MOLECULAR STRUCTURE; LEWIS STRUCTURES AND 3-D MODELS

Size: px
Start display at page:

Download "MOLECULAR STRUCTURE; LEWIS STRUCTURES AND 3-D MODELS"

Transcription

1 Chemistry Name(s) MOLECULAR STRUCTURE; LEWIS STRUCTURES AND 3-D MODELS INTRODUCTION: Chemists are often concerned with molecular structure. It is helpful and useful to have a good understanding of the relationship between the twodimensional, flat molecular structures seen in texts and the better perspective or three-dimensional picture of real molecules. A good way to achieve this understanding or translation from 2-D to 3-D is the use of molecular models, though these are still far from giving the true picture of real molecules. As the textbooks frequently show, Lewis structures can be drawn if the molecular formula is given and certain rules for number and placement of electrons are followed. From the Lewis structure for a molecule, a 3-D model can be constructed to give a better (though not perfect) picture of the real molecule. In this experiment the formula of a molecule or molecular ion will be given. An acceptable Lewis structure will be drawn based on that formula. A 3-D model of that molecule or molecular ion will then be constructed using a molecular model kit. An exact 3-D or perspective drawing based on the 3-D model will then be made. Before performing the experiment review the material in the textbook on Lewis structures, VSEPR, bond lengths, and single and multiple bonds. SUPPLEMENTARY INFORMATION A. Review the rules for drawing Lewis structures based on the given formula. 1. Determine the total number of valence electrons in the formula. 2. Apply the octet rule if possible (except for H) to each atom. Keep in mind that there are exceptions to the octet rule. 3. If too few electrons are available, multiple bonding may be necessary and if that is the case, resonance may also be possible. B. The valence shell Iectron Eair.epulsion Theory (VSEPR) is used to determine the geometry of the regions of electron density (electrons pairs or an effective region where two or more electrons pairs are).

2 C. Drawing 3-D Drawing 3-D or trigonal bipyramidal or Two of examples perspective structures octahedral geometries the techniques are of molecules with is difficult, but possible. shown for somewhat tetrahedral, the methane molecule, CH4. The by circles. The for identification only. in the plane central atom. In models Aand B, H1, C, and H2 are in the plane. ModelA the line the bond just touching the circle of atom. is in front of the plane of the and is shown by the line connecting it into the circle around C. atoms are represented atoms as possible Place as many representing paper same same each subscripts are as the H3 shows H4 is behind the of and is shown by the line into around H4 and just touching the circle around C. plane the paper the circle Model B positions of idea the to the diagram below closer that atoms shows perspective by using wedge shaped bonds to show in front or behind the plane of paper. This is on the larger. This means that the end of bond is larger than the end from the observer. The end a to be to than end b. closer objects are observer shows closer the farthest the observer based the

3 THE EXPERIMENT Work in groups of 2, 3, or 4. student may work alone. If sufficient model kits are available, each Using the model kit provided, determine the required information from the list of formulas given below. Write and draw all information directly on the REPORT pages. What to Find: 1. Total number of valence electrons in the molecule or molecular ion. 2. Draw a Lewis structure of the molecule or molecular ion. 3. Determine the geometry around the central atom(s) and build an accurate model of the molecule or molecular ion using the model kit available. 4. Draw an exact 3-D perspective picture of the molecule or molecular ion based on the model constructed in 3 above. The Formulas to be investigated 1. Br N 4. CH 5. NH 6. CO2 7. HCO 8. C4H80 (chain of 4 C) 9. C6Hi (6 C s in a ring) 10. C2H5OH Questions (answer on a separate sheet): 1. Which molecules were nonpolar because all of the bonds were nonpolar? 2. Which molecules had polar covalent bonds but were nonpolar because of symmetry? 3. Which molecules were polar? 4. What geometries produced polar molecules?

4 Laboratory Report Sheet Chemistry Name(s) MOLECULAR STRUCTURE; LEWIS STRUCTURES AND 3-D MODELS 1. Molecular Formula Total Valence Electrons 2. Molecular Formula Total Valence Electrons

5 3. Molecular Formula Total Valence Electrons 4. Molecular Formula Total Valence Electrons

6 5. Molecular Formula Total Valence Electrons 6. Molecular Formula Total Valence Electrons

7 7. Molecular Formula Total Valence Electrons 8. Molecular Formula Total Valence Electrons

8 9. Molecular Formula Total Valence Electrons 10. Molecular Formula Total Valence Electrons

Chapter 13: Phenomena

Chapter 13: Phenomena Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures Lewis Structure Lewis Structures & VSEPR Lewis Structures shows how the are arranged among the atoms of a molecule There are rules for Lewis Structures that are based on the formation of a Atoms want to

More information

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

VSEPR. Valence Shell Electron Pair Repulsion Theory

VSEPR. Valence Shell Electron Pair Repulsion Theory VSEPR Valence Shell Electron Pair Repulsion Theory Vocabulary: domain = any electron pair or bond (single, double or triple) is considered one domain. bonding pair = shared pair = any electron pair that

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Two bonds Two

More information

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols CHEMICAL BONDING Chemical Bonds Lewis Symbols Octet Rule whenever possible, valence electrons in covalent compounds distribute so that each main-group element is surrounded by 8 electrons (except hydrogen

More information

Bonding and Molecular Structure - PART 1 - VSEPR

Bonding and Molecular Structure - PART 1 - VSEPR Bonding and Molecular Structure - PART 1 - VSEPR Objectives: 1. Understand and become proficient at using VSEPR to predict the geometries of simple molecules and ions. 2. Become proficient at predicting

More information

Outline for Today. Monday, Nov. 12. Wednesday Friday. Chapter 8: Chemical Bonding. Bond Enthalpies. Chapter 9: Theories of Bonding

Outline for Today. Monday, Nov. 12. Wednesday Friday. Chapter 8: Chemical Bonding. Bond Enthalpies. Chapter 9: Theories of Bonding Outline for Today Monday, Nov. 12 Chapter 8: Chemical Bonding Bond Enthalpies Chapter 9: Theories of Bonding VSEPR (Valence Shell Electron Pair Repulsion) Theory Valence Bond Orbital ybridization Molecular

More information

Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity

Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity Molecular Shape and Molecular Polarity When there is a difference in electronegativity between two atoms, then the bond between them is polar. It is possible for a molecule to contain polar bonds, but

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Farthest apart

More information

Molecular Models: The shape of simple molecules and ions

Molecular Models: The shape of simple molecules and ions Molecular Models: The shape of simple molecules and ions Background The shape of a molecule is very important when investigating its properties and reactivity. For example, compare CO 2 and SO 2. Carbon

More information

Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals

Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals Covalent Bonding What is covalent bonding? Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals Hybrid Orbital Formation Shapes of Hybrid Orbitals Hybrid orbitals and Multiple Bonds resonance

More information

A DOT STRUCTURE FOR A LARGER MOLECULE ETHANOL! Count valence electrons

A DOT STRUCTURE FOR A LARGER MOLECULE ETHANOL! Count valence electrons 212 A DOT STRUCTURE FOR A LARGER MOLECULE Count valence electrons Pick central atom and draw skeletal structure - central atom is usually the one that needs to gain the most electrons! - skeletal structure

More information

1. Which of the following is an example of a structural formula?

1. Which of the following is an example of a structural formula? 1. Which of the following is an example of a structural formula? A. B. C. D. 2. According to the VSEPR Theory, which of the following molecules will have a linear geometry? A. B. C. D. 3. Which type of

More information

VSEPR Model. Valence-Shell Electron-Pair Repulsion Bonds (single or multiple) and lone pairs are thought of as charge clouds

VSEPR Model. Valence-Shell Electron-Pair Repulsion Bonds (single or multiple) and lone pairs are thought of as charge clouds Molecular Shapes VSEPR Model Valence-Shell Electron-Pair Repulsion Bonds (single or multiple) and lone pairs are thought of as charge clouds They repel each other and stay as far away from each other as

More information

Molecular shapes. Balls and sticks

Molecular shapes. Balls and sticks Molecular shapes Balls and sticks Learning objectives Apply VSEPR to predict electronic geometry and shapes of simple molecules Determine molecule shape from electronic geometry Distinguish between polar

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals 1 Chemical Bonding II Molecular Geometry (10.1) Dipole Moments (10.2) Valence Bond Theory (10.3) Hybridization of Atomic Orbitals

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Lewis Dot Structures and Molecular Geometry

Lewis Dot Structures and Molecular Geometry Experiment 11 Lewis Dot Structures and Molecular Geometry Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Purpose

More information

Covalent Compounds: Bonding Theories and Molecular Structure

Covalent Compounds: Bonding Theories and Molecular Structure CHM 123 Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure 8.1 Molecular shapes and VSEPR theory VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Molecular Geometry and Chemical Bonding Theory The Valence -Shell Electron -Pair Repulsion (VSEPR) Model predicts the shapes of the molecules and ions by assuming that the valence shell electron pairs

More information

Organic Chemistry. Review Information for Unit 1. VSEPR Hybrid Orbitals Polar Molecules

Organic Chemistry. Review Information for Unit 1. VSEPR Hybrid Orbitals Polar Molecules rganic hemistry Review Information for Unit 1 VSEPR ybrid rbitals Polar Molecules VSEPR The valence shell electron pair repulsion model (VSEPR) can be used to predict the geometry around a particular atom

More information

Introduction to VSEPR Theory 1

Introduction to VSEPR Theory 1 1 Class 8: Introduction to VSEPR Theory Sec 10.2 VSEPR Theory: The Five Basic Shapes Two Electron Groups: Linear Geometry Three Electron Groups: Trigonal Planar Geometry Four Electron Groups: Tetrahedral

More information

Molecular Geometry & Polarity

Molecular Geometry & Polarity Molecular Geometry & Polarity Learn Shapes you will Because the physical and chemical properties of compounds are tied to their structures, the importance of molecular geometry can not be overstated. Localized

More information

Lab: Model Building with Covalent Compounds - Introduction

Lab: Model Building with Covalent Compounds - Introduction Name Date Period # Lab: Model Building with Covalent Compounds - Introduction Most of our learning is in two dimensions. We see pictures in books and on walls and chalkboards. We often draw representations

More information

Name: Period: Date: What Is VSEPR? Now explore the Compare Two Structures link. Try changing the display to explore different combinations.

Name: Period: Date: What Is VSEPR? Now explore the Compare Two Structures link. Try changing the display to explore different combinations. Name: Period: Date: What Is VSEPR? Exploring The Valence Shell Electron Pair Repulsion (VSEPR) model. Go to the Purdue University website to explore VSEPR theory. http://www.chem.purdue.edu/gchelp/vsepr/structur2.html

More information

At the end of this lesson, students should be able to :

At the end of this lesson, students should be able to : At the end of this lesson, students should be able to : (a) Explain Valence Shell Electron Pair Repulsion theory (VSEPR) (b) Draw the basic molecular shapes: linear, planar, tetrahedral, and octahedral.

More information

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS CHAPTER TEN CHEMICAL BONDING II: AND HYBRIDIZATION O ATOMIC ORBITALS V S E P R VSEPR Theory In VSEPR theory, multiple bonds behave like a single electron pair Valence shell electron pair repulsion (VSEPR)

More information

CHEMICAL BONDING. Valence Electrons. Chapter Ten

CHEMICAL BONDING. Valence Electrons. Chapter Ten CHEMICAL BONDING Chapter Ten Valence Electrons! The electrons occupying the outermost energy level of an atom are called the valence electrons; all other electrons are called the core electrons.! The valence

More information

Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion.

Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. VSEPR & Geometry Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. Lewis structures are not intended to show the 3-dimensional structure (i.e. shape or geometry)

More information

Molecular Geometry and Bonding Theories. Molecular Shapes. Molecular Shapes. Chapter 9 Part 2 November 16 th, 2004

Molecular Geometry and Bonding Theories. Molecular Shapes. Molecular Shapes. Chapter 9 Part 2 November 16 th, 2004 Molecular Geometry and Bonding Theories Chapter 9 Part 2 November 16 th, 2004 8 Molecular Shapes When considering the geometry about the central atom, we consider all electrons (lone pairs and bonding

More information

Structures, Shapes and Polarity. of Molecules. Level 2 recap: - Polar and non polar bonds - Lewis diagrams - Lone pairs - Shapes - Polarity

Structures, Shapes and Polarity. of Molecules. Level 2 recap: - Polar and non polar bonds - Lewis diagrams - Lone pairs - Shapes - Polarity Structures, Shapes and Polarity Level 2 recap: - Polar and non polar bonds - Lewis diagrams - Lone pairs - Shapes - Polarity of Molecules Do now: Brainstorm what you know/remember about these L2 concepts

More information

(A) 1 bonding pair (B) 1 bonding pair and 1 lone pair (C) 2 bonding pairs (D) 2 bonding pairs and 2 lone pairs

(A) 1 bonding pair (B) 1 bonding pair and 1 lone pair (C) 2 bonding pairs (D) 2 bonding pairs and 2 lone pairs AP Chemistry - Problem Drill 13: Lewis Structures and VSPER No. 1 of 10 1. Lewis structure is used to model covalent bonds of a molecule or ion. Covalent bonds are a type of chemical bonding formed by

More information

Localized Electron Model

Localized Electron Model Localized Electron Model Models for Chemical Bonding Localized electron model (Valence bond model) Molecular orbital model Localized Electron Model Useful for explaining the structure of molecules especially

More information

The shape of simple molecules (and parts of larger molecules) can be easily predicted using the VSEPR model

The shape of simple molecules (and parts of larger molecules) can be easily predicted using the VSEPR model 1 PREDICTING MOLECULAR SHAPE The shape of simple molecules (and parts of larger molecules) can be easily predicted using the VSEPR model VSEPR = Valence Shell Electron Pair Repulsion Model - Each BOND

More information

CHEMISTRY 101 Hour Exam III. Dr. D. DeCoste T.A (30 pts.) 16 (12 pts.) 17 (18 pts.) Total (60 pts)

CHEMISTRY 101 Hour Exam III. Dr. D. DeCoste T.A (30 pts.) 16 (12 pts.) 17 (18 pts.) Total (60 pts) CHEMISTRY 101 Hour Exam III April 27, 2017 Dr. D. DeCoste Name Signature T.A. This exam contains 17 questions on 6 numbered pages. Check now to make sure you have a complete exam. You have one hour and

More information

SECTION II: BUILDING MODELS

SECTION II: BUILDING MODELS SECTION II: BUILDING MODELS Lesson 9 New Smells, New Ideas Lesson 10 Two s Company Lesson 11 Let s Build It Lesson 12 What Shape Is That Smell? Lesson 13 Sorting It Out Lesson 14 How Does the Nose Know?

More information

Activity Formal Charge and VSEPR Theory for Expanded Octets

Activity Formal Charge and VSEPR Theory for Expanded Octets Activity 201 7 Formal Charge and VSEPR Theory for Expanded Octets Directions: This Guided Learning Activity (GLA) goes over formal charge and the structures of molecules with expanded octets. Part A introduces

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chapter 9 Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Problems with Lewis Theory Lewis theory generally predicts trends in properties, but does not give good numerical predictions.

More information

Name Unit Three March 7, 2017 Lab #3: Three-Dimensional Models of Covalent Molecules

Name Unit Three March 7, 2017 Lab #3: Three-Dimensional Models of Covalent Molecules Unit 3: Types of Bonding & Geometry Chem. II Name Unit Three March 7, 2017 Lab #3: Three-Dimensional Models of Covalent Molecules A single covalent bond is formed when two atoms share a pair of electrons.

More information

Fill in the chart below to determine the valence electrons of elements 3-10

Fill in the chart below to determine the valence electrons of elements 3-10 Chemistry 11 Atomic Theory IV Name: Date: Block: 1. Lewis Diagrams 2. VSEPR Lewis Diagrams Lewis diagrams show the bonding between atoms of a molecule. Only the outermost electrons of an atom (called electrons)

More information

VSEPR. Ch10. Valence Shell Electron Pair Repulsion theory allows you to predict molecular shape. Lewis Dot theory extended to 3 dimensions.

VSEPR. Ch10. Valence Shell Electron Pair Repulsion theory allows you to predict molecular shape. Lewis Dot theory extended to 3 dimensions. Ch10 VSEPR Valence Shell Electron Pair Repulsion theory allows you to predict molecular shape. Lewis Dot theory extended to 3 dimensions. version 1.5 Nick DeMello, PhD. 2007-2016 Valence Shell Electron

More information

HourEx4 Practice Chapt 8 & 9 Kotz

HourEx4 Practice Chapt 8 & 9 Kotz HourEx4 Practice Chapt 8 & 9 Kotz Multiple Choice 5 pts apiece Identify the letter of the choice that best completes the statement or answers the question. PUT YOUR ANSWER ON THE BUBBLE SHEET PROVIDED.You

More information

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry 11.1 Periodic Trends in Atomic Properties Discuss the atomic trends Metals are located on the left side of the periodic

More information

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results.

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results. Predicting the Shape of a Molecule (Student textbook page 236) 11. What molecular shape is represented by each of the following VSEPR notations? a. AX 3 b. AX 5 E You need to assign a molecular shape that

More information

Experiment #2. Lewis Structures

Experiment #2. Lewis Structures Experiment #2. Lewis Structures A Lewis structure shows how the valence electrons are arranged and indicates the bonding between atoms in a molecule. We represent the elements by their symbols. The shared

More information

11/14/2014. Chemical Bonding. Richard Philips Feynman, Nobel Laureate in Physics ( )

11/14/2014. Chemical Bonding. Richard Philips Feynman, Nobel Laureate in Physics ( ) Chemical Bonding Lewis Theory Valence Bond VSEPR Molecular rbital Theory 1 "...he [his father] knew the difference between knowing the name of something and knowing something" Richard Philips eynman, Nobel

More information

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent

More information

CHEMISTRY 101 Hour Exam III. Dr. D. DeCoste T.A (30 pts.) 16 (12 pts.) 17 (18 pts.) Total (60 pts)

CHEMISTRY 101 Hour Exam III. Dr. D. DeCoste T.A (30 pts.) 16 (12 pts.) 17 (18 pts.) Total (60 pts) CHEMISTRY 101 Hour Exam III April 27, 2017 Dr. D. DeCoste Name Signature T.A. This exam contains 17 questions on 6 numbered pages. Check now to make sure you have a complete exam. You have one hour and

More information

CHAPTER 12 CHEMICAL BONDING

CHAPTER 12 CHEMICAL BONDING CHAPTER 12 CHEMICAL BONDING Core electrons are found close to the nucleus, whereas valence electrons are found in the most distant s and p energy subshells. The valence electrons are responsible for holding

More information

Chemical Bonds, Molecular Models, and Molecular Shapes

Chemical Bonds, Molecular Models, and Molecular Shapes Chemical Bonds, Molecular Models, and Molecular Shapes PRELAB ASSINGMENT Read the entire laboratory write up and answer the following questions before coming to lab. Read the entire laboratory write up

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: and Hybridization of Atomic Orbitals Chapter 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Valence shell electron pair repulsion (VSEPR)

More information

CHEM 110 Exam 2 - Practice Test 1 - Solutions

CHEM 110 Exam 2 - Practice Test 1 - Solutions CHEM 110 Exam 2 - Practice Test 1 - Solutions 1D 1 has a triple bond. 2 has a double bond. 3 and 4 have single bonds. The stronger the bond, the shorter the length. 2A A 1:1 ratio means there must be the

More information

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms Chapter 10 (Hill/Petrucci/McCreary/Perry Bonding Theory and Molecular Structure This chapter deals with two additional approaches chemists use to describe chemical bonding: valence-shell electron pair

More information

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model Molecular Geometry Learn Shapes you will Because the physical and chemical properties of compounds are tied to their structures, the importance of molecular geometry can not be overstated. Localized Electron

More information

Chemistry 212 MOLECULAR STRUCTURES AND GEOMETRIES

Chemistry 212 MOLECULAR STRUCTURES AND GEOMETRIES Chemistry 212 MOLECULAR STRUCTURES AND GEOMETRIES LEARNING OBJECTIVES To build models of selected molecules using VSEPR theory. To illustrate patterns of molecular shapes. BACKGROUND The shapes exhibited

More information

Chapters 8 and 9. Octet Rule Breakers Shapes

Chapters 8 and 9. Octet Rule Breakers Shapes Chapters 8 and 9 Octet Rule Breakers Shapes Bond Energies Bond Energy (review): The energy needed to break one mole of covalent bonds in the gas phase Breaking bonds consumes energy; forming bonds releases

More information

Molecular Geometry and Bonding Theories. Chapter 9

Molecular Geometry and Bonding Theories. Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Shapes CCl 4 Lewis structures give atomic connectivity; The shape of a molecule is determined by its bond angles VSEPR Model Valence Shell Electron

More information

Ch 13: Covalent Bonding

Ch 13: Covalent Bonding Ch 13: Covalent Bonding Section 13: Valence-Shell Electron-Pair Repulsion 1. Recall the rules for drawing Lewis dot structures 2. Remember the special situations: - Resonance structures - ormal charges

More information

Experiment 21 Lewis structures and VSEPR Theory

Experiment 21 Lewis structures and VSEPR Theory Experiment 21 Lewis structures and VSEPR Theory Introduction 1. Lewis Structures and Formal Charge LG.N. Lewis, at the University of California at Berkeley devised a simple way to understand the nature

More information

Lecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Lecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Lecture Presentation Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Predicting Molecular Geometry 1. Draw the Lewis structure. 2. Determine the number

More information

Covalent Molecules and Lewis Structures Time required: two 50-minute periods

Covalent Molecules and Lewis Structures Time required: two 50-minute periods Mega Molecules, LLC!!!!! Name: Hands-On Science with Molecular Models!! Date:!!!!!!!! Hour: Introduction Covalent Molecules and Lewis Structures Time required: two 50-minute periods To study covalent molecules,

More information

Chemical Bonding I: Basic Concepts

Chemical Bonding I: Basic Concepts Chemical Bonding I: Basic Concepts Chapter 9 Chang & Goldsby Modified by Dr. Hahn Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Read Sec. 9.1 and 9.2, then complete the Sample and Practice Exercises in these sections. Sample Exercise 9.1 (p. 347) Use the VSEPR model to predict the molecular geometries of a)

More information

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8. Na Mg Al Si P S Cl Ar

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8. Na Mg Al Si P S Cl Ar CHM 111 Chapters 7 and 8 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the

More information

CH 222 Chapter Seven Concept Guide

CH 222 Chapter Seven Concept Guide CH 222 Chapter Seven Concept Guide 1. Lewis Structures Draw the Lewis Dot Structure for cyanide ion, CN -. 1 C at 4 electrons = 4 electrons 1 N at 5 electrons = 5 electrons -1 charge = + 1 electron Total

More information

Chapter 12 Structures and Characteristics of Bonds Objectives

Chapter 12 Structures and Characteristics of Bonds Objectives Objectives 1. To learn about ionic and covalent bonds and explain how they are formed - what holds compounds together? 2. To learn about the polar covalent bond are all covalent bonds equal? 3. To understand

More information

Localized Electron Model

Localized Electron Model Localized Electron Model Models for Chemical Bonding Localized electron model (Valence bond model) Molecular orbital model Localized Electron Model Useful for explaining the structure of molecules especially

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents 9.1 Hybridization and the Localized Electron Model 9.2 The Molecular Orbital Model 9.3 Bonding in Homonuclear Diatomic Molecules 9.4 Bonding

More information

Molecular Geometry. Objectives N H H. The objectives of this laboratory are to:

Molecular Geometry. Objectives N H H. The objectives of this laboratory are to: Objectives The objectives of this laboratory are to: Molecular Geometry Write Lewis structure representations of the bonding and valence electrons in molecules. Use the VSEPR model to predict the molecular

More information

Chapters 9&10 Structure and Bonding Theories

Chapters 9&10 Structure and Bonding Theories Chapters 9&10 Structure and Bonding Theories Ionic Radii Ions, just like atoms, follow a periodic trend in their radii. The metal ions in a given period are smaller than the non-metal ions in the same

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: and ybridization of Atomic rbitals Chapter 10 Valence shell electron pair repulsion (VSEPR) model: Predict the geometry of the molecule from the electrostatic repulsions between the

More information

Announcements. 10pm Room assignments for Exam III and TA Exam Review Sessions are posted on website. Look under Exam Info link

Announcements. 10pm Room assignments for Exam III and TA Exam Review Sessions are posted on website. Look under Exam Info link Announcements 1. Exam #3: Thursday, Dec. 6 th, 7:00-8:15pm (Conflict: 5:15-6:30pm) No calculators allowed 2. Activity 3: Making Models of Molecules lab write-up due tomorrow in discussion 3. Lon-capa HW

More information

Name: Class: Date: 3. How many lone pairs of electrons are assigned to the carbon atom in carbon monoxide? a. 0 b. 1 c. 2 d. 3

Name: Class: Date: 3. How many lone pairs of electrons are assigned to the carbon atom in carbon monoxide? a. 0 b. 1 c. 2 d. 3 Class: Date: Midterm 3, Fall 2009 Record your name on the top of this exam and on the scantron form. Record the test ID letter in the top right box of the scantron form. Record all of your answers on the

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals Localized electron model A bond is made when a half-filled orbital of one atom overlaps with a half-filled orbital of another.! Bond: orbitals overlap straight on p

More information

Lewis Dot Formulas and Molecular Shapes

Lewis Dot Formulas and Molecular Shapes Lewis Dot Formulas and Molecular Shapes Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent chemical bonds are formed by valence electrons

More information

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds ybridization MO theory 1 Molecular Geometry 3-D arrangement of atoms 2 VSEPR Valence-shell

More information

Lewis Structure and Electron Dot Models

Lewis Structure and Electron Dot Models Lewis Structure and Electron Dot Models The Lewis Structure is a method of displaying the electrons present in any given atom or compound. Steps: 1. Make a skeleton structure 2. Count all e- available

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories molecular shapes the VSEPR model molecular shape and molecular polarity covalent bonding and orbital overlap hybrid orbitals multiple bonds 9.1 Molecular

More information

Carbon Compounds. Electronegativity. Chemical Bonding Part 1c. Bond Polarity. Bond Polarity

Carbon Compounds. Electronegativity. Chemical Bonding Part 1c. Bond Polarity. Bond Polarity Electronegativity Carbon Compounds Electronegativity is a relative measure on the pull of electrons by an atom in a bond. Most bonds fall somewhere in between and these bonds are considered polar. Chemical

More information

EXPERIMENT 15: MOLECULAR MODELS

EXPERIMENT 15: MOLECULAR MODELS EXPERIMENT 15: MLEULAR MDELS Introduction: Given formulas of some molecules and ions, you will use the periodic table, valence electron count, and electronegativities to deduce their geometry and polarities.

More information

Bonding. Computer Lab: Ionic Bonds. Important Notes 3/22/18

Bonding. Computer Lab: Ionic Bonds. Important Notes 3/22/18 Bonding What are ionic bonds, and how are they formed? Computer Lab: Ionic Bonds Go to http://www.pbslearningmedia.org/asset/ lsps07_int_ionicbonding/ Read each screen and follow the directions where appropriate.

More information

Please pass in only this completed answer sheet on the day of the test. LATE SUBMISSIONS WILL NOT BE ACCEPTED

Please pass in only this completed answer sheet on the day of the test. LATE SUBMISSIONS WILL NOT BE ACCEPTED CHM-201 General Chemistry and Laboratory I Unit #4 Take Home Test Due December 13, 2018 Please pass in only this completed answer sheet on the day of the test. LATE SUBMISSIONS WILL NOT BE ACCEPTED CHM-201

More information

Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons

Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons For covalent bonds there is a of electrons to get an

More information

Chemical Bonding and Molecular Models

Chemical Bonding and Molecular Models 25 Chemical Bonding and Molecular Models A chemical bond is a force that holds groups of two or more atoms together and makes them function as a unit. Bonding involves only the valence (outer shell) electrons

More information

4/25/2017. VSEPR Theory. Two Electron Groups. Shapes of Molecules. Two Electron Groups with Double Bonds. Three Electron Groups.

4/25/2017. VSEPR Theory. Two Electron Groups. Shapes of Molecules. Two Electron Groups with Double Bonds. Three Electron Groups. Chapter 10 Lecture Chapter 10 Bonding and Properties of Solids and Liquids 10.3 Shapes of Molecules and Ions (VSEPR Theory) Learning Goal Predict the three-dimensional structure of a molecule or a polyatomic

More information

Example: Write the Lewis structure of XeF 4. Example: Write the Lewis structure of I 3-. Example: Select the favored resonance structure of the PO 4

Example: Write the Lewis structure of XeF 4. Example: Write the Lewis structure of I 3-. Example: Select the favored resonance structure of the PO 4 Expanded valence shells (extended octets) more than 8e - around a central atom Extended octets are formed only by atoms with vacant d-orbitals in the valence shell (p-elements from the third or later periods)

More information

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes Reference: Chapter 9 10 in textbook 1 Valence Electrons Valence ae Electron Define: the outer shell electrons Important for determination

More information

CHEM 101: CHAPTER 11: CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS

CHEM 101: CHAPTER 11: CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS 1 CHEM 101: CHAPTER 11: CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS PERIODIC TRENDS: See pages 214-216, 221 Table 11.3, and 227 + 228 of text. Lewis Structures of Atoms: The Lewis Dot Diagram

More information

Lab #11- Molecular Geometry

Lab #11- Molecular Geometry Objectives Chesapeake Campus Chemistry 111 Laboratory Lab #11- Molecular Geometry Determine the shape of a molecule using the VSEPR. Draw the Lewis structures of a molecule including bond angles and formal

More information

CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS

CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS Metallic Bonds How atoms are held together in solid metals. Metals hold onto their valence electrons very weakly. Think of them as positive ions

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. How to get the book of

More information

Chapter 9 Molecular Geometries. and Bonding Theories

Chapter 9 Molecular Geometries. and Bonding Theories Chapter 9 Molecular Geometries and Bonding Theories Coverage of Chapter 9 9.1 All 9.2 All 9.3 All 9.4 All 9.5 Omit Hybridization Involving d Orbitals 9.6 All 9.7 and 9.8 Omit ALL MOLECULAR SHAPES The shape

More information

Chemical Bonds, Molecular Models, and Molecular Shapes

Chemical Bonds, Molecular Models, and Molecular Shapes Chemical Bonds, Molecular Models, and Molecular Shapes PRELAB ASSINGMENT Write an objective, and answer the following questions in your laboratory notebook before coming to lab. Read the entire laboratory

More information

MOLECULAR MODELS OBJECTIVES

MOLECULAR MODELS OBJECTIVES MOLECULAR MODELS OBJECTIVES 1. To learn to draw Lewis structures for common compounds 2. To identify electron pairs as bonding pairs or lone pairs 3. To use electron pair repulsion theory to predict electronic

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Lecture Presentation Chapter 9 Geometry James F. Kirby Quinnipiac University Hamden, CT Shapes Lewis Structures show bonding and lone pairs, but do not denote shape. However, we use Lewis Structures to

More information

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Fructose Water Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Carbon Dioxide Ammonia Title and Highlight TN Ch 10.1 Topic: EQ: Right Side NOTES

More information

Covalent Bonding Introduction, 2. Chapter 7 Covalent Bonding. Figure 7.1 The Hydrogen Molecule. Outline. Covalent Bonding Introduction, 1. Figure 7.

Covalent Bonding Introduction, 2. Chapter 7 Covalent Bonding. Figure 7.1 The Hydrogen Molecule. Outline. Covalent Bonding Introduction, 1. Figure 7. Covalent Bonding Introduction, 2 William L. Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 7 Covalent Bonding Electron density Electrons are located between nuclei Electrostatic

More information