Experimental Study and Modeling of Methane Hydrate Formation Induction Time in the Presence of Ionic Liquids

Size: px
Start display at page:

Download "Experimental Study and Modeling of Methane Hydrate Formation Induction Time in the Presence of Ionic Liquids"

Transcription

1 2nd National Iranian Conference on Gas Hydrate (NICGH) Semnan University Experimental Study and Modeling of Methane Hydrate Formation Induction Time in the Presence of Ionic Liquids Ali Rasoolzadeh, Jafar Javanmardi * Department of Chemical Engineering, Shiraz University of Technology, , Shiraz, Iran * Corresponding author. address: Javanmardi@sutech.ac.ir Abstract Gas hydrate formation has been referred as unfavorable phenomenon since it leads to blockage of pipelines. To prevent formation of these compounds, several methods are normally pursued including system heating, depressurization, water removal, and use of gas hydrate formation inhibitors. The latter technique may be the most practical method for this purpose. Two types of inhibitors are generally used in the industry: thermodynamic inhibitors and kinetic ones. Thermodynamic inhibitors (such as ethylene glycol and methanol) shift the hydrate-liquid-vapor- (HLV) equilibrium curve to lower temperature and higher-pressure conditions. Kinetic inhibitors (such as PVP, PVCap) delay the hydrate nucleation and growth rates. There are some evidences that ionic liquids have dual inhibition effects. In this communication, we use three ionic liquids including (BMIM-BF 4), (BMIM-DCA), and (TEACL). Methane hydrate formation induction time in the presence of different concentrations of these three ionic liquids is kinetically investigated in this work. Consequently, the effects of initial pressure and ionic liquids concentration on the induction time can be evaluated. In addition, a three parameter semi-empirical model is developed on the basis of chemical kinetics theory. Finally, it is shown that the proposed semi-empirical model has a good accuracy in comparison with the experimental data. Keywords: Methane hydrate, Kinetics, Ionic liquids, Induction time, Inhibitors Research Highlights Methane hydrates induction time measurement in the presence of ionic liquids. Proposing a three parameter semi-empirical model on the basis of chemical kinetics theory for representing experimental data. Optimization of model parameters by some experimental data and prediction of all results by the model. 1. Introduction Gas hydrates are belonging to the clathrates families, which are composed of water molecules and some guest molecules like methane, ethane, propane, etc. Under appropriate conditions which are high pressures and low temperatures conditions, some guest molecules which are gases with appropriate sizes and shapes are trapped in the cavities which are formed by water molecules that are connecting together by hydrogen bonding and gas hydrates are formed 1

2 Experimental Study and Modeling of Methane Hydrate [1,2]. From the discovery of hydrates in 1810 until present, gas hydrates are one of the interesting fields for scientists to study. Gas hydrates have many advantages and some disadvantages. The major problem in hydrate formation is leading to gas pipelines. In 1934, Hammerschmidt expressed that in high pressures and low temperatures in pipelines gas hydrates are formed that cause pipeline blockage, safety problems, pressure losses and huge economic losses [3]. Since 1934, hydrates were known as harmful phenomena and for avoiding hydrate formations in pipelines several methods such as: system heating, depressurization, water removal and use of inhibitors were developed. Adding inhibitors to the systems is the most possible and flexible way to prevent hydrate formation [4,5]. Two types of inhibitors are used today: thermodynamic inhibitors and kinetic inhibitors. Thermodynamic inhibitors (such as ethylene glycol, methanol) shift the HLV equilibrium curve to lower temperature and higher pressure and make the hydrate formation region smaller. Kinetic inhibitors (such as PVP, PVCap) delay the hydrate nucleation and hydrate growth rates by increasing the induction time but they do not shift the HLV equilibrium curve. Thermodynamic inhibitors are used in concentrations more than 10 wt% but kinetic inhibitors are used in concentrations about 1 wt% [6-9]. Xiao (2009, 2010) showed that ionic liquids, which he was used in his work, have dualfunction inhibition effects. It means that those ionic liquids not only shift the HLV equilibrium curve to lower temperature and higher pressure but also delay the hydrate nucleation and hydrate growth rates by increasing the induction time. Ionic liquids are green solvents and are liquid in a wide temperature range, they have high thermal stability, they do not decompose in high temperatures, they are not flammable, they are safe for reactions, and they have tuning abilities through which we can choose various cations and anions [10-12]. 2. Experimental 2.1. Materials The ionic liquids that we have used are listed in Table 1. All of the ionic liquids are purchased from Merck KGaA [13]. Methane with purity of 99.95% was used to form hydrate with deionized water. We used BMIM-BF4 in 1 wt%, 10 wt%, 15 wt% and 20 wt%, BMIM-DCA in 10 wt% and TEACL in 10 wt% for measuring induction time. Table 1. Ionic Liquids properties studied in this work Symbol Molar mass Solubility Density Provider Purity (g/mol) (g/l) (g/cm 3 ) BMIM-BF Soluble 1.18 Merck 99% BMIM-DCA Soluble 1.06 Merck 99% TEACL Solid Merck 98% 2

3 2nd National Iranian Conference on Gas Hydrate (NICGH) Semnan University Table 2. Ionic Liquids chemical name and chemical structure studied in this work. Symbol Chemical name Chemical structure BMIM-BF 4 1-Butyl-3-methylimidazolium tetrafluoroborate BMIM-DCA 1-Butyl-3-methylimidazolium dicyanamide TEACL Tetraethyl ammonium chloride 2.2. Apparatus The experimental apparatus is consisted of a high-pressure Stainless Steel SS-316 reactor with total volume of 90 cm 3. The reactor can sustain a pressure of 15 MPa. A thermocouple (Pt- 100) with a division scale of 0.1 K was connected to the reactor to measure the temperature. Also a pressure transducer (P-2) is connected to the reactor to measure the pressure. The reactor is inserted in the ethanol-cooling bath and it has some valves for injecting and venting the gas. The temperature is adjusted by using a controllable circulator (TCS-1) with ability of scheduling (Julabo TP-50). Fig. 1. Shows the schematic diagram of experimental apparatus. Fig.1. Schematic diagram of experimental apparatus Fig. 2. Shows the schematic diagram of the equilibrium cell that is used in this work. 3

4 Experimental Study and Modeling of Methane Hydrate Fig. 2. Schematic diagram of equilibrium cell Procedure The reactor was washed with deionized water and was dried completely. 20 cm 3 aqueous solution of our ionic liquids or pure water was charged into the reactor in the start of each experiment. The reactor was filled with methane and it was pressurized with methane to desired pressures (like 5 MPa, 6 MPa, and 7 MPa) at K. After remaining the system in K for 1 hr to avoid the memory effect for each experiment the system was cooled to K and remaining for 1 hr in this temperature. The mixer was started at a rate of 1000 rpm. After reaching equilibrium at this temperature, the system was cooled to K by the rate of 1 K/hr and remains in for 15 hr to complete the step of hydrate formation. For measuring induction time we must know the time of hydrate formation temperature at the initial pressure and the time that pressure reduction occurred in the pressure-time diagram. Induction time is the period of time between reaching the hydrate formation conditions and formation of hydrate. Fig. 3. shows the induction time and the solid point is represented for hydrate formation condition Experimental data Equilibrium point Pressure (bar) Time (hr) Fig. 3. Pressure-time diagram during hydrate formation 4

5 2nd National Iranian Conference on Gas Hydrate (NICGH) Semnan University We calculate the hydrate formation temperature by writing a code in Matlab that based on the Van der Waals-Platteuw basis and we calculate the water activity in the presence of ionic liquids by using UNIQUAC and NRTL equations. Table 3., Table 4. and Table 5. are parameters that we used in UNIQUAC and NRTL equations. Table 3. Parameters that we used in UNIQUAC equation [14]. Component r q aij (Optimized parameter) Water BMIM-BF Table 4. Parameters that we used in NRTL equation [15]. Component Δgij (J/mol) αij Water BMIM-DCA Table 5. Parameters that we used in NRTL equation [15]. Component Δgij (J/mol) αij Water TEACL We can also recognize the induction time from pressure-temperature curve of hydrate formation. From fig. 3. induction time is the difference between the hydrate equilibrium conditions and the time that the pressure suddenly decreased. Pressure (bar) Experimental Data Equilibrium calculation Temperature (Centigrade) Fig. 4. Pressure-temperature diagram during hydrate formation. 5

6 Experimental Study and Modeling of Methane Hydrate 3. Modeling On the basis of kinetics theory in crystallization, the nucleation rate formula is: πσ VM N a B = C exp (1) 3υ ( RT ) ( lnα) In the equation (1) B 0 is the nucleation rate, Na is the Avogadro s constant, R is the universal gas constant, VM is the molar volume of crystal, σ is the average surface tension on the solidliquid interface, υ is number of ions per dissolved molecule, α is the mole ratio of supersaturated solution to the saturated solution, C is a constant and s is Supersaturation ratio [16,17]. The relation between α and s is: 1 s (2) By using of mathematical estimation, we have: ln 1 s (3) Then we have equation (1) in the following form: B V M N C exp ( RT ) s a 2 (4) That we can rewrite the above equation in the following form: 0 b B k exp( ) s n (5) Natarajan et al. [18] have said that the relation between induction time and nucleation rate is like the following form: t i B 0 r (6) By rearranging the above equation, the following equations have gained: t i n b k exp s r 1 r k b exp s nr (7) r k (8) 6

7 2nd National Iranian Conference on Gas Hydrate (NICGH) Semnan University m nr t i b exp( ) s m We have defined the subcooling as the driving force of supersaturation. Then our equation is changed to the following form: (9) (10) t i bt T s m exp( ) (11) Table 6. Optimized parameters for different ionic liquids Ionic liquid λ (min) m b BMIM-BF BMIM-DCA TEACL In the above equation λ, m and b are the constants that have gained by optimization from some experimental data. In this work, we have used a few experimental data points for optimizing λ, m and b. After optimization of the constants, we have predicted all the induction time points. Table 7. Number of data points for optimization of constants. Ionic Liquid Total Induction Time Data Induction Time Data that have used for optimization of constants BMIM-BF BMIM-DCA 7 3 TEACL 8 4 7

8 Experimental Study and Modeling of Methane Hydrate 4. Results 200 Predicted Induction Time (min) Experimental Induction Time (min) Fig. 5. Comparison between experimental induction time data and predicted induction time Solution Table 8. Experimental and predicted induction time for different ionic liquid solutions. Initial Pressure (bar) Experimental Induction Time (min) Predicted Induction Time (min) Solution Initial Pressure (bar) Experimental Induction Time (min) Predicted Induction Time (min) Pure Water wt% BMIM-BF Pure Water wt% BMIM-BF Pure Water wt% BMIM-BF Pure Water wt% BMIM-BF Pure Water wt% BMIM-BF wt% BMIM-BF wt% BMIM-BF wt% BMIM-BF wt% BMIM-BF wt% BMIM-BF wt% BMIM-DCA wt% BMIM-BF wt% BMIM-DCA wt% BMIM-BF wt% BMIM-DCA wt% BMIM-BF wt% BMIM-DCA wt% BMIM-BF wt% BMIM-DCA wt% BMIM-BF wt% BMIM-DCA wt% BMIM-BF wt% BMIM-DCA wt% BMIM-BF wt% TEACL wt% BMIM-BF wt% TEACL wt% BMIM-BF wt% TEACL wt% BMIM-BF wt% TEACL wt% BMIM-BF wt% TEACL wt% BMIM-BF wt% TEACL wt% BMIM-BF wt% TEACL wt% BMIM-BF wt% TEACL wt% BMIM-BF NP=45 AAD% 1 =5.77 NP 1 1 texp - tcal AAD% = ( ) 100 NP t i= 1 exp 8

9 2nd National Iranian Conference on Gas Hydrate (NICGH) Semnan University 5. Conclusions The effects of three ionic liquid solutions have been investigated in this work. In addition, a three parameter semi-empirical model is developed on the basis of chemical kinetics theory for representation of the obtained kinetic parameters. The results indicate that the developed semi-empirical correlation should be used for pressures below 8 MPa, ionic liquids concentrations up to 20 wt% and cooling rate of 1 K/hr. Finally, it is shown that the proposed semi-empirical model leads to a good accuracy in comparison with the experimental data. References [1] Sloan, E. D., Clathrate Hydrates of Natural Gases, 3rd ed., CRC Press, New York, [2] Carroll, J. J., Natural Gas Hydrates: A Guide for Engineers, 1st ed., Gulf Professional Pub, [3] Hammerschmidt, E. G., Preventing and removing hydrates in natural gas pipe lines, Gas Age., Vol. 52, pp , [4] Deaton, W. M., Frost, E. M., Gas Hydrates and Their Relation to the Operation of Natural Gas Pipe Lines, U.S. Bureau of Mines Monograph 8, pp. 101, [5] Lederhos, J., The Transferability of Hydrate Kinetic Inhibitor Results between Bench Scale Apparatuses and a Pilot Scale Flow Loop, Ph.D.Thesis, Colorado School of Mines, Golden, CO, [6] Freer, E. M., Sloan, E. D., An engineering approach to kinetic inhibitor design using molecular dynamics simulations, Annals of New York Academy of Sciences, Vol. 912, pp , [7] Katz, D. L., Cornell, D., Kobayashi, R., Poettmann, F. H., Vary, J. A., Elenbaas, J. R., Weinaug, C. F., Handbook of Natural Gas Engineering, McGraw-Hill, New York, pp. 802, [8] Karaaslan, U., Parlaktuna, M., A new hydrate inhibitor polymer, Energy & Fuels, Vol. 16, pp , [9] Kobayashi, R., Withrow, H. J., Williams, G. B., Katz, D. L., in Proc. Natural Gasoline Association of America, Vol. 27, San Antonio, TX [10] Wasserscheid, P., Welton, T., Ionic Liquids in synthesis, Second edition, Vol. 1, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim [11] Suojiang, Z., Xingmei, L., Qing, Z., Xiaohua, L., Xiang ping, Z., Shucai, L., Ionic Liquids Physicochemical Properties, First edition, Amsterdam, The Netherlands, [12] Xiao, C., Adidharma, H., Dual function inhibitors for methane hydrate, AICHE Annual Meeting, Philadelphia, PA, November pp , [13] Merck KGaA,Darmstadt, Germany, customer. Service (at) merckchem.co.uk,

10 Experimental Study and Modeling of Methane Hydrate [14] Santiago R. S., Santos, G. R., Aznar, M., UNIQUAC correlation of liquid liquid equilibrium in systems involving ionic liquids: The DFT PCM approach, Fluid Phase Equilibria, Vol. 278, pp , [15] Ge, Y., Zhang, L., Yuan, X., Geng, W., Ji, J., Selection of ionic liquids as entrainers for separation of water-ethanol, J Chem. Thermodynamics, Vol. 40, pp , [16] McCabe, W. L., Stevens, R.P., Rate of Growth of Crystals in Aqueous Solutions, Chemical Eng. Prog. Vol. 47, p. 168, [17] Mullin, J.W., Crystallization, 3rd Edition, Butterworth-Heinemann, Oxford, U.K., [18] Natarajan, V., Thermodynamics and Nucleation Kinetics of Gas Hydrates, Ph.D. Thesis, University of Calgary, Alberta,

Induction time of Methane Hydrate formation in the presence of electrolyte solutions of sodium chloride and sodium sulfate

Induction time of Methane Hydrate formation in the presence of electrolyte solutions of sodium chloride and sodium sulfate nd National Iranian Conference on Gas Hydrate (NICGH) Semnan University Induction time of Methane Hydrate formation in the presence of electrolyte solutions of sodium chloride and sodium sulfate M.Manteghian*,H.Ahmadi

More information

Investigation of the Hydrate Formation Equilibrium Conditions of Natural Gas

Investigation of the Hydrate Formation Equilibrium Conditions of Natural Gas Karaj branch Journal of A p p l ied C hemical R esearch jacr.kiau.ac.ir Journal of Applied Chemical Research, 12, 3, 74-87 (2018) Investigation of the Hydrate Formation Equilibrium Conditions of Natural

More information

F. Esmaeilzadeh, Y. Fayazi, and J. Fathikaljahi

F. Esmaeilzadeh, Y. Fayazi, and J. Fathikaljahi Experimental Investigation of a Mixture of Methane, Carbon Dioxide & Nitrogen Gas Hydrate Formation in Water-Based Drilling Mud in the Presence or Absence of Thermodynamic Inhibitors F. Esmaeilzadeh, Y.

More information

Vapor-hydrate phases equilibrium of (CH 4 +C 2 H 6 ) and (CH 4 +C 2 H 4 ) systems

Vapor-hydrate phases equilibrium of (CH 4 +C 2 H 6 ) and (CH 4 +C 2 H 4 ) systems Pet.Sci.(2008)5:359-366 DOI 10.7/s12182-008-0042-0 359 Vapor-hydrate phases equilibrium of (CH 4 +C 2 H 6 ) and (CH 4 +C 2 H 4 ) systems Ma Qinglan, Chen Guangjin and Zhang Lingwei High Pressure Fluid

More information

PETE 310. Lectures # 33 & # 34 Chapter 17

PETE 310. Lectures # 33 & # 34 Chapter 17 PETE 310 Lectures # 33 & # 34 Chapter 17 Gas Hydrates Prediction & Control Hydrates Definition Natural gas hydrates are ice-like structures composed of water and natural gas molecules. Under favorable

More information

Microscopic and macroscopic points of view of gas hydrate formation using in-situ Raman spectroscopy. *Ju Dong Lee, Sang Yeon Hong, SeungMin Lee

Microscopic and macroscopic points of view of gas hydrate formation using in-situ Raman spectroscopy. *Ju Dong Lee, Sang Yeon Hong, SeungMin Lee Microscopic and macroscopic points of view of gas hydrate formation using in-situ Raman spectroscopy *Ju Dong Lee, Sang Yeon Hong, SeungMin Lee Offshore Plant Resources R&D Center, Korea Institute of Industrial

More information

Fundamentals of Hydrates, Climate Perspectives, and Energy Potentials

Fundamentals of Hydrates, Climate Perspectives, and Energy Potentials CCUS Student Week 2018 Fundamentals of Hydrates, Climate Perspectives, and Energy Potentials Luis Zerpa Center for Hydrate Research Colorado School of Mines October 18, 2018 Golden, CO What are Gas Hydrates?

More information

Hydrate Inhibition with Methanol A Review and New Concerns over Experimental Data Presentation

Hydrate Inhibition with Methanol A Review and New Concerns over Experimental Data Presentation ydrate Inhibition ith Methanol A Revie and Ne Concerns over Experimental Data Presentation Gavin McIntyre, Michael lavinka, Vicente ernandez Bryan Research & Engineering, Inc. Bryan, TX Abstract ydrate

More information

A Thermodynamic Study of Methane Hydrates Formation In Glass Beads

A Thermodynamic Study of Methane Hydrates Formation In Glass Beads AJChE 2016, Vol. 16, No. 1, 15 22 A Thermodynamic Study of Methane Hydrates Formation In Glass Beads Tintin Mutiara *,1,2 Budhijanto 1 I Made Bendiyasa 1 Imam Prasetyo 1 1 Department of Chemical Engineering,

More information

a) 1.3 x 10 3 atm b) 2.44 atm c) 8.35 atm d) 4.21 x 10-3 atm e) 86.5 atm

a) 1.3 x 10 3 atm b) 2.44 atm c) 8.35 atm d) 4.21 x 10-3 atm e) 86.5 atm 1. (6 pts) A sample of gas with a volume of 750 ml exerts a pressure of 756 mm Hg at 30.0 0 C. What pressure (atm) will the sample exert when it is compressed to 250 ml and cooled to -25.0 0 C? a) 1.3

More information

+ water + 2,2-dimethylbutane + magnesium chloride), and (methane + water + methylcyclohexane + magnesium chloride)

+ water + 2,2-dimethylbutane + magnesium chloride), and (methane + water + methylcyclohexane + magnesium chloride) J. Chem. Thermodynamics 1999, 31, 763 772 Article No. jcht.1999.0491 Available online at http://www.idealibrary.com on S H hydrate equilibria of (methane + water + 2-methylbutane + magnesium chloride),

More information

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance.

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance. PX0411-1112 1. Which of the following statements concerning liquids is incorrect? A) The volume of a liquid changes very little with pressure. B) Liquids are relatively incompressible. C) Liquid molecules

More information

INFLUENCE OF MELTING RATE ON THE DISSOCIATION OF GAS HYDRATES WITH THE KINETIC INHIBITOR PVCAP PRESENT

INFLUENCE OF MELTING RATE ON THE DISSOCIATION OF GAS HYDRATES WITH THE KINETIC INHIBITOR PVCAP PRESENT INFLUENCE OF MELTING RATE ON THE DISSOCIATION OF GAS HYDRATES WITH THE KINETIC INHIBITOR PVCAP PRESENT Ann Cecilie Gulbrandsen * StatoilHydro, Stavanger, NORWAY Thor Martin Svartaas Department of Petroleum

More information

Kinetic investigation of methane hydrate in the presence of Imidazolium Based Ionic Liquid solutions

Kinetic investigation of methane hydrate in the presence of Imidazolium Based Ionic Liquid solutions 2nd National Iranian Conference on Gas Hydrate (NICGH) Semnan University Kinetic investigation of methane hydrate in the presence of Imidazolium Based Ionic Liquid solutions M. Zare 1, A. Haghtalab * 1,

More information

ON THE KINETICS OF METHANE HYDRATE FORMATION: A TIME- DEPENDENT KINETIC RATE MODEL

ON THE KINETICS OF METHANE HYDRATE FORMATION: A TIME- DEPENDENT KINETIC RATE MODEL Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, July 17-21, 2011. ON THE KINETICS OF METHANE HYDRATE FORMATION: A TIME- DEPENDENT KINETIC

More information

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question. Chem 1100 Pre-Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An open-tube manometer is used to measure the pressure in a flask. The atmospheric

More information

Comparative Analysis of Gas Hydrate Chemical Inhibitors

Comparative Analysis of Gas Hydrate Chemical Inhibitors Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2017, 4 (4): 295-301 Research Article ISSN: 2394-658X Comparative Analysis of Gas Hydrate Chemical Inhibitors

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018. Supporting Information for Small, DOI: 10.1002/smll.201801523 Ultrasensitive Surface-Enhanced Raman Spectroscopy Detection Based

More information

Phase Equilibrium of Ionic Liquid/Organic/CO 2 Systems

Phase Equilibrium of Ionic Liquid/Organic/CO 2 Systems Phase Equilibrium of Ionic Liquid/Organic/CO 2 Systems Bang-Hyun Lim, Hoa Van Nguyen, and Jae-Jin Shim* School of Display and Chemical Engineering, Yeungnam University, 214-1 Dae-dong, Gyeongsan, Gyeongbuk

More information

ScienceDirect. Experimental Evaluation of a Novel Thermodynamic Inhibitor for CH 4 and CO 2 Hydrates

ScienceDirect. Experimental Evaluation of a Novel Thermodynamic Inhibitor for CH 4 and CO 2 Hydrates Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 148 (2016 ) 932 940 4th International Conference on Process Engineering and Advanced Materials Experimental Evaluation of a

More information

Vahid Nikkhah Rashidabad 1, Ali Hatami 2, Amin Ebrahimi 3

Vahid Nikkhah Rashidabad 1, Ali Hatami 2, Amin Ebrahimi 3 The thermodynamics effect of sodium chloride and sodium sulfate on the prevention of methane hydrate formation and offering its thermodynamics model by using neural networks Vahid Nikkhah Rashidabad 1,

More information

Lecture 6. NONELECTROLYTE SOLUTONS

Lecture 6. NONELECTROLYTE SOLUTONS Lecture 6. NONELECTROLYTE SOLUTONS NONELECTROLYTE SOLUTIONS SOLUTIONS single phase homogeneous mixture of two or more components NONELECTROLYTES do not contain ionic species. CONCENTRATION UNITS percent

More information

Separation of Ionic Liquids from Organic and Aqueous Solutions using Supercritical Fluids: Dependence of Recovery on the Pressure

Separation of Ionic Liquids from Organic and Aqueous Solutions using Supercritical Fluids: Dependence of Recovery on the Pressure Separation of Ionic Liquids from Organic and Aqueous Solutions using Supercritical Fluids: Dependence of Recovery on the Pressure Department of Chemical Engineering, University of Notre Dame, Notre Dame,

More information

Solutions and Their Properties

Solutions and Their Properties Chapter 11 Solutions and Their Properties Solutions: Definitions A solution is a homogeneous mixture. A solution is composed of a solute dissolved in a solvent. When two compounds make a solution, the

More information

Properties of Solutions

Properties of Solutions Properties of Solutions The States of Matter The state a substance is in at a particular temperature and pressure depends on two antagonistic entities: The kinetic energy of the particles The strength

More information

Index to Tables in SI Units

Index to Tables in SI Units Index to Tables in SI Units Table A-1 Atomic or Molecular Weights and Critical Properties of Selected Elements and Compounds 926 Table A-2 Properties of Saturated Water (Liquid Vapor): Temperature Table

More information

Modelling of methane gas hydrate incipient conditions via translated Trebble-Bishnoi-Salim equation of state

Modelling of methane gas hydrate incipient conditions via translated Trebble-Bishnoi-Salim equation of state Modelling of methane gas hydrate incipient conditions via translated Trebble-Bishnoi-Salim equation of state Carlos Giraldo and Matthew Clarke Department of Chemical and Petroleum Engineering, the University

More information

Analyzing solubility of acid gas and light alkanes in triethylene glycol

Analyzing solubility of acid gas and light alkanes in triethylene glycol From the SelectedWorks of ali ali 208 Analyzing solubility of acid gas and light alkanes in triethylene glycol ali ali Available at: https://works.bepress.com/bahadori/8/ Journal of Natural Gas Chemistry

More information

CHAPTER 11. The Mole. Mole. One mole of = 6.02 x 10 = 6.02 x 10 CaCl = 6.02 x x 10. Representative Particle. molecules, or formula units

CHAPTER 11. The Mole. Mole. One mole of = 6.02 x 10 = 6.02 x 10 CaCl = 6.02 x x 10. Representative Particle. molecules, or formula units CHAPTER 11 The Mole 11.1 The Mole: Measurement of Matter Matter is measured in one of three ways: (How many?) Mole SI unit that measures the amount of a substance 6.02 x 10 particles of that substance.

More information

Framework for Clathrate Hydrate Flash Calculations and Implications on the Crystal Structure and Final Equilibrium of Mixed Hydrates

Framework for Clathrate Hydrate Flash Calculations and Implications on the Crystal Structure and Final Equilibrium of Mixed Hydrates Framework for Clathrate Hydrate Flash Calculations and Implications on the Crystal Structure and Final Equilibrium of Mixed Hydrates Baptiste Bouillot a,, Jean-Michel Herri a a École Nationale Supérieure

More information

SCIENCE CHINA Chemistry. Kinetic studies of gas hydrate formation with low-dosage hydrate inhibitors

SCIENCE CHINA Chemistry. Kinetic studies of gas hydrate formation with low-dosage hydrate inhibitors SCIENCE CHINA Chemistry ARTICLES December 2010 Vol.53 No.12: 2622 2627 doi: 10.1007/s11426-010-4145-2 Kinetic studies of gas hydrate formation with low-dosage hydrate inhibitors TANG CuiPing 1,2, DAI XingXue

More information

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions 1 Chapter 12 :Solutions Tentative Outline 1. Introduction to solutions. 2. Types of Solutions 3. Solubility and the Solution Process: Saturated,

More information

Vapor liquid equilibria of carbon dioxide with diethyl oxalate, ethyl laurate, and dibutyl phthalate binary mixtures at elevated pressures

Vapor liquid equilibria of carbon dioxide with diethyl oxalate, ethyl laurate, and dibutyl phthalate binary mixtures at elevated pressures Fluid Phase Equilibria 181 (2001) 1 16 Vapor liquid equilibria of carbon dioxide with diethyl oxalate, ethyl laurate, and dibutyl phthalate binary mixtures at elevated pressures Kong-Wei Cheng, Muoi Tang

More information

New Developments in Hydrogen Storage

New Developments in Hydrogen Storage New Developments in Hydrogen Storage A.R. Cruz Duarte 1, J.F. Zevenbergen, and C.J. Peters 1,3 1 Delft University of Technology, The Netherlands TNO Defense, Security and Safety, The Netherlands 3 The

More information

Modeling Vapor Liquid Equilibrium of Binary and Ternary Systems of CO 2 + Hydrocarbons at High-Pressure Conditions

Modeling Vapor Liquid Equilibrium of Binary and Ternary Systems of CO 2 + Hydrocarbons at High-Pressure Conditions A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 57, 2017 Guest Editors: Sauro Pierucci, Jiří Jaromír Klemeš, Laura Piazza, Serafim Bakalis Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-48-8;

More information

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question. Chem 1100 Pre-Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Determine the oxidation number of the underlined element in K 2CO 3. a. 1 b. 2 c.

More information

Effects of Mixed Surfactants on Methane Hydrate Formation and Dissociation

Effects of Mixed Surfactants on Methane Hydrate Formation and Dissociation 151 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 52, 2016 Guest Editors: Petar Sabev Varbanov, Peng-Yen Liew, Jun-Yow Yong, Jiří Jaromír Klemeš, Hon Loong Lam Copyright 2016, AIDIC Servizi S.r.l.,

More information

Computer Aided Identification of Acetone and Chloroform Mixture Behavior

Computer Aided Identification of Acetone and Chloroform Mixture Behavior Computer Aided Identification of Acetone and Chloroform Mixture Behavior Sarah Torkamani Chemical Engineering PhD Student Department of Chemical and Petroleum Engineering, Sharif University of Technology,

More information

Design of A chemical Absorption System for The Separation of Propane/Propylene Mixture

Design of A chemical Absorption System for The Separation of Propane/Propylene Mixture Design of A chemical Absorption System for The Separation of Propane/Propylene Mixture Reda Zein, Ahmed F. Nassar, Tarek M. Mostafa Chemical Engineering Department Cairo University Giza Egypt reda.zein@eng1.cu.edu.eg

More information

Water & Solutions Chapter 17 & 18 Assignment & Problem Set

Water & Solutions Chapter 17 & 18 Assignment & Problem Set Water & Solutions Chapter 17 & 18 Assignment & Problem Set Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Water & Solutions 2 Vocabulary (know

More information

Find molality: mass percent. molality Assume a basis of 100g solution, then find moles ammonium chloride: Find mass water: So molality is:

Find molality: mass percent. molality Assume a basis of 100g solution, then find moles ammonium chloride: Find mass water: So molality is: 66 An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is 1.024 g/ml Find: molality, mole fraction, molarity. Find molality: mass percent molality Assume a basis of 100g

More information

Multi-scale assessment of the performance of kinetic hydrate inhibitors

Multi-scale assessment of the performance of kinetic hydrate inhibitors Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, July 17-21, 2011. Multi-scale assessment of the performance of kinetic hydrate inhibitors

More information

INNOVATIVE MATERIALS FOR RESEARCH AND INDUSTRY. Elena-Oana CROITORU 1

INNOVATIVE MATERIALS FOR RESEARCH AND INDUSTRY. Elena-Oana CROITORU 1 INNOVATIVE MATERIALS FOR RESEARCH AND INDUSTRY Elena-Oana CROITORU 1 ABSTRACT Research, development and implementation of products and innovative technologies that aim to reduce or eliminate the use and

More information

Solids, Liquids and Gases

Solids, Liquids and Gases WHY? Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on water? Why do snowflakes have 6 sides? Why is I

More information

LECTURE 6 NON ELECTROLYTE SOLUTION

LECTURE 6 NON ELECTROLYTE SOLUTION LECTURE 6 NON ELECTROLYTE SOLUTION Ch 45.5 pplied Phy Chem First Sem 2014-15 Ch 45.5 Exam II September 1/3 (Multiple Choice/Problem Solving) Coverage: Second/Third Laws of Thermodynamics Nonelectrolyte

More information

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules Solutions Solution: A homogenous mixture consisting of ions or molecules -Assignment: Ch 15 Questions & Problems : 5, (15b,d), (17a, c), 19, 21, 23, 27, (33b,c), 39, (43c,d),45b, 47, (49b,d), (55a,b),

More information

Liquids & Solids. Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry

Liquids & Solids. Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry Liquids & Solids Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry 1 Liquids 2 Properties of the States of Matter: Liquids High densities compared to gases. Fluid. The material exhibits

More information

Isobaric vapor-liquid equilibrium for methanol+benzene+1-octyl-3-methylimidazolium tetrafluoroborate

Isobaric vapor-liquid equilibrium for methanol+benzene+1-octyl-3-methylimidazolium tetrafluoroborate Korean J. Chem. Eng., 29(7), 941-945 (2012) DOI: 10.1007/s11814-011-0262-7 INVITED REVIEW PAPER Isobaric vapor-liquid equilibrium for methanol+benzene+1-octyl-3-methylimidazolium tetrafluoroborate Qunsheng

More information

Investigation of Six Imidazolium-Based Ionic Liquids as Thermo-Kinetic Inhibitors for Methane Hydrate by Molecular Dynamics Simulation

Investigation of Six Imidazolium-Based Ionic Liquids as Thermo-Kinetic Inhibitors for Methane Hydrate by Molecular Dynamics Simulation Investigation of Six Imidazolium-Based Ionic Liquids as Thermo-Kinetic Inhibitors for Methane Hydrate by Molecular Dynamics Simulation Mohammad Ebrahim Haji Nasrollah a, Bagher Abareshi a, Cyrus Ghotbi

More information

Chem 1075 Chapter 14 Solutions Lecture Outline

Chem 1075 Chapter 14 Solutions Lecture Outline Chem 1075 Chapter 14 Solutions Lecture Outline Slide 2 Solutions A solution is a. A solution is composed of a dissolved in a. Solutions exist in all three physical states: Slide 3 Polar Molecules When

More information

Biocatalysis. Deep Eutectic Solvents. Trial Pack

Biocatalysis. Deep Eutectic Solvents. Trial Pack Biocatalysis Deep Eutectic Solvents Trial Pack Ionic Liquids Ionic Liquids are salts that are liquid below 100 o C.They are primarily large quaternary ammonium cations (R 4 N+) with large anions such as

More information

CHEM 101A EXAM 1 SOLUTIONS TO VERSION 1

CHEM 101A EXAM 1 SOLUTIONS TO VERSION 1 CHEM 101A EXAM 1 SOLUTIONS TO VERSION 1 Multiple-choice questions (3 points each): Write the letter of the best answer on the line beside the question. Give only one answer for each question. B 1) If 0.1

More information

CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY

CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY . Pressure CHAPER GASES AND KINEIC-MOLECULAR HEORY. Boyle s Law: he -P Relationship 3. Charles Law: he - Relationship 4. Standard &P 5. he Combined Gas Law Equation 6. Avogadro s Law and the Standard Molar

More information

States of matter Part 2

States of matter Part 2 Physical Pharmacy Lecture 2 States of matter Part 2 Assistant Lecturer in Pharmaceutics Overview The Liquid State General properties Liquefaction of gases Vapor pressure of liquids Boiling point The Solid

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: Solutions In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. Agitation prevents settling

More information

CHEMISTRY 110 EXAM 3 NOVEMER 12, 2012 FORM A

CHEMISTRY 110 EXAM 3 NOVEMER 12, 2012 FORM A CHEMISTRY 110 EXAM 3 NOVEMER 12, 2012 FORM A 1. Consider a balloon filled with 5 L of an ideal gas at 20 C. If the temperature of the balloon is increased by 70 C and the external pressure acting on the

More information

CP Chapter 15/16 Solutions What Are Solutions?

CP Chapter 15/16 Solutions What Are Solutions? CP Chapter 15/16 Solutions What Are Solutions? What is a solution? A solution is uniform that may contain solids, liquids, or gases. Known as a mixture Solution = + o Solvent The substance in abundance

More information

SOLUBILITIES OF NON-STEROIDAL ANTI-INFLAMMATORY DRUGS IN SUPERCRITICAL CARBON DIOXIDE

SOLUBILITIES OF NON-STEROIDAL ANTI-INFLAMMATORY DRUGS IN SUPERCRITICAL CARBON DIOXIDE SOLUBILITIES OF NON-STEROIDAL ANTI-INFLAMMATORY DRUGS IN SUPERCRITICAL CARBON DIOXIDE Ming-Jer Lee*, Cheng-Chou Tsai, Ho-mu Lin Department of Chemical Engineering, National Taiwan University of Science

More information

Gases and Kinetic Molecular Theory

Gases and Kinetic Molecular Theory 1 Gases and Kinetic Molecular Theory 1 CHAPTER GOALS 1. Comparison of Solids, Liquids, and Gases. Composition of the Atmosphere and Some Common Properties of Gases 3. Pressure 4. Boyle s Law: The Volume-Pressure

More information

Solubility Effects on Growth and Dissolution of Methane Hydrate Needles

Solubility Effects on Growth and Dissolution of Methane Hydrate Needles Solubility Effects on Growth and Dissolution of Methane Hydrate Needles Sivakumar Subramanian (1) *, E. Dendy Sloan, Jr. (2) (1) ChevronTexaco Exploration and Production Technology Company, Houston, Texas

More information

Chapter 12: Solutions. Mrs. Brayfield

Chapter 12: Solutions. Mrs. Brayfield Chapter 12: Solutions Mrs. Brayfield 12.1: Solutions Solution a homogeneous mixture of two or more substances Solvent the majority component Solute the minority component What is the solute and solvent

More information

Chemistry 2000 Lecture 9: Entropy and the second law of thermodynamics

Chemistry 2000 Lecture 9: Entropy and the second law of thermodynamics Chemistry 2000 Lecture 9: Entropy and the second law of thermodynamics Marc R. Roussel January 23, 2018 Marc R. Roussel Entropy and the second law January 23, 2018 1 / 29 States in thermodynamics The thermodynamic

More information

Study guide for AP test on TOPIC 1 Matter & Measurement

Study guide for AP test on TOPIC 1 Matter & Measurement Study guide for AP test on IC 1 Matter & Measurement IC 1 Recall a definition of chemistry Understand the process and stages of scientific (logical) problem solving Recall the three states of matter, their

More information

HADDONFIELD PUBLIC SCHOOLS Curriculum Map for Accelerated Chemistry

HADDONFIELD PUBLIC SCHOOLS Curriculum Map for Accelerated Chemistry Curriculum Map for Accelerated Chemistry 1st Marking Period 5.1.12.A.1, 5.1.12.A.2,, 5.1.12.A.3,, 5.1.12.B.1, 5.1.12.B.2, 5.1.12.B.3, 5.1.12.B.4, 5.1.12.C.1, 5.1.12.C.2, 5.1.12.C.3,, 5.1.12.D.1, 5.1.12.D.2,

More information

Description Mole Activity. Late Lab Stamp (this stamp means you are not qualified to do lab and test corrections)

Description Mole Activity. Late Lab Stamp (this stamp means you are not qualified to do lab and test corrections) Unit 5 Notepack: Chapters 10 Chemical Quantities NAME Unit 5 Chemical Names, and Formulas & Moles Unit Goals- As you work through this unit, you should be able to: 1. Distinguish between ionic and molecular

More information

Warm Up. 1. What causes the high surface tension of water? 2. In the formation of a solution, how does the solvent differ from the solute?

Warm Up. 1. What causes the high surface tension of water? 2. In the formation of a solution, how does the solvent differ from the solute? Warm Up 1. What causes the high surface tension of water? 2. In the formation of a solution, how does the solvent differ from the solute? 3. Why are all ionic compounds electrolytes? 4. How do you write

More information

Fuel, Air, and Combustion Thermodynamics

Fuel, Air, and Combustion Thermodynamics Chapter 3 Fuel, Air, and Combustion Thermodynamics 3.1) What is the molecular weight, enthalpy (kj/kg), and entropy (kj/kg K) of a gas mixture at P = 1000 kpa and T = 500 K, if the mixture contains the

More information

PRACTICAL DATA CORRELATION OF FLASHPOINTS OF BINARY MIXTURES BY A RECIPROCAL FUNCTION: THE CONCEPT AND NUMERICAL EXAMPLES

PRACTICAL DATA CORRELATION OF FLASHPOINTS OF BINARY MIXTURES BY A RECIPROCAL FUNCTION: THE CONCEPT AND NUMERICAL EXAMPLES HERMAL SCIENCE, Year 0, Vol. 5, No. 3, pp. 905-90 905 Open forum PRACICAL DAA CORRELAION OF FLASHPOINS OF BINARY MIXURES BY A RECIPROCAL FUNCION: HE CONCEP AND NUMERICAL EXAMPLES by Mariana HRISOVA a,

More information

Chapter 12 & 13 Test Review. Bond, Ionic Bond

Chapter 12 & 13 Test Review. Bond, Ionic Bond Chapter 12 & 13 Test Review A solid solute dissolved in a solid solvent is an Alloy What is happening in a solution at equilibrium? The Ionic rate of Bond dissolving is equal to the rate of crystallization.

More information

Topic 1.2 AMOUNT OF SUBSTANCE

Topic 1.2 AMOUNT OF SUBSTANCE Topic 1.2 AMOUNT OF SUBSTANCE The mole Reacting masses and atom economy Solutions and titrations The ideal gas equation Empirical and molecular formulae Ionic equations Mill Hill County High School THE

More information

General Chemistry I & Lab

General Chemistry I & Lab General Chemistry I & Lab Course Text/Materials Chang, Raymond. General Chemistry: The Essential Concepts, 6th edition, McGraw-Hill, 2010, ISBN: 9780077354718 [Students may find used, new, or rental copies

More information

Activities and Activity Coefficients

Activities and Activity Coefficients CHEM 331 Physical Chemistry Fall 017 Activities and Activity Coefficients We now finish answering the question we asked during our last lecture, what is the form of the chemical potential i (T,P,x i )

More information

**VII-1 C NC I-3 C NC II-2 C NC *VII-2 C NC I-4 C NC. CHEMISTRY 131 Quiz 5 Fall 2010 Form B

**VII-1 C NC I-3 C NC II-2 C NC *VII-2 C NC I-4 C NC. CHEMISTRY 131 Quiz 5 Fall 2010 Form B **VII-1 N I-3 N II-2 N *VII-2 N I-4 N EMISTRY 131 Quiz 5 Fall 2010 Form B NAME: Key hapter 11: States of Matter A. (2 pts) onsider the structures of the compounds shown below, and determine which intermolecular

More information

CHAPTER 6 Intermolecular Forces Attractions between Particles

CHAPTER 6 Intermolecular Forces Attractions between Particles CHAPTER 6 Intermolecular Forces Attractions between Particles Scientists are interested in how matter behaves under unusual circumstances. For example, before the space station could be built, fundamental

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A solution containing a large concentration of dissolved ions can be classified as a(n).

More information

Assessing Technical Feasibility of Supercritical Extraction Processes Utilizing Laboratory Equipment

Assessing Technical Feasibility of Supercritical Extraction Processes Utilizing Laboratory Equipment TN - 26 Assessing Technical Feasibility of Supercritical Extraction Processes Utilizing Laboratory Equipment Rodger Marentis Supercritical Technology Consultants PO Box 3350, Allentown, PA 18106 Tel: 610-967-2997

More information

Overview. Types of Solutions. Intermolecular forces in solution. Concentration terms. Colligative properties. Osmotic Pressure 2 / 46

Overview. Types of Solutions. Intermolecular forces in solution. Concentration terms. Colligative properties. Osmotic Pressure 2 / 46 1 / 46 2 / 46 Overview Types of Solutions. Intermolecular forces in solution Concentration terms Colligative properties Osmotic Pressure 3 / 46 Solutions and Colloids A solution is a homogeneous mixture

More information

LESSON 11. Glossary: Solutions. Boiling-point elevation

LESSON 11. Glossary: Solutions. Boiling-point elevation LESSON 11 Glossary: Solutions Boiling-point elevation Colligative properties Freezing-point depression Molality Molarity (M) Mole (mol) Mole fraction Saturated solution a colligative property of a solution

More information

Solution Formation. Copyright Houghton Mifflin Company.All rights reserved. Presentation of Lecture Outlines, 12 2

Solution Formation. Copyright Houghton Mifflin Company.All rights reserved. Presentation of Lecture Outlines, 12 2 Solutions Solution Formation A solution is a homogeneous mixture of two or more substances, consisting of ions or molecules. (See Animation: Solution Equilibrium). A colloid, although it also appears to

More information

Physical Properties of Solutions

Physical Properties of Solutions Physical Properties of Solutions Chapter 12 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 12.1- Types of solutions A solution is a homogenous mixture of 2 or

More information

Vapor liquid equilibrium of carbon dioxide with ethyl caproate, ethyl caprylate and ethyl caprate at elevated pressures

Vapor liquid equilibrium of carbon dioxide with ethyl caproate, ethyl caprylate and ethyl caprate at elevated pressures J. of Supercritical Fluids 28 (2004) 1 9 Vapor liquid equilibrium of carbon dioxide with ethyl caproate, ethyl caprylate and ethyl caprate at elevated pressures Weng-Hong Hwu, Jaw-Shin Cheng, Kong-Wei

More information

Simulation of Methanol Production Process and Determination of Optimum Conditions

Simulation of Methanol Production Process and Determination of Optimum Conditions Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2012, Vol. 28, No. (1): Pg. 145-151 Simulation

More information

Chem 112 Dr. Kevin Moore

Chem 112 Dr. Kevin Moore Chem 112 Dr. Kevin Moore Gas Liquid Solid Polar Covalent Bond Partial Separation of Charge Electronegativity: H 2.1 Cl 3.0 H Cl δ + δ - Dipole Moment measure of the net polarity in a molecule Q Q magnitude

More information

How can homogeneous and heterogeneous mixtures be. 1. classified? 2. separated?

How can homogeneous and heterogeneous mixtures be. 1. classified? 2. separated? How can homogeneous and heterogeneous mixtures be 1. classified? 2. separated? 1. HETEROGENEOUS MIXTURE 2. COLLOID 3. EMULSION 4. SUSPENSION 5. FILTRATION 6. TYNDALL EFFECT 7. HOMOGENEOUS MIXTURE 8. SOLUTION

More information

Kinetics of hydrate dissociation at a pressure of 0.1 MPa

Kinetics of hydrate dissociation at a pressure of 0.1 MPa Kinetics of hydrate dissociation at a pressure of. MPa Permafrost, Phillips, Springman & Arenson (eds) 23 Swets & Zeitlinger, Lisse, ISBN 9 589 582 7 V.P. Melnikov, A.N. Nesterov, A.M. Reshetnikov Institute

More information

Part A Answer all questions in this part.

Part A Answer all questions in this part. Part A Directions (1-24): For each statement or question, record on your separate answer sheet the number of the word or expression that, of those given, best completes the statement or answers the question.

More information

Extraction of Phenol from Industrial Water Using Different Solvents

Extraction of Phenol from Industrial Water Using Different Solvents Research Journal of Chemical Sciences ISSN 31-606X. Extraction of Phenol from Industrial Water Using Different Solvents Abstract Sally N. Jabrou Department of Radiology, Health and Medical Technical College

More information

Effect of Gas Hydrate Saturation on Hydraulic Conductivity of Marine Sediments

Effect of Gas Hydrate Saturation on Hydraulic Conductivity of Marine Sediments Effect of Gas Hydrate Saturation on Hydraulic Conductivity of Marine Sediments *Chul-Whan Kang 1), Ah-Ram Kim 2), Hak-Sung Kim 3), Gye-Chun Cho 4) and Joo-Yong Lee 5) 1), 2), 3), 4) Department of Civil

More information

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2:

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2: The Born Energy of an Ion The free energy density of an electric field E arising from a charge is ½(ε 0 ε E 2 ) per unit volume Integrating the energy density of an ion over all of space = Born energy:

More information

SOLUBILITY AS AN EQUILIBRIUM PHENOMENA

SOLUBILITY AS AN EQUILIBRIUM PHENOMENA SOLUBILITY AS AN EQUILIBRIUM PHENOMENA Equilibrium in Solution solute (undissolved) solute (dissolved) Solubility A saturated solution contains the maximum amount of solute that will dissolve in a given

More information

Properties of Solutions. Review

Properties of Solutions. Review Properties of Solutions Review Matter Pure substance Mixture of substances compound element homogeneous heterogeneous Solution Definitions A solution is a homogeneous mixture of two or more substances.

More information

Scale-up problems are often perceived as difficult. Here the reaction calorimetry has proven to be

Scale-up problems are often perceived as difficult. Here the reaction calorimetry has proven to be APPLICATION OF REACTION CALORIMETRY FOR THE SOLUTION OF SCALE-UP PROBLEMS A paper from the RC User Forum Europe, Interlaken, 1995 Francis Stoessel, Ciba AG, Basel, Switzerland. Scale-up problems are often

More information

Ch. 4 In-Class Exercise. sodium chloride, glucose, ethanol, lead nitrate, sucrose, methanol

Ch. 4 In-Class Exercise. sodium chloride, glucose, ethanol, lead nitrate, sucrose, methanol Chemistry 121 Ch. 4 In-Class Exercise In this exercise we will discuss solutions. Since water is the most common solvent, we will focus on aqueous solutions. Solutes (the minor components of solutions)

More information

Statistical Modeling and Differential Evolution Optimization of Reactive Extraction of Glycolic Acid

Statistical Modeling and Differential Evolution Optimization of Reactive Extraction of Glycolic Acid International Conference on Biology, Environment and Chemistry IPCBEE vol.4 () ()IACSIT Press, Singapoore Statistical Modeling and Differential Evolution Optimization of Reactive Extraction of Glycolic

More information

Vapor liquid equilibria of carbon dioxide with ethyl benzoate, diethyl succinate and isoamyl acetate binary mixtures at elevated pressures

Vapor liquid equilibria of carbon dioxide with ethyl benzoate, diethyl succinate and isoamyl acetate binary mixtures at elevated pressures Journal of Supercritical Fluids 21 (2001) 111 121 wwwelseviercom/locate/supflu Vapor liquid equilibria of carbon dioxide with ethyl benzoate, diethyl succinate and isoamyl acetate binary mixtures at elevated

More information

Chem/Biochem 471 Exam 2 11/14/07 Page 1 of 7 Name:

Chem/Biochem 471 Exam 2 11/14/07 Page 1 of 7 Name: Page 1 of 7 Please leave the exam pages stapled together. The formulas are on a separate sheet. This exam has 5 questions. You must answer at least 4 of the questions. You may answer all 5 questions if

More information

Isothermal Phase Equilibria and Cage Occupancies for CH 4 + CHF 3

Isothermal Phase Equilibria and Cage Occupancies for CH 4 + CHF 3 The Open Thermodynamics Journal, 2008, 2, 17-21 17 Isothermal Phase Equilibria and Cage Occupancies for CH 4 + CHF 3 Mixed-Gas Hydrate System Takashi Makino a, Yuuki Kunita b, Takeshi Sugahara b and Kazunari

More information

Chapter 11 Review Packet

Chapter 11 Review Packet Chapter 11 Review Packet Name Multiple Choice Portion: 1. Which of the following terms is not a quantitative description of a solution? a. molarity b. molality c. mole fraction d. supersaturation 2. Which

More information

CORRELATION OF (LIQUID + LIQUID) EQUILIBRIUM OF SYSTEMS INCLUDING IONIC LIQUIDS

CORRELATION OF (LIQUID + LIQUID) EQUILIBRIUM OF SYSTEMS INCLUDING IONIC LIQUIDS Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 24, No. 01, pp. 143-149, January - March, 2007 CORRELATION OF (LIQUID + LIQUID) EQUILIBRIUM OF SYSTEMS

More information

Properties of Solutions. Chapter 13

Properties of Solutions. Chapter 13 Properties of Solutions Chapter 13 Sodium acetate crystals rapidly form when a seed crystal is added to a supersaturated solution of sodium acetate. Saturated solution: contains the maximum amount of a

More information