Hydrogen Storage for Mobile Applications. Jeff Van Humbeck MacMillan Group Meeting April 14 th, 2010

Size: px
Start display at page:

Download "Hydrogen Storage for Mobile Applications. Jeff Van Humbeck MacMillan Group Meeting April 14 th, 2010"

Transcription

1 ydrogen Storage for Mobile Applications Jeff Van umbeck MacMillan Group Meeting April 14 th, 2010

2 The Stone Age did not end for lack of stone, and the Oil Age will end long before the world runs out of oil. Sheikh Zaki Yamani (warning?) as Saudi OPEC Representative

3 Presentation Overview! 5 dominant absorptive materials that have been investigated widely CEMIABSORPTIVE MATERIALS PYSIABSORPTIVE MATERIALS Conventional hydrides Complex hydrides Metal-organic frameworks (MOFs) anostructured carbon (SWCTs) Chemicals hydrides (ammonia borane)! ot by any means comprehensive review of literature (1000s of papers since 2000)! For each material, attempt to highlight two main features: What are the comparative advantages/disavantages of particular technologies? What approach is current research taking to improve material characteristics?

4 Why Focus on Mobile Applications?! Stationary power storage can use technology where the volume and mass of storage don't matter

5 DOE ydrogen Storage Guidlines! In 2003 Department of Energy sets hydrogen storage goals Gravimetric Capacity Volumetric Capacity Operating Temperature/Pressure wt% 36 g/l wt% 45 g/l 30 to 50 ºC <100 bar wt% 81 g/l An onboard reversible system must have an endothermic hydrogen release Determined by!g!s > 60 J/K (T!S strongly favors release) Must be favored by!

6

7

8 Conventional ydride Materials: Predictable Properties! Crystalline starting material and products make calculating properties simple Metal Alloy Conventional ydride Gravimetric Uptake (wt%) Lai 5 Lai FeTi FeTi Mg 2 i Mg 2 i ZrMn 2 ZrMn Mg Mg Principi, G.; Agresti, F.; Maddalena, A.; Lo Russo, S. Energy 2009, 34, 2087.! early demands the use of Mg (also, most cost effective)! What is limiting application of Mg 2 in hydrogen storage?

9

10 Conventional ydride Materials: Uptake Kinetics! Unmodified Mg 2 requires high temperature for absorption/desorption Engineering solutions Ball milling: Reduce particle size, increase S.A. anoscale scaffold synthesis: O O O Porous Polymer Formation Mg 2 2 Form Mg 2 Zhang, S., et. al. anotechnology, 2009, 20,

11

12 Conventional ydride Materials: Current State! Most important features: Operating parameters, storage capacity, refilling kinetics Mg wt% i Mg at% Mn Mg mol% Cr 2 O 3 Mg wt% b 2 O 5 Temp (ºC) Kinetics (min) Wt% # cycles 800 /A /A /A Reiser, A.; Bogdanovic, B.; Schlichte, K. Int. J. ydrogen Energy, 2000, 25, 425. Liang, G.; uot, J.; Boily, S.; estea, A. V.; Schulz, R. J. Alloys Compds. 1999, 292, 247. Dehouche, Z.; Klassen, T.; Oelerich, W.; Goyette, J.; Bose, T. K.; Schulz, R. J. Alloys Compds. 2002, 347, 319. Barkhordarian, G.; Klassten, T.; Bormann, R. J. Alloys Compds. 2004, 364, 242.

13

14 Reversible ydrogen Uptake in Complex Metal ydrides! Similar strategy for improvement - transition metal dopant 3aAl 4 a 3 Al 6 + 2Al a 3 Al 6 3a + Al Dopants: Ti(OnBu) 4, TiCl 3, Zr(OiPr) 4, Ti(s)! Different advantages/disadvantages compared to conventional hydrides Advantages Disadvantages Lower operating temperature ( ) Kinetic charging/discharging (>60 min) Stability (<17 cycles) Sakintuna, B.; Lamari-Darkrim, F.; irscher, M. Int. J. ydrogen Energy 2007, 32, 1121.

15 Chemiabsorptive ydrogen Storage in Ammonia Borane! B/ Coordination compounds fall into 3 main classes - and B- bonds B-B and B- bonds B- bonds only 3 B 2 B B B B B B B 3 3 Likely to be explosive/shock-sensitive amilton, C. W.; Baker, T. R.; Staubitz, A.; Manners, I. Chem. Soc. Rev. 2009, 38, 279. Stephens, F..; Pons, V.; Baker, T. R. Dalton Trans. 2007, 2613.! Inherently more hydrogen rich than simplest complex hydride (19.6wt%)! Isoelectronic with alkanes, but far more reactive (protic and hydridic bonds)

16 Solvolytic ydrogen Release from Ammonia-Borane! Solvolytic hydrogen release is more viable than for ab 4 B +4 RO 3 2 [ 4 ][B(OR) 4 ] Catalyzed by: acid, heat, precious metals, base metals [ 4 ][B(OR) 4 ] LiAl 4 4 Cl Al(OR 3 ), 3 B 3, RO, 3, 2, LiCl Ramachandran, P. V.; Gagare, P. D. Inorg. Chem. 2007, 46, amilton, C. W.; Baker, T. R.; Staubitz, A.; Manners, I. Chem. Soc. Rev. 2009, 38, 279.! Requires an efficient conversion of Al(OMe) 3 to LiAl 4

17 Direct Dehydrogenation of Ammonia-Borane! Formation of B O bonds is energetic sink to be avoided B 2 B Catalyzed by: acid, base, precious metals, ligated base metals amilton, C. W.; Baker, T. R.; Staubitz, A.; Manners, I. Chem. Soc. Rev. 2009, 38, 279.! Mechanism for [Cp 2 Ti], (C) 2 i and (POCOP)Ir 2 are representative Ti Ph Ph Ph Ph i COD Ph Ph O P t Bu 2 Ir O P t Bu 2 Initial cleavage Initial B cleavage Concerted hydrogen transfer Luo, Y.; Ohno, K. Organometallics 2007, 26, Keaton, R. J.; Blacquiere, J. M.; Baker, T. R. J. Am. Chem. Soc. 2007, 129, Denney, M. C.; Pons, V.; ebden, T. J.; einekey, D. M.; Goldberg, K. I. J. Am. Chem. Soc. 2006, 128,

18 Ti-Catalyzed Dehydrogenation of Ammonia-Borane! Representative of initial bond cleavage Ti B Me Me Catalyst generated from TiCp 2 Cl 2 and nbuli in situ Ti Initial bond cleavage Ti B Me Me Iminoborane byproduct slowly dimerizes under reaction conditions B Me Me Ti Me Me Me Me B B Me Me B 3 Luo, Y.; Ohno, K. Organometallics 2007, 26, 3597.

19 i-catalyzed Dehydrogenation of Ammonia-Borane! Representative of initial B bond cleavage i Solv B ickel-c Catalyst i Initial B bond cleavage i B 2 3 Ph Ph Ph Iminoborane byproduct form borazine and higher polymers B B Me Me i B 2 B B B 3 Keaton, R. J.; Blacqueire, J. M.; Baker, T. R. J. Am. Chem. Soc. 2007, 129, 1844.

20 Ir-Catalyzed Dehydrogenation of Ammonia-Borane! Representative of concerted hydrogen generation O P t Bu 2 O Ir P t Bu 2 B Iridium-pincer complex based on alkane dehydrogenation catalyst O P t Bu 2 Ir O P t Bu 2 Concerted /B bond cleavage O P t Bu 2 O Ir P t Bu 2 B 2 3 Iminoborane byproduct slowly forms [ 2 B 2 ] 5 B O P t Bu 2 B 2 Ir 2 2 B 2 2 B 2 B 2 2 B 2 2 B 2 O P t Bu 2 Ankan, P.; Musgrave, C. B. Angew. Chem. Int. Ed. 2007, 46, Denney, M. C.; Pons, V.; ebden, T. J.; einekey, D. M.; Goldberg, K. I. J. Am. Chem. Soc. 2006, 128,

21

22 Electronic Substitution of Ammonia-Borane! Stabilizing dative bond creates endothermic reaction F 3 C F 3 C 3 B 3 2 B 2 B B F 3 C F 3 C Electronic substitution does not stabilize true!-bond and dative "-bond as much as dative!-bond! Clear tradeoff with gravimetric capacity (< 1wt%) Staubitz, A.; Besora, M.; arvey, J..; Manners, I. Inorg. Chem. 2008, 47, 5910.

23

24

25

26

27

28

29

30

31 Improving ydrogen Absorption Beyond Surface Area! Optimal binding energy can be calculated from first principles (thermodynamic strategy) For a system operating at RT, between 1.5 and 30 bar: 15.1 kj/mol! opt = T!S opt + RT ln P 1 P 2 2 P 0 2 For a system operating at RT, between 1.5 and 100 bar: 13.6 kj/mol For a typical MOF with! adb = 6 kj/mol Operating temperature: 131K (May be underestimated) Bhatia, S. K.; Myers, A. L. Langmuir 2006, 22, 1688.! Is there any way to kinetically improve the hydrogen storage properties? ysteresis

32

33

34 Thermodynamic Strategies to Increase Binding Enthalpy! Increase interaction can be based on orbital or Coloumbic features M ipr 3 P CO W OC PiPr3 CO Filled d/empty! * Li + " " + Li + Kubas' Complex Orbital overlap Metal ion Coloumbic interaction Dipole/Induced dipole Up to 90 kj/mol M Up to ~24 kj/mol Empty p/filled! Kubas, G. J.; Ryan, R. R.; Swanson, B. I.; Vergamini, P. J.; Wasserman,. J. J. Am. Chem. Soc. 1984, 106, 451. Wu, C.. J. Chem. Phys. 1979, 71, 783.! These techniques have been applied (at least theoretically) to both MOFs and nanocarbons

35

36

37

38

39 MOFs With Exposed Metal Sites! Metal impregnation on organic linkers provides another avenue O O O O O O 2 (atm) Cr CO 2 CO Cr(CO) 6, TF nbuo 2, 140 ºC Cr CO CO CO h! O O O O O O MOF-5 O O 2 (atm) Cr CO 2 CO O O Kaye, S. S.; Long, J. R. J. Am. Chem. Soc. 2008, 130, 806.

40

41

42

43

Amineboranes for Hydrogen Storage

Amineboranes for Hydrogen Storage Amineboranes for ydrogen Storage Michael einekey University of Washington UW Karen Goldberg Melanie C. Denney Vincent Pons Travis ebden Denise Mery Brandon Dietrich UNC Maurice Brookhart Inigo Göttker-Schnetmann

More information

IV.D.2 Hydrogen Storage Materials for Fuel Cell-Powered Vehicles

IV.D.2 Hydrogen Storage Materials for Fuel Cell-Powered Vehicles IV.D.2 Hydrogen Storage Materials for Fuel Cell-Powered Vehicles Andrew Goudy Delaware State University 2 N. Dupont Highway Dover, DE 99 Phone: (32) 857-6534 Email: agoudy@desu.edu DOE Managers Ned Stetson

More information

Dehydrogenation and Related Reactions Catalyzed by Iridium Pincer Complexes. Zehua Yang Apr.23, 2011

Dehydrogenation and Related Reactions Catalyzed by Iridium Pincer Complexes. Zehua Yang Apr.23, 2011 Dehydrogenation and Related Reactions Catalyzed by Iridium Pincer Complexes Zehua Yang Apr.23, 2011 Contents Introduction Dehydrogenation of Alkanes Dehydrogenation Involving Heteroatom-Hydrogen Bonds

More information

Raman studies on potential hydrogen storage materials

Raman studies on potential hydrogen storage materials Raman studies on potential hydrogen storage materials The Hydrogen & Fuel Cell Researcher Conference University of Birmingham 17 th December 2013 Daniel Reed, David Book School of Metallurgy and Materials

More information

IEA-HIA Task 32 Hydrogen-based Energy Storage Hydrogen storage in porous materials

IEA-HIA Task 32 Hydrogen-based Energy Storage Hydrogen storage in porous materials IEA-HIA Task 32 Hydrogen-based Energy Storage Hydrogen storage in porous materials Michael Hirscher Max Planck Institute for Intelligent Systems Stuttgart, Germany MH2018 November 1, 2018 Outline IEA Hydrogen

More information

DFT modeling of novel materials for hydrogen storage

DFT modeling of novel materials for hydrogen storage DFT modeling of novel materials for hydrogen storage Tejs Vegge 1, J Voss 1,2, Q Shi 1, HS Jacobsen 1, JS Hummelshøj 1,2, AS Pedersen 1, JK Nørskov 2 1 Materials Research Department, Risø National Laboratory,

More information

Aluminum Chloride as effective dopant in Amide-based systems

Aluminum Chloride as effective dopant in Amide-based systems Multifunctionality of metal hydrides for energy storage developments and perspectives 8 th -2 st September - Warsaw University of Technology - POLAND Aluminum Chloride as effective dopant in Amide-based

More information

Metal-Organic Frameworks and Porous Polymer Networks for Carbon Capture

Metal-Organic Frameworks and Porous Polymer Networks for Carbon Capture Carbon Capture Workshop, Tuesday, April 3 rd, Texas A&M, Qatar Metal-Organic Frameworks and Porous Polymer Networks for Carbon Capture J. P. Sculley, J.-R. Li, J. Park, W. Lu, and H.-C. Zhou Texas A&M

More information

Hydrogen storage. (I) Metal hydrides and ammonia borane.

Hydrogen storage. (I) Metal hydrides and ammonia borane. Hydrogen storage. (I) Metal hydrides and ammonia borane. Alexander Abramov Postdoctoral researcher Science Institute, University of Iceland Dunhaga 3, 107 Reykjavik, Iceland e-mail: alex (at) theochem.org

More information

Metal Hydrides, Alkyls, Aryls, and their Reactions

Metal Hydrides, Alkyls, Aryls, and their Reactions Metal Hydrides, Alkyls, Aryls, and their Reactions A Primer on MO Theory σ-bonding in Organotransition Metal Complexes M-C Bond Energies in Organotransition Metal Complexes Thermodynamic Predictions

More information

Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex. CHM 5.33 Fall 2005

Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex. CHM 5.33 Fall 2005 Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex CHM 5.33 Fall 2005 Introduction The experiment is based on research performed in the laboratory of Professor Cummins during the early 90 s.

More information

Ammonia-Borane Dehydrogenation Promoted by an Osmium Dihydride Complex: Kinetics and Mechanism

Ammonia-Borane Dehydrogenation Promoted by an Osmium Dihydride Complex: Kinetics and Mechanism Ammonia-Borane Dehydrogenation romoted by an mium Dihydride Complex: Kinetics and Mechanism Miguel A. Esteruelas,* Ana M. López, Malka Mora, and Enrique Oñate Departamento de Química Inorgánica, Instituto

More information

Hydrogen Storage and Delivery in a Liquid Carrier Infrastructure

Hydrogen Storage and Delivery in a Liquid Carrier Infrastructure ydrogen Storage and Delivery in a Liquid Carrier Infrastructure Guido P. Pez, Alan C. Cooper, ansong Cheng, Bernard A. Toseland and Karen Campbell Corporate Science and Technology Center, Air Products

More information

Nobuko Hanada*, Takayuki Ichikawa, Hironobu Fujii. Graduate School of Advanced Sciences of Matter, Hiroshima University,

Nobuko Hanada*, Takayuki Ichikawa, Hironobu Fujii. Graduate School of Advanced Sciences of Matter, Hiroshima University, Catalytic effect of nano-particle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH 2 prepared by mechanical milling Nobuko Hanada*, Takayuki Ichikawa, Hironobu Fujii Graduate

More information

Pulling the Weight: Base Metal-Catalyzed Dehydrogenation of Amine-Borane Fuel Blends

Pulling the Weight: Base Metal-Catalyzed Dehydrogenation of Amine-Borane Fuel Blends 1 Pulling the Weight: Base Metal-Catalyzed Dehydrogenation of Amine-Borane Fuel Blends R. Tom Baker University of Ottawa Chemistry Department and Centre for Catalysis Research and Innovation UMass IGERT

More information

Hydrogen Adsorption and Storage on Porous Materials. School of Chemical Engineering and Advanced Materials. Newcastle University United Kingdom

Hydrogen Adsorption and Storage on Porous Materials. School of Chemical Engineering and Advanced Materials. Newcastle University United Kingdom Hydrogen Adsorption and Storage on Porous Materials K. M. Thomas. School of Chemical Engineering and Advanced Materials H2FC SUPERGEN Conference Birmingham University, 16-18 th December 2013 Newcastle

More information

MODIFIED LITHIUM BOROHYDRIDE FOR MOBILE HYDROGEN STORAGE

MODIFIED LITHIUM BOROHYDRIDE FOR MOBILE HYDROGEN STORAGE International Journal of Technology (2011) 1: 28 36 ISSN 2086 9614 IJTech 2011 MODIFIED LITHIUM BOROHYDRIDE FOR MOBILE HYDROGEN STORAGE Suwarno 1,2 * 1 Mechanical Engineering Department, Institut Teknologi

More information

Wilkinson s other (ruthenium) catalyst

Wilkinson s other (ruthenium) catalyst Wilkinson s other (ruthenium) catalyst Cl 3 ; 2 h 3, reflux 3h h 3 Cl h 3 h Cl 3 Good catalyst especially for 2 1-alkenes 2, base toluene Cl h 3 h 3 h 3 Et 3 Cl h 3 Cl h 3 h 3 R h 3 h 3 Cl h 3 R RC 2 C

More information

Hydrides and Dihydrogen as Ligands: Lessons from Organometallic Chemistry. Lecture 9

Hydrides and Dihydrogen as Ligands: Lessons from Organometallic Chemistry. Lecture 9 ydrides and Dihydrogen as Ligands: Lessons from Organometallic Chemistry Lecture 9 Inorganic Chemistry Chapter 1: Figure 10.1 2009 W.. Freeman Synthesis of Organometallic Complex ydrides Reaction of MCO

More information

Atomistic Simulations of Hydrogen Storage in Metal Hydrides and Nanoporous Sorbents

Atomistic Simulations of Hydrogen Storage in Metal Hydrides and Nanoporous Sorbents Atomistic Simulations of Hydrogen Storage in Metal Hydrides and Nanoporous Sorbents J. Karl Johnson 1,3, Sudhakar V. Alapati 2, Bing Dai 1, Jinchen Liu 1, David S. Sholl 2,3 1 University of Pittsburgh,

More information

Yiping Zhao and Yuping He

Yiping Zhao and Yuping He Yiping Zhao and Yuping He Department of Physics and Astronomy Nanoscale Science and Engineering Center The University of Georgia, Athens, GA 30602 April 29, 2010 Outline: Introduction Hydrogenation behaviors

More information

Sustainable Hydrogen and Electrical Energy Storage 6. F.M. Mulder & M. Wagemaker

Sustainable Hydrogen and Electrical Energy Storage 6. F.M. Mulder & M. Wagemaker Sustainable Hydrogen and Electrical Energy Storage 6 F.M. Mulder & M. Wagemaker 1 Comparison liquid and gaseous H 2 with other liquid fuels Natural gas gasoline Volumetric energy density H 2 is lower than

More information

Lecture 2. Review of Basic Concepts

Lecture 2. Review of Basic Concepts Lecture 2 Review of Basic Concepts Thermochemistry Enthalpy H heat content H Changes with all physical and chemical changes H Standard enthalpy (25 C, 1 atm) (H=O for all elements in their standard forms

More information

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order.

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order. The Study of Chemical Reactions Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order. Thermodynamics: The study of the energy changes that accompany

More information

Quantifying hydrogen uptake by porous materials

Quantifying hydrogen uptake by porous materials Quantifying hydrogen uptake by porous materials Nuno Bimbo Postdoctoral Research Officer Department of Chemical Engineering University of Bath N.M.M.Bimbo@bath.ac.uk http://www.bath.ac.uk/chem-eng/people/bimbo

More information

(c) S. orbital is (a) 1 (b) 0 (c) +1 (d) undefined.

(c) S. orbital is (a) 1 (b) 0 (c) +1 (d) undefined. QUESTI PAPER CEMISTRY-CY Q. Q.25 : Carry E mark each.. The maximum non-pv work that a system can perform at constant P is 2. Consider the reaction : G S A A B C The unit of the thermodynamic equilibrium

More information

First Principles Study on Hydrogen Desorption from a Metal ()Al, Ti, Mn, Ni) Doped MgH 2 (110) Surface

First Principles Study on Hydrogen Desorption from a Metal ()Al, Ti, Mn, Ni) Doped MgH 2 (110) Surface 11328 J. Phys. Chem. C 2010, 114, 11328 11334 First Principles Study on Hydrogen Desorption from a Metal ()Al, Ti, Mn, Ni) Doped MgH 2 (110) Surface J. H. Dai, Y. Song,*, and R. Yang School of Materials

More information

Supporting Information

Supporting Information Supporting Information Formation of Ruthenium Carbenes by gem-hydrogen Transfer to Internal Alkynes: Implications for Alkyne trans-hydrogenation Markus Leutzsch, Larry M. Wolf, Puneet Gupta, Michael Fuchs,

More information

NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson

NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University Coworkers and Ackowledgement

More information

University of Eldoret May 13, 2013.

University of Eldoret May 13, 2013. Materials for the hydrogen energy economy: Magnesium hydride (MgH 2 ) and Lithium hydride (LiH) Magero Denis Makau Nicholas Amolo George Lusweti Kituyi University of Eldoret May 13, 2013. Introduction

More information

Metal-Organic Frameworks for Adsorbed Natural Gas Fuel Systems. Hong-Cai Joe Zhou Department of Chemistry Texas A&M University

Metal-Organic Frameworks for Adsorbed Natural Gas Fuel Systems. Hong-Cai Joe Zhou Department of Chemistry Texas A&M University Metal-Organic Frameworks for Adsorbed Natural Gas Fuel Systems Hong-Cai Joe Zhou Department of Chemistry Texas A&M University 2 US primary energy consumption by fuel, 1980-2035 (quadrillion Btu per year)

More information

7/19/2011. Models of Solution. State of Equilibrium. State of Equilibrium Chemical Reaction

7/19/2011. Models of Solution. State of Equilibrium. State of Equilibrium Chemical Reaction Models of Solution Chemistry- I State of Equilibrium A covered cup of coffee will not be colder than or warmer than the room temperature Heat is defined as a form of energy that flows from a high temperature

More information

Effects of TiO 2 and Nb 2 O 5 on Hydrogen Desorption of Mg(BH 4 ) 2

Effects of TiO 2 and Nb 2 O 5 on Hydrogen Desorption of Mg(BH 4 ) 2 International Journal of Chemical and Biological Engineering Effects of TiO and Nb O on Hydrogen Desorption of Mg(BH ) Wipada Ploysuksai, Pramoch Rangsunvigit, Santi Kulprathipanja Abstract In this work,

More information

Catalytic dehydrogenation of hydrazine borane in aqueous solution

Catalytic dehydrogenation of hydrazine borane in aqueous solution Catalytic dehydrogenation of hydrazine borane in aqueous solution *Jean-Fabien Petit 1), Ç etin Ç akanyıldırım 2), Umit B. Demirci 3), and Philippe Miele 4) IEM (Institut Europeen des Membranes), UMR 5635

More information

Problem session (3) Daiki Kuwana. Please fill in the blank and explain reaction mechanisms and stereoselectivities.

Problem session (3) Daiki Kuwana. Please fill in the blank and explain reaction mechanisms and stereoselectivities. Problem session (3) Daiki Kuwana Please fill in the blank and explain reaction mechanisms and stereoselectivities. 1. 1-1 1. (Ac) 2 (10 mol%), DPEphos (20 mol%) Et 3, toluene, 90 C 2. s 4 (14 mol%), M;

More information

Carbon Carbon Bond Activation in Saturated Hydrocarbons by Field-Assisted Nitrogen Fixation Guangtao Li, Xin Li, Zheng Ouyang, and R.

Carbon Carbon Bond Activation in Saturated Hydrocarbons by Field-Assisted Nitrogen Fixation Guangtao Li, Xin Li, Zheng Ouyang, and R. Carbon Carbon Bond Activation in Saturated Hydrocarbons by Field-Assisted Nitrogen Fixation Guangtao Li, Xin Li, Zheng Ouyang, and R. Graham Cooks* Department of Chemistry, Purdue University560 Oval Drive,

More information

10/26/2010. An Example of a Polar Reaction: Addition of H 2 O to Ethylene. to Ethylene

10/26/2010. An Example of a Polar Reaction: Addition of H 2 O to Ethylene. to Ethylene 6.5 An Example of a Polar Reaction: Addition of H 2 O to Ethylene Addition of water to ethylene Typical polar process Acid catalyzed addition reaction (Electophilic addition reaction) Polar Reaction All

More information

Intermolecular Forces and Phase Equilibria

Intermolecular Forces and Phase Equilibria Intermolecular Forces and Phase Equilibria Chemistry 36 Spring 2002 Intermolecular Forces What happens to gas phase molecules when subjected to increased pressure? Volume occupied by gas decreases (IGL)

More information

CHAPTER 17 REVIEW. Reaction Kinetics. Answer the following questions in the space provided. Energy B A. Course of reaction

CHAPTER 17 REVIEW. Reaction Kinetics. Answer the following questions in the space provided. Energy B A. Course of reaction CHAPTER 17 REVIEW Reaction Kinetics SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Refer to the energy diagram below to answer the following questions. D Energy C d c d

More information

NbCl 5 and CrCl 3 catalysts effects on synthesis and hydrogen storage performance of Mg-Ni-NiO composites

NbCl 5 and CrCl 3 catalysts effects on synthesis and hydrogen storage performance of Mg-Ni-NiO composites 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 NbCl and CrCl catalysts effects on synthesis and hydrogen storage performance of Mg-Ni-NiO composites Qi Wan 1, Ping Li *1, Teng Wang, Xuanhui Qu 1, Fuqiang Zhai 1,

More information

Ethers. Chapter 14: Ethers, Epoxides, & Sulfides. General Formula: Types: a) Symmetrical: Examples: b) Unsymmetrical: Examples: Physical Properties:

Ethers. Chapter 14: Ethers, Epoxides, & Sulfides. General Formula: Types: a) Symmetrical: Examples: b) Unsymmetrical: Examples: Physical Properties: Chamras Chemistry 106 Lecture Notes Examination 1 Materials Chapter 14: Ethers, Epoxides, & Sulfides Ethers General Formula: Types: a) Symmetrical: Examples: b) Unsymmetrical: Examples: Physical Properties:

More information

H H N N H. cyclodiborazane HB NH HB NH HB NH HN HB

H H N N H. cyclodiborazane HB NH HB NH HB NH HN HB Recommended Reading: 5.1 5.7, 15.2-15.11 (3rd/4th edition) Ch 102 Problem Set 3 Due: Thursday, April 26 efore Class Problem 1 (2 points) A) On-board storage of hydrogen is a major obstacle for the use

More information

EXAM OF SCIENTIFIC CULTURE MAJOR CHEMISTRY. CO 2 hydrogenation

EXAM OF SCIENTIFIC CULTURE MAJOR CHEMISTRY. CO 2 hydrogenation EXAM OF SCIETIFIC CULTURE MAJOR CHEMISTRY CO 2 hydrogenation One possibility to limit CO 2 imprint on the global warming is to reduce CO 2 to more usable forms such as hydrocarbons. These can serve as

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Iridium-Catalyzed Dehydrocoupling of Primary Amine-Borane Adducts: A Route to High Molecular Weight Polyaminoboranes, Boron-Nitrogen Analogues

More information

Figure 1. Oxidation by iron-oxo complex. supported by porous solid

Figure 1. Oxidation by iron-oxo complex. supported by porous solid Oxidation of Ethane to Ethanol by N 2 O in a Metal-Organic Framework with Coordinatively Unsaturated Iron(II) Sites Long, J.R, et al., Nat. Chem. 2014, 6, 590. Mechanism of Oxidation of Ethane to Ethanol

More information

Some Hartwig Chemistry Experimental Approaches and Detailed Mechanistic Analysis

Some Hartwig Chemistry Experimental Approaches and Detailed Mechanistic Analysis Some artwig Chemistry Experimental Approaches and Detailed chanistic Analysis b. 1964 1986 A.B. Princeton U, Maitland Jones 1990.D. UC Berkeley, obert Bergman and ichard Anderson 1990-92 Post-doc, MIT,

More information

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0 1. (a) rovide a reasonable mechanism for the following transformation. I S 2 C 3 C 3 ( 3 ) 2 2, CuI C 3 TMG, DMF 3 C 2 S TMG = Me 2 Me 2 ICu ( 3 ) 2 0 I S 2 C 3 S 2 C 3 Cu I 3 3 3 C 2 S I 3 3 3 C 2 S 3

More information

Functionalization of C O Bonds. Stefan McCarver. MacMillan Lab Group Meeting

Functionalization of C O Bonds. Stefan McCarver. MacMillan Lab Group Meeting Functionalization of C Bonds Stefan McCarver MacMillan Lab Group eting November 23 rd, 2016 Functionalization of C Bonds "X" X homolytic cleavage catalyst M oxidative addition Why is C Bond Manipulation

More information

Name CHM 4610/5620 Fall 2016 December 15 FINAL EXAMINATION SOLUTIONS

Name CHM 4610/5620 Fall 2016 December 15 FINAL EXAMINATION SOLUTIONS Name CHM 4610/5620 Fall 2016 December 15 FINAL EXAMINATION SOLUTIONS I. (80 points) From the literature... A. The synthesis and properties of copper(ii) complexes with ligands containing phenanthroline

More information

Recent Publications (2010 present) 5. Synthesis and Mechanism of Formation of Metal Nanosponges and their Catalytic and

Recent Publications (2010 present) 5. Synthesis and Mechanism of Formation of Metal Nanosponges and their Catalytic and Recent Publications (2010 present) 1. Hydrogenation of CO 2, carbonyl and imine substrates catalyzed by [IrH 3 ( Ph PN H P)] complex- A. Ramaraj, M. Nethaji, B. R. Jagirdar, J. Organomet. Chem. 2019, 883,

More information

An Overview of Organic Reactions. Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants:

An Overview of Organic Reactions. Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants: An Overview of Organic Reactions Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants: 1. Addition (forward) Gain of atoms across a bond Example:

More information

Transition State Enthalpy and Entropy Effects on Reactivity. and Selectivity in Hydrogenolysis of n-alkanes

Transition State Enthalpy and Entropy Effects on Reactivity. and Selectivity in Hydrogenolysis of n-alkanes Transition State Enthalpy and Entropy Effects on Reactivity and Selectivity in Hydrogenolysis of n-alkanes David W. Flaherty, Enrique Iglesia * Department of Chemical Engineering, University of California

More information

Repeated insertion. Multiple insertion leads to dimerization, oligomerization or polymerization. κ 1: mainly dimerization κ

Repeated insertion. Multiple insertion leads to dimerization, oligomerization or polymerization. κ 1: mainly dimerization κ Repeated insertion ultiple insertion leads to dimerization, oligomerization or polymerization. k prop Et Key factor: k CT / k prop = κ κ 1: mainly dimerization κ 0.1-1.0: oligomerization (always mixtures)

More information

Conversion of Methane and Light Alkanes to Chemicals over Heterogeneous Catalysts Lessons Learned from Experiment and Theory

Conversion of Methane and Light Alkanes to Chemicals over Heterogeneous Catalysts Lessons Learned from Experiment and Theory Conversion of Methane and Light Alkanes to Chemicals over Heterogeneous Catalysts Lessons Learned from Experiment and Theory March 8, 201 6 Alexis T. Bell Department of Chemical and Biomolecular Engineering

More information

Improved H 2 Storage in Zeolitic Imidazolate Frameworks Using Li þ, Na þ, and K þ Dopants, with an Emphasis on Delivery H 2 Uptake

Improved H 2 Storage in Zeolitic Imidazolate Frameworks Using Li þ, Na þ, and K þ Dopants, with an Emphasis on Delivery H 2 Uptake pubs.acs.org/jpcc Improved H 2 Storage in Zeolitic Imidazolate Frameworks Using Li þ, Na þ, and K þ Dopants, with an Emphasis on Delivery H 2 Uptake Sang Soo Han,*, Seung-Hoon Choi, and William A. Goddard,

More information

Boranes as Z-type Ligands for Transition Metal Complexes. 2015/2/11 Zhi Ren

Boranes as Z-type Ligands for Transition Metal Complexes. 2015/2/11 Zhi Ren Boranes as Z-type Ligands for Transition Metal Complexes 2015/2/11 Zhi Ren Overview 1. Introduction 2. Metal complexes 3. Catalytic reactions 4. Brief summary 1. Introduction 1.1. Borane ligands 1.2. Z-type

More information

Lecture 22 Organic Chemistry 1

Lecture 22 Organic Chemistry 1 CEM 232 rganic Chemistry I at Chicago Lecture 22 rganic Chemistry 1 Professor Duncan Wardrop April 1, 2010 1 Self Test Question Which starting material could not be used to prepare the tribromide below?

More information

Affects of Mechanical Milling and Metal Oxide Additives on Sorption Kinetics of 1:1 LiNH 2 /MgH 2 Mixture

Affects of Mechanical Milling and Metal Oxide Additives on Sorption Kinetics of 1:1 LiNH 2 /MgH 2 Mixture Energies 011, 4, 86-844; doi:10.3390/en405086 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Article Affects of Mechanical Milling and Metal Oxide Additives on Sorption Kinetics of 1:1

More information

Properties of Borane, the BH 3 Molecule

Properties of Borane, the BH 3 Molecule Properties of Borane, the BH 3 Molecule Natural Bond Orbital (NBO) analysis following MO calculation Borane Exists as a Dimer: Diborane Diborane, B 2 H 6, is a colorless gas forming explosive mixtures

More information

AP Chem Chapter 14 Study Questions

AP Chem Chapter 14 Study Questions Class: Date: AP Chem Chapter 14 Study Questions 1. A burning splint will burn more vigorously in pure oxygen than in air because a. oxygen is a reactant in combustion and concentration of oxygen is higher

More information

Epoxidation with Peroxy Acids

Epoxidation with Peroxy Acids Epoxidation with Peroxy Acids RC 3 R C more reactive more likely Freccero, M.; Gandolfi, R.; Sarzi-Amadè, M.; Rastelli, A. J. rg. Chem. 2000, 65, 2030. Singleton, D. A.; Merrigan, S. R.; Liu, J.; ouk,

More information

Questions Points Score Grader

Questions Points Score Grader Chem 105b Exam 3 Print Name Last, First Thursday March 22, 2007 Last 4 digits SID # Professors Krylov and Bradforth TA's Name Questions Points Score Grader 1-5 42 6 12 7 12 8 12 9 7 10 15 Total 100 Please

More information

Chem Selected Aspects of Main Group Chemistry

Chem Selected Aspects of Main Group Chemistry Selected Aspects of Main Group Chemistry For the rest of the course, we will look at some aspects of the chemistry of main group compounds. The basic principles that you have learned concerning atoms,

More information

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides ickel-catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides Eunjae Shim Zakarian Group Literature Talk / Dec 13 th, 2018 University of California, Santa Barbara Table of Contents

More information

Chem 112 Dr. Kevin Moore

Chem 112 Dr. Kevin Moore Chem 112 Dr. Kevin Moore Gas Liquid Solid Polar Covalent Bond Partial Separation of Charge Electronegativity: H 2.1 Cl 3.0 H Cl δ + δ - Dipole Moment measure of the net polarity in a molecule Q Q magnitude

More information

Size-dependent catalytic activity of monodispersed nickel nanoparticles for the hydrolytic dehydrogenation of ammonia borane

Size-dependent catalytic activity of monodispersed nickel nanoparticles for the hydrolytic dehydrogenation of ammonia borane Size-dependent catalytic activity of monodispersed nickel nanoparticles for the hydrolytic dehydrogenation of ammonia borane Kun Guo a,b, Hailong Li c and Zhixin Yu a,b * a Department of Petroleum Engineering,

More information

Structural and Catalytic Investigation of Active-Site Isolation in Pd-Ga Intermetallic Compounds

Structural and Catalytic Investigation of Active-Site Isolation in Pd-Ga Intermetallic Compounds Structural and Catalytic Investigation of Active-Site Isolation in Pd-Ga Intermetallic Compounds, Rainer Giedigkeit, Kirill Kovnir, Marc Armbrüster, Rolf E. Jentoft, Yuri Grin, Robert Schlögl, Thorsten

More information

Hydrogen content of CeCl 3 -doped sodium alanate powder samples measured in-situ by ATR-FTIR-spectroscopy and gravimetry during desorption

Hydrogen content of CeCl 3 -doped sodium alanate powder samples measured in-situ by ATR-FTIR-spectroscopy and gravimetry during desorption Hydrogen content of CeCl 3 -doped sodium alanate powder samples measured in-situ by ATR-FTIR-spectroscopy and gravimetry during desorption Ingo Franke, Hans-Dieter Bauer, Birgit Scheppat International

More information

5. Reactions of Alkenes (text )

5. Reactions of Alkenes (text ) 2009, Department of hemistry, The University of Western Ontario 5.1 5. Reactions of Alkenes (text 5.1 5.5) A. Addition Reactions In hapter 4, we saw that π bonds have electron density on two sides of the

More information

Free Energy. because H is negative doesn't mean that G will be negative and just because S is positive doesn't mean that G will be negative.

Free Energy. because H is negative doesn't mean that G will be negative and just because S is positive doesn't mean that G will be negative. Biochemistry 462a Bioenergetics Reading - Lehninger Principles, Chapter 14, pp. 485-512 Practice problems - Chapter 14: 2-8, 10, 12, 13; Physical Chemistry extra problems, free energy problems Free Energy

More information

Reviewers' comments: Reviewer #1 (Remarks to the Author):

Reviewers' comments: Reviewer #1 (Remarks to the Author): Reviewers' comments: Reviewer #1 (Remarks to the Author): The author reported an azobenzene-based MOF membrane, in which the permeation as well as selectivity can be remotely controlled by light irradiation.

More information

High-pressure storage of hydrogen fuel: ammonia borane and its related

High-pressure storage of hydrogen fuel: ammonia borane and its related SLAC-PUB-1609 High-pressure storage of hydrogen fuel: ammonia borane and its related compounds Yu Lin 1,*, Wendy L Mao 1,2 1 Department of Geological and Environmental Sciences, Stanford University, Stanford,

More information

Insertion and elimination. Peter H.M. Budzelaar

Insertion and elimination. Peter H.M. Budzelaar Peter H.. Budzelaar Insertion reactions If at a metal centre you have a) a σ-bound group (hydride, alkyl, aryl) b) a ligand containing a π-system (olefin, alkyne, C) the σ-bound group can migrate to the

More information

Improved hydrogen storage properties of MgH2 doped with chlorides of transition metals Hf and Fe

Improved hydrogen storage properties of MgH2 doped with chlorides of transition metals Hf and Fe University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2012 Improved hydrogen storage properties of MgH2

More information

CHAPTER THERMODYNAMICS

CHAPTER THERMODYNAMICS 54 CHAPTER THERMODYNAMICS 1. If ΔH is the change in enthalpy and ΔE the change in internal energy accompanying a gaseous reaction, then ΔHis always greater than ΔE ΔH< ΔE only if the number of moles of

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Understand the meaning of spontaneous process, reversible process, irreversible process, and isothermal process.

More information

CHM Tactics and Strategies for the Construction of Complex Natural Products. Professor: Dr. Louis Barriault

CHM Tactics and Strategies for the Construction of Complex Natural Products. Professor: Dr. Louis Barriault CM-4328 Tactics and Strategies for the Construction of Complex Natural Products Professor: Dr. Louis Barriault Winter 2017 Some interesting quotes The World is made of the two parts, the full and the empty.

More information

Energy, Heat and Chemical Change

Energy, Heat and Chemical Change Energy, Heat and Chemical Change Chemistry 35 Fall 2000 Thermochemistry A part of Thermodynamics dealing with energy changes associated with physical and chemical reactions Why do we care? -will a reaction

More information

NMR and X-ray Diffraction Studies of Phases in the Destabilized LiH-Si System

NMR and X-ray Diffraction Studies of Phases in the Destabilized LiH-Si System Mater. Res. Soc. Symp. Proc. Vol. 837 2005 Materials Research Society N3.6.1 NMR and X-ray Diffraction Studies of Phases in the Destabilized LiH-Si System R. C. Bowman, Jr. 1, S.-J. Hwang 2, C. C. Ahn

More information

A Brief Survey on Synthesis and Catalytic Reactivity of Metal-Metal Bond Complexes

A Brief Survey on Synthesis and Catalytic Reactivity of Metal-Metal Bond Complexes A ief Survey on Synthesis and Catalytic Reactivity of tal-tal Bond Complexes Chi Chip Le MacMillan Research Group Group eting Presentation April 6th, 2017 Synthesis and Catalytic Reactivity of tal-tal

More information

Experiment 4: The Borane-Amine Adduct. Text #4 CHEM 531

Experiment 4: The Borane-Amine Adduct. Text #4 CHEM 531 Experiment 4: The Borane-Amine Adduct Text #4 CEM 531 Reminders Due this Thursday (2/19): Report: Experiment 3 Electrolytic Synthesis of K 2 S 2 8 Prelab: Experiment 4 Borane-Amine Synthesis Due in two

More information

Hydrides and Dihydrogen as Ligands: Hydrogenation Catalysis

Hydrides and Dihydrogen as Ligands: Hydrogenation Catalysis Hydrides and Dihydrogen as Ligands: Hydrogenation Catalysis Synthesis of Organometallic Complex Hydrides Reaction of MCO with OH -, H -, or CH 2 CHR 2 M(CO) n + OH - = M(CO) n-1 (COOH) - = HM(CO) n-1 -

More information

WELCOME TO MODERN ORGANIC CHEMISTRY

WELCOME TO MODERN ORGANIC CHEMISTRY WELCOME TO MODERN ORGANIC CEMISTRY Organic Chemistry, 5 th Edition L. G. Wade, Jr. Chapter 4 The Study of Chemical Reactions WAT IS A REACTION MECANISM A DESCRIPTION OF STRUCTURES AN ENERGIES OF STARTING

More information

LECTURE 4 Variation of enthalpy with temperature

LECTURE 4 Variation of enthalpy with temperature LECTURE 4 Variation of enthalpy with temperature So far, we can only work at 25 C. Like c v we define a constant pressure heat capacity, c p, as the amount of heat energy needed to raise the temperature

More information

OKANAGAN UNIVERSITY COLLEGE FINAL EXAMINATION CHEMISTRY 121

OKANAGAN UNIVERSITY COLLEGE FINAL EXAMINATION CHEMISTRY 121 Name (Print) Surname Given Names Student Number Centre OKANAGAN UNIVERSITY COLLEGE FINAL EXAMINATION CHEMISTRY 2 Professor: Nigel Eggers, Renee Van Poppelen, Stephen McNeil April 5, 2004 Duration: 3 hours

More information

Reduction. Boron based reagents. NaBH 4 / NiCl 2. Uses: Zn(BH 4 ) 2. Preparation: Good for base sensitive groups Chelation control model.

Reduction. Boron based reagents. NaBH 4 / NiCl 2. Uses: Zn(BH 4 ) 2. Preparation: Good for base sensitive groups Chelation control model. Uses: Ar N 2 Ar N 2 Ar N Ar N 2 eduction Boron based reagents NaB 4 / NiCl 2 2 Ar C N Ar C N 2 Preparation: Zn(B 4 ) 2 ZnCl 2 (Ether) NaB 4 Zn(B 4 ) 2 Good for base sensitive groups Chelation control model

More information

Hydrogen adsorption by graphite intercalation compounds

Hydrogen adsorption by graphite intercalation compounds 62 Chapter 4 Hydrogen adsorption by graphite intercalation compounds 4.1 Introduction Understanding the thermodynamics of H 2 adsorption in chemically modified carbons remains an important area of fundamental

More information

Lecture Notes Chem 51B S. King I. Conjugation

Lecture Notes Chem 51B S. King I. Conjugation Lecture Notes Chem 51B S. King Chapter 16 Conjugation, Resonance, and Dienes I. Conjugation Conjugation occurs whenever p-orbitals can overlap on three or more adjacent atoms. Conjugated systems are more

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Explain and apply the terms spontaneous process, reversible process, irreversible process, and isothermal process.

More information

Chapter 17: Spontaneity, Entropy, and Free Energy

Chapter 17: Spontaneity, Entropy, and Free Energy Chapter 17: Spontaneity, Entropy, and Free Energy Review of Chemical Thermodynamics System: the matter of interest Surroundings: everything in the universe which is not part of the system Closed System:

More information

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 1980 - #7 (a) State the physical significance of entropy. Entropy (S) is a measure of randomness or disorder in a system. (b) From each of

More information

READING. Review of Intermolecular Forces & Liquids (Chapter 12) Ion-Ion Forces. Ion-Dipole Energies

READING. Review of Intermolecular Forces & Liquids (Chapter 12) Ion-Ion Forces. Ion-Dipole Energies Review of Intermolecular Forces & Liquids (Chapter 12) CEM 102 T. ughbanks READIG We will very briefly review the underlying concepts from Chapters 12 on intermolecular forces since it is relevant to Chapter

More information

O H Hydrogen bonding promotes H-atom transfer from C H bonds for C-alkylation of alcohols

O H Hydrogen bonding promotes H-atom transfer from C H bonds for C-alkylation of alcohols ydrogen bonding promotes -atom transfer from C bonds for C-alkylation of alcohols Jenna L. Jeffrey, Jack A. Terrett, David W. C. MacMillan Science 2015, 349, 1532-1536 Raffaele Colombo 9/26/2015 Raffaele

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

Carbon Nanotubes as Future Energy Storage System

Carbon Nanotubes as Future Energy Storage System Carbon Nanotubes as Future Energy Storage System V Vasu, D Silambarasan To cite this version: V Vasu, D Silambarasan. Carbon Nanotubes as Future Energy Storage System. Mechanics, Materials Science Engineering

More information

UNIT 9 IB MATERIAL KINETICS & THERMODYNAMICS

UNIT 9 IB MATERIAL KINETICS & THERMODYNAMICS UNIT 9 IB MATERIAL KINETICS & THERMODYNAMICS Name: ESSENTIALS: Know, Understand, and Be Able To State that combustion and neutralization are exothermic processes. Calculate the heat energy change when

More information

Chapter 12 INTERMOLECULAR FORCES. Covalent Radius and van der Waals Radius. Intraand. Intermolecular Forces. ½ the distance of non-bonded

Chapter 12 INTERMOLECULAR FORCES. Covalent Radius and van der Waals Radius. Intraand. Intermolecular Forces. ½ the distance of non-bonded Chapter 2 INTERMOLECULAR FORCES Intraand Intermolecular Forces Covalent Radius and van der Waals Radius ½ the distance of bonded ½ the distance of non-bonded Dipole Dipole Interactions Covalent and van

More information

Module 6 : General properties of Transition Metal Organometallic Complexes. Lecture 2 : Synthesis and Stability. Objectives

Module 6 : General properties of Transition Metal Organometallic Complexes. Lecture 2 : Synthesis and Stability. Objectives Module 6 : General properties of Transition Metal Organometallic Complexes Lecture 2 : Synthesis and Stability Objectives In this lecture you will learn the following Understand the role lead by ligands

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

Organometallic alkane and noble-gas complexes in conventional and supercritical fluids*

Organometallic alkane and noble-gas complexes in conventional and supercritical fluids* Pure Appl. Chem., Vol. 73, No. 3, pp. 443 447, 2001. 2001 IUPAC Organometallic alkane and noble-gas complexes in conventional and supercritical fluids* Gavin I. Childs, David C. Grills, Xue Z. Sun, and

More information