7.21, 7.22

30 Example 3: NH 3 -Synthesis (III) rate equilibrium condition

31 Example 3: NH 3 -Synthesis (IV)

32 Measurement of Reaction Rates

33 Reactors for Catalytic Testing Batch Continuous flow: PFR

34 Reactors for Kinetic Measurements Gradientless reactor with internal recycling loop spinning basket reactor

35 Set-Ups for Kinetic Measurements

36 Set-Ups for Kinetic Measurements (II)

37 Set-Ups for Kinetic Measurements (III) N 2 FE 4 H 2 O FE 4 Controlled Evaporator Mixer TCV 1 TCV 1 TE H 2 FE 4 CO 2 FE 4 TCV 1 CH 4 FE 4 Ar FE 4 O 2 FE 4 Purge gas Infrared gas analyser GC

38 Set-Ups for Kinetic Measurements (IV)

39 R.J. Berger, F. Kapteijn, J.A. Moulijn, G. B Marin, J. De Wilde, M. Olea, D. Chen, A. Holmen, L. Lietti, E. Tronconi, Y. Schuurman, Appl. Catal. A: General 342 (2008) 3. Transient Methods TAP = Temporal Analysis of Products

40 R.J. Berger, F. Kapteijn, J.A. Moulijn, G. B Marin, J. De Wilde, M. Olea, D. Chen, A. Holmen, L. Lietti, E. Tronconi, Y. Schuurman, Appl. Catal. A: General 342 (2008) 3. Transient Methods (II) TAP = Temporal Analysis of Products

41 Transient Methods (III) SSITKA = Steady-State Isotope Transient Kinetic Analysis C 4 -HC Legende: H 2 O od. ZP/H 2 O He od. N 2 LFC CEM MFC MK MFC MFC 18 O 2 (Isotop) O 2 MFC LFC CEM MK MS GSS IR-GA R PC TIRC KF Mass Flow Controler Liquid Flow Controler Controlled Evaporator Mixer Mischkammer Massenspektrometer Gas Stream Selector Infrarot-Gasanalysator Reaktor mit Heizmantel Computer Steuereinheit zur Regelung und Kontrolle der Temperatur Kühlfalle Bypass R TIRC PC Abgas MS IR-GA GSS KF

42 Transient Methods (IV) SSITKA = Steady-State Isotope Transient Kinetic Analysis MS-Intensität (w.e.) me: me: 94 me: 58 me: 46 me: 60 F ( i O- n O) in CH 3 COOH (%) Isotop- Umschaltung steady state 260 C 220 C 200 C 180 C 160 C 18 O- 18 O 16 O - 18 O me: Edukt: Flow-Profil 80 T 2 T 2 T 3 T 4 T TOS* 10-1 (s) O - 16 O TOS (s)

43 Transient Methods (V) SSITKA = Steady-State Isotope Transient Kinetic Analysis

44 Testing: Batch or Continuous Batch Easy to handle Commonly available and cost efficient Simple sampling Reaction and deactivation kinetics coupled Data analysis difficult Continuous-flow Elaborate handling Dedicated equipment, partly costly Sampling often difficult (online analysis) Reaction and deactivation kinetics uncoupled Data analysis straight forward

45 Pitfalls BATCH High initial rates Fast deactivation Low conversions Strong endo- or exothermic reactions CONTINUOUS Low catalyst amounts Varying or unsteady reactant flow Changing bed heights Changing pressure drop

46 Ten Commandments for Testing Catalysts 1. Specify objectives 2. Use efficient strategy 3. Chose right reactor type 4. Establish ideal flow patterns 5. Ensure isothermal conditions 6. Minimize transport effects Small particles Low conversions Moderate temperatures 7. Obtain meaningful data Rate, TOF, space time yield 8. Determine the stability 9. GLP: reproducibility, blank runs, cleanliness 10. Report unambiguously

47 MOFs and Microkinetics? K. Leus, I. Muylaert, M. Vandichel, G.B. Marin, M. Waroquier, V. Van Speybroeck, P. Van der Voort, Chem. Commun. 46 (2010) 5085.

48 Conclusions Microkinetics are needed for reactor design can help to elucidate reaction mechanisms require knowledge on elementary steps and active sites might be mathematically challenging are complementary to experimental kinetic data and MOFs only few discussions on catalytic mechanisms further characterization of active sites needed continuous-flow testing essentially absent an attractive field for future research!

Microkinetic Modeling

Microkinetic Modeling Technische Universität München Microkinetic Modeling Karsten Reuter Chemistry Department and Catalysis Research Center Technische Universität München Catalysis Research Triangle Testing (Kinetics) Preparation

More information

CHE 611 Advanced Chemical Reaction Engineering

CHE 611 Advanced Chemical Reaction Engineering CHE 611 Advanced Chemical Reaction Engineering Dr. Muhammad Rashid Usman Institute of Chemical Engineering and Technology University of the Punjab, Lahore 54590 mrusman.icet@pu.edu.pk 1 Advanced Chemical

More information

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press I i Green Chemical Engineering An Introduction to Catalysis, Kinetics, and Chemical Processes S. Suresh and S. Sundaramoorthy CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an

More information

Ammonia Selective Catalytic Reduction of NO in a Monolithic Reverse Flow Reactor

Ammonia Selective Catalytic Reduction of NO in a Monolithic Reverse Flow Reactor Ammonia Selective Catalytic Reduction of NO in a Monolithic Reverse Flow Reactor Emilio Muñoz Vega*, Salvador Ordoéz García, Fernando V. Díez Sanz Department of Chemical and Environmental Engineering,

More information

Part A: Operando FT-IR Studies of heterogeneous catalytic reactions: pitfalls and benefits.

Part A: Operando FT-IR Studies of heterogeneous catalytic reactions: pitfalls and benefits. Part A: Operando FT-IR Studies of heterogeneous catalytic reactions: pitfalls and benefits. Fred Meunier fcm@ircelyon.univ-lyon1.fr Institut de Recherche sur la Catalyse et l Environnement de Lyon Villeurbanne,

More information

NPTEL. Chemical Reaction Engineering II - Video course. Chemical Engineering. COURSE OUTLINE

NPTEL. Chemical Reaction Engineering II - Video course. Chemical Engineering.   COURSE OUTLINE NPTEL Syllabus Chemical Reaction Engineering II - Video course COURSE OUTLINE This is a typical second course in the subject of chemical reaction engineering with an emphasis on heterogeneous reaction

More information

Lecture Series. Modern Methods in Heterogeneous Catalysis. Measurement and Analysis of Kinetic Data

Lecture Series. Modern Methods in Heterogeneous Catalysis. Measurement and Analysis of Kinetic Data Lecture Series Modern Methods in Heterogeneous Catalysis Measurement and Analysis of Kinetic Data Raimund Horn Fritz-Haber-Institute of the MPG Department of Inorganic Chemistry Faradayweg 4-6 14195 Berlin

More information

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers) On the temperature dependence of the Arrhenius activation energy for hydroisomerization catalyzed by Pt/Mordenite Runstraat, van de, A.; van Grondelle, J.; van Santen, R.A. Published in: Journal of Catalysis

More information

Review for Final Exam. 1ChE Reactive Process Engineering

Review for Final Exam. 1ChE Reactive Process Engineering Review for Final Exam 1ChE 400 - Reactive Process Engineering 2ChE 400 - Reactive Process Engineering Stoichiometry Coefficients Numbers Multiple reactions Reaction rate definitions Rate laws, reaction

More information

Notes on reaction-diffusion cases with effectiveness factors greater than one! Richard K. Herz,

Notes on reaction-diffusion cases with effectiveness factors greater than one! Richard K. Herz, Notes on reaction-diffusion cases with effectiveness factors greater than one! Richard K. Herz, rherz@ucsd.edu For isothermal n-th order reactions where n >= 0, the catalyst effectiveness factor value

More information

AUTOMOTIVE EXHAUST AFTERTREATMENT

AUTOMOTIVE EXHAUST AFTERTREATMENT AUTOMOTIVE EXHAUST AFTERTREATMENT CATALYST FUNDAMENTLS Catalyst in its simplest term is a material that increase the rate (molecules converted by unit time) of a chemical reaction while itself not undergoing

More information

E. Toukoniitty, J. Wärnå, D. Yu. Murzin and T. Salmi. Common in fine chemicals production: Three-phase applications, reactant, solvent (l) -

E. Toukoniitty, J. Wärnå, D. Yu. Murzin and T. Salmi. Common in fine chemicals production: Three-phase applications, reactant, solvent (l) - Transient methods in three-phase catalysis E. Toukoniitty, J. Wärnå, D. Yu. Murzin and T. Salmi Three-phase systems Common in fine chemicals production: Three-phase applications, H 2, 2 (g) - reactant,

More information

INTRODUCTION TO CATALYTIC COMBUSTION

INTRODUCTION TO CATALYTIC COMBUSTION INTRODUCTION TO CATALYTIC COMBUSTION R.E. Hayes Professor of Chemical Engineering Department of Chemical and Materials Engineering University of Alberta, Canada and S.T. Kolaczkowski Professor of Chemical

More information

Diffusion in Porous Media

Diffusion in Porous Media Modern Methods in Heterogeneous Catalysis Lectures at Fritz-Haber-Institut 2.12.2005 Diffusion in Porous Media Cornelia Breitkopf Universität Leipzig Institut für Technische Chemie Dimensions in Heterogeneous

More information

Chemical Reactions and Chemical Reactors

Chemical Reactions and Chemical Reactors Chemical Reactions and Chemical Reactors George W. Roberts North Carolina State University Department of Chemical and Biomolecular Engineering WILEY John Wiley & Sons, Inc. x Contents 1. Reactions and

More information

Oxidative Coupling of Methane

Oxidative Coupling of Methane www.optience.com Oxidative Coupling of Methane Objective: Parameter Estimation for Methane to Ethylene reaction In this example, we build a simplified reaction network for the Oxidative Coupling of Methane

More information

DETAILED MODELLING OF SHORT-CONTACT-TIME REACTORS

DETAILED MODELLING OF SHORT-CONTACT-TIME REACTORS DETAILED MODELLING OF SHORT-CONTACT-TIME REACTORS Olaf Deutschmann 1, Lanny D. Schmidt 2, Jürgen Warnatz 1 1 Interdiziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg Im Neuenheimer

More information

Supplementary Information. The role of copper particle size in low pressure methanol synthesis via CO 2 hydrogenation over Cu/ZnO catalysts

Supplementary Information. The role of copper particle size in low pressure methanol synthesis via CO 2 hydrogenation over Cu/ZnO catalysts Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2014 Supplementary Information The role of copper particle size in low pressure

More information

Chemical Reactor flnolysis

Chemical Reactor flnolysis Introduction to Chemical Reactor flnolysis SECOND EDITION R.E. Hayes J.P. Mmbaga ^ ^ T..,«,,.«M.iirti,im.' TECHNISCHE INFORMATIONSBIBLIOTHEK UNWERSITATSBIBLIOTHEK HANNOVER i ii ii 1 J /0\ CRC Press ycf*

More information

Heterogeneous catalysis: the fundamentals

Heterogeneous catalysis: the fundamentals www.catalysiscourse.com Heterogeneous catalysis: the fundamentals Introduction Prof dr J W (Hans) Niemantsverdriet Schuit Institute of Catalysis What is Catalysis? a phenomenon in which a small quantity

More information

POSITION R & D Officer M.Tech. No. of questions (Each question carries 1 mark) 1 Verbal Ability Quantitative Aptitude Test 34

POSITION R & D Officer M.Tech. No. of questions (Each question carries 1 mark) 1 Verbal Ability Quantitative Aptitude Test 34 POSITION R & D Officer M.Tech Candidates having M.Tech / M.E. Chemical Engg. with 60% marks (aggregate of all semesters/years) and 50% for SC/ST/PWD are being called for Computer Based Test basis the information

More information

Role of products and intermediates in bioethanol conversion to hydrocarbons on H-ZSM-5: A time-resolved study

Role of products and intermediates in bioethanol conversion to hydrocarbons on H-ZSM-5: A time-resolved study Role of products and intermediates in bioethanol conversion to hydrocarbons on H-ZSM-5: A time-resolved study Rakesh Batchu, Vladimir V. Galvita, Konstantinos Alexopoulos, Kristof Van der Borght, Hilde

More information

An Introduction to Chemical Kinetics

An Introduction to Chemical Kinetics An Introduction to Chemical Kinetics Michel Soustelle WWILEY Table of Contents Preface xvii PART 1. BASIC CONCEPTS OF CHEMICAL KINETICS 1 Chapter 1. Chemical Reaction and Kinetic Quantities 3 1.1. The

More information

Direct Synthesis of H 2 O 2 on AgPt Octahedra: The Importance of Ag-Pt Coordination for High H 2 O 2 Selectivity

Direct Synthesis of H 2 O 2 on AgPt Octahedra: The Importance of Ag-Pt Coordination for High H 2 O 2 Selectivity Supporting Information Direct Synthesis of H 2 O 2 on AgPt Octahedra: The Importance of Ag-Pt Coordination for High H 2 O 2 Selectivity Neil M. Wilson, 1 Yung-Tin Pan, 1 Yu-Tsun Shao, 2 Jian-Min Zuo, 2

More information

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65 TABLE OF CONTENT Chapter 1 Introduction 1 Chemical Reaction 2 Classification of Chemical Reaction 2 Chemical Equation 4 Rate of Chemical Reaction 5 Kinetic Models For Non Elementary Reaction 6 Molecularity

More information

First-principles based catalytic reaction engineering Matteo Maestri

First-principles based catalytic reaction engineering Matteo Maestri CECAM International Summer School Hot topic 4 First-principles based catalytic reaction engineering Matteo Maestri July 23, 2013 Conversationshaus - Norderney, Germany Catalytic cycle Consists of the elementary

More information

CHEMICAL ENGINEERING

CHEMICAL ENGINEERING CHEMICAL ENGINEERING Subject Code: CH Course Structure Sections/Units Section A Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Section B Section C Section D Section E Section F Section G Section H Section I

More information

H 0 r = -18,000 K cal/k mole Assume specific heats of all solutions are equal to that of water. [10]

H 0 r = -18,000 K cal/k mole Assume specific heats of all solutions are equal to that of water. [10] Code No: RR320802 Set No. 1 III B.Tech II Semester Supplementary Examinations, November/December 2005 CHEMICAL REACTION ENGINEERING-I (Chemical Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE

More information

James F. Haw In-Situ Spectroscopy in Heterogeneous Catalysis

James F. Haw In-Situ Spectroscopy in Heterogeneous Catalysis James F. Haw In-Situ Spectroscopy in Heterogeneous Catalysis In-Situ Spectroscopy in Heterogeneous Catalysis. By James F. Haw Copyright O 2002 Wiley-VCH Verlag GmbH & Co. KGaA ISBN: 3-527-30248-4 Related

More information

Module 5: "Adsoption" Lecture 25: The Lecture Contains: Definition. Applications. How does Adsorption occur? Physisorption Chemisorption.

Module 5: Adsoption Lecture 25: The Lecture Contains: Definition. Applications. How does Adsorption occur? Physisorption Chemisorption. The Lecture Contains: Definition Applications How does Adsorption occur? Physisorption Chemisorption Energetics Adsorption Isotherms Different Adsorption Isotherms Langmuir Adsorption Isotherm file:///e

More information

Microkinetic Modeling

Microkinetic Modeling Modern Methods in Heterogeneous Catalysis Lectures at Fritz-Haber-Institut Berlin, December 7, 2007 Microkinetic Modeling Cornelia Breitkopf Universität Leipzig Institut für Technische Chemie Microkinetic

More information

Appendix A Course Syllabi Appendix A: Syllabi. Engineering Physics. Bachelor of Science in Engineering Physics. Self-Study Report

Appendix A Course Syllabi Appendix A: Syllabi. Engineering Physics. Bachelor of Science in Engineering Physics. Self-Study Report Appendix A Course Syllabi Appendix A: Syllabi Engineering Physics Bachelor of Science in Engineering Physics Self-Study Report New Mexico State University 159 Chemical Engineering Courses Chemical Engineering

More information

PCE126 Chemical Reaction Engineering & Applied Chemical Kinetics

PCE126 Chemical Reaction Engineering & Applied Chemical Kinetics PCE126 Chemical Reaction Engineering & Applied Chemical Kinetics H.H. Sheikh Sultan Tower (0) Floor Corniche Street Abu Dhabi U.A.E www.ictd.ae ictd@ictd.ae Course Introduction: Chemical reactions occur

More information

When atomic-scale resolution is not enough: Heat and mass transfer effects in in-situ model catalyst studies

When atomic-scale resolution is not enough: Heat and mass transfer effects in in-situ model catalyst studies Technische Universität München When atomic-scale resolution is not enough: Heat and mass transfer effects in in-situ model catalyst studies Karsten Reuter Chemistry Department and Catalysis Research Center

More information

Supporting Information for: Separation in biorefineries by liquid phase adsorption: itaconic acid as case study

Supporting Information for: Separation in biorefineries by liquid phase adsorption: itaconic acid as case study Supporting Information for: Separation in biorefineries by liquid phase adsorption: itaconic acid as case study Kai Schute, 1 Chaline Detoni, 1,2 Anna, Kann 1, Oliver Jung 1, Regina Palkovits, 1 * and

More information

Definitions and Concepts

Definitions and Concepts 2 Definitions and Concepts It is important that precise and unambiguous terms be used when dealing with rates of reaction and reaction modeling of a chemical system. Many of the definitions provided here

More information

Engineering and. Tapio Salmi Abo Akademi Abo-Turku, Finland. Jyri-Pekka Mikkola. Umea University, Umea, Sweden. Johan Warna.

Engineering and. Tapio Salmi Abo Akademi Abo-Turku, Finland. Jyri-Pekka Mikkola. Umea University, Umea, Sweden. Johan Warna. Chemical Reaction Engineering and Reactor Technology Tapio Salmi Abo Akademi Abo-Turku, Finland Jyri-Pekka Mikkola Umea University, Umea, Sweden Johan Warna Abo Akademi Abo-Turku, Finland CRC Press is

More information

Mathematical Modeling Of Chemical Reactors

Mathematical Modeling Of Chemical Reactors 37 Mathematical Modeling Of Chemical Reactors Keywords: Reactors, lug flow, CSTR, Conversion, Selectivity Chemical reactor calculations are based on the elementary conservation laws of matter and energy.

More information

Simulation of Selective Catalytic Reduction using DARS 1D Tool

Simulation of Selective Catalytic Reduction using DARS 1D Tool Simulation of Selective Catalytic Reduction using DARS 1D Tool Best Practice Training: Combustion & Chemical Reaction Modeling STAR Global Conference 2013 Karin Fröjd & Adina Tunér LOGE AB Outline Introduction

More information

Heterogeneous catalysis: the fundamentals Kinetics

Heterogeneous catalysis: the fundamentals Kinetics www.catalysiscourse.com Heterogeneous catalysis: the fundamentals Kinetics Prof dr J W (Hans) Niemantsverdriet Schuit Institute of Catalysis Catalysis is a cycle A B separation P catalyst P bonding catalyst

More information

Reactions at solid surfaces: From atoms to complexity. Gerhard Ertl Fritz Haber Institut der Max Planck-Gesellschaft Berlin, Germany

Reactions at solid surfaces: From atoms to complexity. Gerhard Ertl Fritz Haber Institut der Max Planck-Gesellschaft Berlin, Germany Reactions at solid surfaces: From atoms to complexity Gerhard Ertl Fritz Haber Institut der Max Planck-Gesellschaft Berlin, Germany Jöns Jakob Berzelius 1779 1848 Wilhelm Ostwald 1853 1932 Nobel Prize

More information

Kinetics of the Fischer-Tropsch Reaction over a Ru- Promoted Co/Al 2 o 3 Catalyst

Kinetics of the Fischer-Tropsch Reaction over a Ru- Promoted Co/Al 2 o 3 Catalyst Kinetics of the Fischer-Tropsch Reaction over a Ru- Promoted Co/Al o 3 Catalyst Tejas Bhatelia 1, Wenping Ma, Burtron Davis, Gary Jacobs and Dragomir Bukur 1* 1 Department of Chemical Engineering, Texas

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information (ESI) Structural flexibility of a

More information

Nonlinear dynamics of three-way catalyst with microkinetics and internal diffusion

Nonlinear dynamics of three-way catalyst with microkinetics and internal diffusion Nonlinear dynamics of three-way catalyst P. Kočí, V. Nevoral, M. Kubíček, M. Marek Center for Nonlinear Dynamics of Chemical and Biological Systems Prague Institute of Chemical Technology Technická 5,

More information

Deactivation of V 2 O 5 /Sulfated TiO 2 Catalyst Used in Diesel Engine for NO X Reduction with Urea

Deactivation of V 2 O 5 /Sulfated TiO 2 Catalyst Used in Diesel Engine for NO X Reduction with Urea Deactivation of V 2 O 5 /Sulfated TiO 2 Catalyst Used in Diesel Engine for NO X Reduction with Urea In-Young Lee a*, Jung-Bin Lee a, Kwang-Kyu Park a, Jeong-Hee Hong b a Korea Electric Power Corporation,

More information

Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate

Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate 1 Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate ME Zeynali Petrochemical Synthesis Group, Petrochemical Faculty, Iran Polymer and Petrochemical Institute (IPPI), P.O.

More information

2011 DOE Crosscut Workshop on Lean Emissions Reduction Simulation April 2011 Dearborn, MI

2011 DOE Crosscut Workshop on Lean Emissions Reduction Simulation April 2011 Dearborn, MI Renewable energies Eco-friendly production Innovative transport Eco-efficient processes Sustainable resources 2011 DOE Crosscut Workshop on Lean Emissions Reduction Simulation April 2011 Dearborn, MI Research

More information

Examination paper for TKP 4155 / KP 8903 REACTION KINETICS AND CATALYSIS

Examination paper for TKP 4155 / KP 8903 REACTION KINETICS AND CATALYSIS Department of Chemical Engineering Examination paper for TKP 4155 / KP 8903 REACTION KINETICS AND CATALYSIS Academic contact during examination: Professor Magnus Rønning Phone: 918 97 585 Examination date:

More information

Expérimentation haut-débit Science ou loterie? David FARRUSSENG

Expérimentation haut-débit Science ou loterie? David FARRUSSENG Expérimentation haut-débit Science ou loterie? David FARRUSSENG 10 years of HT Catalysis Pharma Fine Chemicals Polymers Chemicals Refining Green chemistry 1970s 1980s 1990s 1999 2000 2001 2008 Symyx hte

More information

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Strategic use of CuAlO 2 as a sustained release catalyst for

More information

Detailed numerical investigations of two-phase flow and transport. narrow channels. Dr.-Ing. Martin Wörner. Institut für Kern- und Energietechnik

Detailed numerical investigations of two-phase flow and transport. narrow channels. Dr.-Ing. Martin Wörner. Institut für Kern- und Energietechnik Detailed numerical investigations of two-phase flow and transport INSTITUT phenomena FÜR KERN- UND ENERGIETECHNIK in narrow channels Dr.-Ing. Martin Wörner Opening Workshop Helmholtz Research School Energy-Related

More information

www: fhi-berlin.mpg.de 1

www: fhi-berlin.mpg.de 1 www: fhi-berlin.mpg.de 1 Concepts Catalysis is a science based on concepts that are partly founded in theory. This well-founded part is the result of surface science and of quantum theory and is valid

More information

Evidence for structure sensitivity in the high pressure CO NO reaction over Pd(111) and Pd(100)

Evidence for structure sensitivity in the high pressure CO NO reaction over Pd(111) and Pd(100) Evidence for structure sensitivity in the high pressure CO NO reaction over Pd(111) and Pd(100) Scott M. Vesecky, Peijun Chen, Xueping Xu, and D. Wayne Goodman a) Department of Chemistry, Texas A&M University,

More information

Zhongwei Fu, Yunyun Zhong, Yuehong Yu, Lizhen Long, Min Xiao, Dongmei Han, Shuanjin Wang *,

Zhongwei Fu, Yunyun Zhong, Yuehong Yu, Lizhen Long, Min Xiao, Dongmei Han, Shuanjin Wang *, Supporting Information TiO 2 Doped CeO 2 Nanorods Catalyst for Direct Conversion of CO 2 and CH 3 OH to Dimethyl Carbonate: Catalytic Performance and Kinetic Study Zhongwei Fu, Yunyun Zhong, Yuehong Yu,

More information

Membrane reactors for improved processes: How to integrate reaction and separation in one apparatus

Membrane reactors for improved processes: How to integrate reaction and separation in one apparatus Membrane reactors for improved processes: How to integrate reaction and separation in one apparatus Reinhard Schomäcker Fachgruppe Technische Chemie Institut für Chemie der TU Berlin 1. Classical concepts

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Catalysis of environmental reactions Dr. Zifei Liu Catalysis and catalysts Catalysis is the increase in the rate of a chemical reaction due to the participation

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Chemical Reaction Engineering Dr. Yahia Alhamed Chemical and Materials Engineering Department College of Engineering King Abdulaziz University General Mole Balance Batch Reactor Mole Balance Constantly

More information

Chemical reactions as network of rare events: Kinetic MonteCarlo

Chemical reactions as network of rare events: Kinetic MonteCarlo Chemical reactions as network of rare events: Kinetic MonteCarlo Extending the scale Length (m) 1 10 3 Potential Energy Surface: {Ri} 10 6 (3N+1) dimensional 10 9 E Thermodynamics: p, T, V, N continuum

More information

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz,

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz, Chemical Reaction Engineering - Part 4 - intro to CSTRs Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net Continuous Stirred Tank Reactors - CSTRs Here are a couple screenshots from the ReactorLab, Division

More information

A First Course on Kinetics and Reaction Engineering Unit 12. Performing Kinetics Experiments

A First Course on Kinetics and Reaction Engineering Unit 12. Performing Kinetics Experiments Unit 12. Performing Kinetics Experiments Overview Generating a valid rate expression for a reaction requires both a reactor and and an accurate mathematical model for that reactor. Unit 11 introduced the

More information

= k 2 [CH 3 *][CH 3 CHO] (1.1)

= k 2 [CH 3 *][CH 3 CHO] (1.1) Answers to Exercises Last update: Tuesday 29 th September, 205. Comments and suggestions can be sent to i.a.w.filot@tue.nl Exercise d[ch 4 ] = k 2 [CH 3 *][CH 3 CHO].) The target is to express short-lived

More information

Principles of Chemical Engineering Processes

Principles of Chemical Engineering Processes Principles of Chemical Engineering Processes MATERIAL AND ENERGY BALANCES SECOND EDITION NAYEF GHASEM REDHOUANE HENDA CRC Press is an imprint of the Taylor & Francis Croup, an Informa business Contents

More information

Dr. Trent L. Silbaugh, Instructor Chemical Reaction Engineering Final Exam Study Guide

Dr. Trent L. Silbaugh, Instructor Chemical Reaction Engineering Final Exam Study Guide Chapter 1 Mole balances: Know the definitions of the rate of reaction, rate of disappearance and rate of appearance Know what a rate law is Be able to write a general mole balance and know what each term

More information

MSc course Adsorption, Kinetics & Catalysis

MSc course Adsorption, Kinetics & Catalysis MSc course Adsorption, Kinetics & Catalysis Kinetics Chapter.-.6 Prof. Fran de Groot MSc Nanomaterials Chemistry and Physics Utrecht University master / University of Nijmegen / 987 / Theoretical Chemistry

More information

Broensted Acidity of Fibreglass Materials

Broensted Acidity of Fibreglass Materials Chemistry for Sustainable Development 16 (2008) 465 470 465 Broensted Acidity of Fibreglass Materials T. S. GLAZNEVA and E. A. PAUKSHTIS Boreskov Institute of Catalysis, Siberian Branch of the Russian

More information

Synthesis of jet fuel range cycloalkanes with diacetone alcohol. from lignocellulose

Synthesis of jet fuel range cycloalkanes with diacetone alcohol. from lignocellulose Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2016 Supporting Information Synthesis of jet fuel range cycloalkanes with diacetone alcohol from

More information

APPLICATION OF CHEMICAL KINETICS IN THE HETEROGENEOUS CATALYSIS STUDIES

APPLICATION OF CHEMICAL KINETICS IN THE HETEROGENEOUS CATALYSIS STUDIES ALICATION OF CHEMICAL KINETICS IN THE HETEROGENEOUS CATALYSIS STUDIES L. A. ETROV SABIC Chair in Heterogeneous Catalysis Chemical and Materials Engineering Department College of Engineering, King Abdulaziz

More information

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do. Lecture (9) Reactor Sizing 1.Introduction Chemical kinetics is the study of chemical reaction rates and reaction mechanisms. The study of chemical reaction engineering (CRE) combines the study of chemical

More information

Carriers Selective Methanation of CO in CO2 rich feed Gases on Supported Ru Catalysts

Carriers Selective Methanation of CO in CO2 rich feed Gases on Supported Ru Catalysts Carriers Selective Methanation of CO in CO2 rich feed Gases on Supported Ru Catalysts S. Eckle, H. G. Anfang, R.J. Behm This document appeared in Detlef Stolten, Thomas Grube (Eds.): 18th World Hydrogen

More information

Dehydrogenation of propane with selective hydrogen combustion: A mechanistic study by transient analysis of products

Dehydrogenation of propane with selective hydrogen combustion: A mechanistic study by transient analysis of products Dehydrogenation of propane with selective hydrogen combustion: A mechanistic study by transient analysis of products Oliver Czuprat a, Jürgen Caro a, V.A. Kondratenko b, E.V. Kondratenko b,* a Institute

More information

Dynamics of forced and unsteady-state processes

Dynamics of forced and unsteady-state processes Dynamics of forced and unsteady-state processes Davide Manca Lesson 3 of Dynamics and Control of Chemical Processes Master Degree in Chemical Engineering Davide Manca Dynamics and Control of Chemical Processes

More information

Chemical Kinetics and Reaction Engineering

Chemical Kinetics and Reaction Engineering Chemical Kinetics and Reaction Engineering MIDTERM EXAMINATION II Friday, April 9, 2010 The exam is 100 points total and 20% of the course grade. Please read through the questions carefully before giving

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Acquisition of reaction rate data Dr. Zifei Liu Uncertainties in real world reaction rate data Most interesting reaction systems involves multiple reactions,

More information

CHEM Dr. Babb s Sections Lecture Problem Sheets

CHEM Dr. Babb s Sections Lecture Problem Sheets CHEM 116 - Dr. Babb s Sections Lecture Problem Sheets Kinetics: Integrated Form of Rate Law 61. Give the integrated form of a zeroth order reaction. Define the half-life and find the halflife for a general

More information

5. Collection and Analysis of. Rate Data

5. Collection and Analysis of. Rate Data 5. Collection and nalysis of o Objectives Rate Data - Determine the reaction order and specific reaction rate from experimental data obtained from either batch or flow reactors - Describe how to analyze

More information

CHAPTER I SPECTROSCOPIC CHARACTERIZATION OF HETEROGENEOUS CATALYSTS. by Bert M. Weckhuysent, Pascal Van Der Voort2 and Gabriela Catanat"

CHAPTER I SPECTROSCOPIC CHARACTERIZATION OF HETEROGENEOUS CATALYSTS. by Bert M. Weckhuysent, Pascal Van Der Voort2 and Gabriela Catanat CHAPTER I SPECTROSCOPIC CHARACTERIZATION OF HETEROGENEOUS CATALYSTS by Bert M. Weckhuysent, Pascal Van Der Voort2 and Gabriela Catanat" ' Centrum voor Oppervlaktechemie en Katalyse, Departement Interfasechemie,

More information

From Friday s material

From Friday s material 5.111 Lecture 35 35.1 Kinetics Topic: Catalysis Chapter 13 (Section 13.14-13.15) From Friday s material Le Chatelier's Principle - when a stress is applied to a system in equilibrium, the equilibrium tends

More information

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, 2013 Closed Book, Web, and Notes Name Honor Code (Sign at the end of exam period) 1) / 5 pts 2) / 5 pts 3) / 5 pts 4) / 5 pts 5) / 5 pts 6) / 5

More information

Global kinetic modelling of the reaction of soot with NO x and O 2 on Fe 2 O 3 catalyst

Global kinetic modelling of the reaction of soot with NO x and O 2 on Fe 2 O 3 catalyst Global kinetic modelling of the reaction of soot with NO x and O 2 on Fe 2 O 3 catalyst Dirk Reichert, Henning Bockhorn, Sven Kureti Germany 1 Techniques for catalytic removal of NO x from diesel exhaust

More information

Eckhard Worch. Adsorption. Technology in Water. Treatment. Fundamentals, Processes, and Modeling DE GRUYTER

Eckhard Worch. Adsorption. Technology in Water. Treatment. Fundamentals, Processes, and Modeling DE GRUYTER Eckhard Worch Adsorption Technology in Water Treatment Fundamentals, Processes, and Modeling DE GRUYTER Contents Preface xi 1 Introduction 1 1.1 Basic concepts and definitions 1 1.1.1 Adsorption as a surface

More information

EFFECT OF MORPHOLOGY OF NANOSTRUCTURED CERIA-BASED CATALYSTS OVER CO, SOOT AND NO OXIDATIONS

EFFECT OF MORPHOLOGY OF NANOSTRUCTURED CERIA-BASED CATALYSTS OVER CO, SOOT AND NO OXIDATIONS EFFECT OF MORPHOLOGY OF NANOSTRUCTURED CERIA-BASED CATALYSTS OVER CO, SOOT AND NO OXIDATIONS Melodj Dosa, Marco Piumetti, Samir Bensaid, Tahrizi Andana, Debora Fino, Nunzio Russo* melodj.dosa@polito.it

More information

Modeling, Simulation and Control of a Tubular Fixed-bed Dimethyl Ether Reactor

Modeling, Simulation and Control of a Tubular Fixed-bed Dimethyl Ether Reactor E. YASARI et al., Modeling, Simulation and Control of a Tubular Fixed-bed, Chem. Biochem. Eng. Q. 24 (4) 415 423 (2010) 415 Modeling, Simulation and Control of a Tubular Fixed-bed Dimethyl Ether Reactor

More information

CSTR 1 CSTR 2 X A =?

CSTR 1 CSTR 2 X A =? hemical Engineering HE 33 F Applied Reaction Kinetics Fall 014 Problem Set 3 Due at the dropbox located in the hallway outside of WB 5 by Monday, Nov 3 rd, 014 at 5 pm Problem 1. onsider the following

More information

Multiscale Modeling. a. Ab initio quantum chemical calculations

Multiscale Modeling. a. Ab initio quantum chemical calculations Multiscale Modeling EUGENIUSZ J. MOLGA, Warsaw University of Technology, Warsaw, Poland K. ROEL WESTERTERP, Roses, Spain Modeling of chemical engineering systems must be realized at several levels, as

More information

Mechanisms of H- and OH-assisted CO activation as well as C-C coupling on the flat Co(0001) surface Revisited

Mechanisms of H- and OH-assisted CO activation as well as C-C coupling on the flat Co(0001) surface Revisited Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2016 Mechanisms of H- and OH-assisted CO activation as well as C-C coupling on

More information

PART I Fundamentals COPYRIGHTED MATERIAL

PART I Fundamentals COPYRIGHTED MATERIAL PART I Fundamentals COPYRIGHTED MATERIAL 1 Catalyst Fundamentals 1.1 INTRODUCTION Chemical reactions occur by breaking chemical bonds of reactants and by forming new bonds and new compounds. Breaking

More information

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium Reaction Rates and Chemical Equilibrium 12-1 12.1 Reaction Rates a measure of how fast a reaction occurs. Some reactions are inherently fast and some are slow 12-2 12.2 Collision Theory In order for a

More information

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium Reaction Rates and Chemical Equilibrium : 12-1 12.1 Reaction Rates : a measure of how fast a reaction occurs. Some reactions are inherently fast and some are slow: 12-2 1 12.2 Collision Theory In order

More information

Unit 12: Chemical Kinetics

Unit 12: Chemical Kinetics Unit 12: Chemical Kinetics Author: S. Michalek Introductory Resources: Zumdahl v. 5 Chapter 12 Main Ideas: Integrated rate laws Half life reactions Reaction Mechanisms Model for chemical kinetics Catalysis

More information

HANDBOOK SECOND EDITION. Edited by

HANDBOOK SECOND EDITION. Edited by HANDBOOK SECOND EDITION Edited by Martyn V. Twigg BSc, PhD, CChem., FRSC Catalytic Systems Division Johnson Matthey Plc. Formerly at the Catalysis Centre ICI Chemicals & Polymers Ltd MANSON PUBLISHING

More information

Development and Validation of a multi-site kinetic model for NH 3 -SCR over Cu-SSZ-13. Rohil Daya Isuzu Technical Center of America

Development and Validation of a multi-site kinetic model for NH 3 -SCR over Cu-SSZ-13. Rohil Daya Isuzu Technical Center of America Development and Validation of a multi-site kinetic model for NH 3 -SCR over Cu-SSZ-13 Rohil Daya Isuzu Technical Center of America Introduction, Objective and Purpose Cu-CHA small pore SCR catalysts utilized

More information

Supplementary Figure 1 Morpholigical properties of TiO 2-x SCs. The statistical particle size distribution (a) of the defective {001}-TiO 2-x SCs and

Supplementary Figure 1 Morpholigical properties of TiO 2-x SCs. The statistical particle size distribution (a) of the defective {001}-TiO 2-x SCs and Supplementary Figure 1 Morpholigical properties of TiO 2-x s. The statistical particle size distribution (a) of the defective {1}-TiO 2-x s and their typical TEM images (b, c). Quantity Adsorbed (cm 3

More information

Supporting Information. DFT Study of Methane Synthesis from Syngas on Ce Doped Ni(111) Surface

Supporting Information. DFT Study of Methane Synthesis from Syngas on Ce Doped Ni(111) Surface Supporting Information DFT Study of Methane Synthesis from Syngas on Ce Doped Ni(111) Surface Kai Li, 1 Cong Yin, 2 Yi Zheng, 3 Feng He, 1 Ying Wang, 1 Menggai Jiao, 1 Hao Tang, 2,* Zhijian Wu 1,* 1 State

More information

SILP (Supported Ionic Liquid Phase) catalysis in Gas-Phase Hydroformylation and Carbonylation

SILP (Supported Ionic Liquid Phase) catalysis in Gas-Phase Hydroformylation and Carbonylation SIL (Supported Ionic Liquid hase) catalysis in Gas-hase Hydroformylation and Carbonylation Anders Riisager, Rasmus Fehrmann Department of Chemistry, Technical University of Denmark, Denmark Marco Haumann,

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2009 69451 Weinheim, Germany High-Index Faceted Platinum Nanocrystals Supported on Carbon Black as Highly Efficient Catalysts for Ethanol Electrooxidation** Zhi-You Zhou,

More information

Microkinetic models for exhaust-gas after-treatment

Microkinetic models for exhaust-gas after-treatment Microkinetic models for exhaust-gas after-treatment, Karlsruhe Institute of Technology (KIT) CLEERS 2015 (ITCP) Institute for Catalysis Research and Technology (IKFT) KIT University of the State of Baden-Wuerttemberg

More information

A Compact Reactor-Pump-Cell-Injection System for In-Situ / On- Line Spectroscopic Studies

A Compact Reactor-Pump-Cell-Injection System for In-Situ / On- Line Spectroscopic Studies A Compact Reactor-Pump-Cell-Injection System for In-Situ / On- Line Spectroscopic Studies Feng Gao, Li Chuanzhao and Marc Garland Department of Chemical and Biomolecular Engineering 4 Engineering Drive

More information

Chemical Reaction Engineering - Part 12 - multiple reactions Richard K. Herz,

Chemical Reaction Engineering - Part 12 - multiple reactions Richard K. Herz, Chemical Reaction Engineering - Part 12 - multiple reactions Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net Multiple reactions are usually present So far we have considered reactors in which only

More information

COUPLING COMPLEX REFORMER CHEMICAL KINETICS WITH THREE- DIMENSIONAL COMPUTATIONAL FLUID DYNAMICS

COUPLING COMPLEX REFORMER CHEMICAL KINETICS WITH THREE- DIMENSIONAL COMPUTATIONAL FLUID DYNAMICS COUPLING COMPLEX REFORMER CHEMICAL KINETICS WITH THREE- DIMENSIONAL COMPUTATIONAL FLUID DYNAMICS Graham Goldin a, Huayang Zhu b, Kyle Kattke b, Anthony M. Dean b, Robert Braun b, Robert J. Kee b, Dan Zhang

More information

Carbon2Chem. Modeling the Catalytic Conversion of Steel Mill Gases. Stefan Schlüter, Fraunhofer UMSICHT, Oberhausen (Germany) Fraunhofer UMSICHT

Carbon2Chem. Modeling the Catalytic Conversion of Steel Mill Gases. Stefan Schlüter, Fraunhofer UMSICHT, Oberhausen (Germany) Fraunhofer UMSICHT Carbon2Chem Modeling the Catalytic Conversion of Steel Mill Gases Stefan Schlüter, Fraunhofer UMSICHT, Oberhausen (Germany) Fraunhofer UMSICHT Carbon2Chem - Steel Mill Gases Carbon2Chem CCU Model Concept

More information