Conversion of Methane and Light Alkanes to Chemicals over Heterogeneous Catalysts Lessons Learned from Experiment and Theory

Size: px
Start display at page:

Download "Conversion of Methane and Light Alkanes to Chemicals over Heterogeneous Catalysts Lessons Learned from Experiment and Theory"

Transcription

1 Conversion of Methane and Light Alkanes to Chemicals over Heterogeneous Catalysts Lessons Learned from Experiment and Theory March 8, Alexis T. Bell Department of Chemical and Biomolecular Engineering University of California Berkeley, CA 94720

2 Introduction Natural Gas: CH 4, C 2 H 6, C 3 H 8, C 4 H 10 Chemical Feedstocks: CO/H 2, CH 2 =CH 2, CH 3 CH=CH 2, CH 2 =CH-CH=CH 2, C 6 H 6

3 Introduction Natural Gas: CH 4, C 2 H 6, C 3 H 8, C 4 H 10 Chemical Feedstocks: CO/H 2, CH 2 =CH 2, CH 3 CH=CH 2, CH 2 =CH-CH=CH 2, C 6 H 6 How do heterogeneous catalysts facilitate the conversion of NG to chemical feedstocks?

4 Catalyzed Conversion of Natural Gas to Chemicals Conversion of Methane Pyrolysis: CH 4(g) 1/6 C 6 H 6(g) H 2(g) CH 4(g) 1/2 C 2 H 4(g) + H 2(g) Steam Reforming: Dry Reforming: Oxidative Coupling: Partial Oxidation: CH 4(g) + H 2 O (g) CO (g) + 3 H 2(g) CH 4(g) + CO 2(g) 2 CO (g) + 2 H 2(g) CH 4(g) + ½ O 2(g) ½ C 2 H 4(g) + 2 H 2 O (g) CH 4(g) + ½ O 2(g) CH 3 OH (g)

5 Catalyzed Conversion of Natural Gas to Chemicals Conversion of Light Alkanes Thermal Dehydrogenation: Oxidative dehydrogenation: Partial Oxidation: C 2 H 6(g) C 2 H 4(g) + H 2(g) C 2 H 6(g) + ½ O 2(g) C 2 H 4(g) + H 2 O (g) C 3 H 8(g) + O 2(g) CH 3 CH=CHO (g) + H 2 O (g)

6 Central Questions What is the rate-limiting step in the activation of methane and light alkanes? What factors govern the formation of coke during the conversion of methane and light alkanes? Can oxygenated compounds be formed directly from methane and light alkanes? What is on the horizon and beyond?

7 Steam Reforming of Methane (SRM) to Syngas Mechanism of SRM CH 4(g) + H 2 O (g) CO (g) + 3 H 2(g) TOF (s -1 ) T= 773 K; P = 1 atm; CH 4 conversion 10% Experiment show that TOF decreases in the order Ru ~ Rh > Ni ~ Ir ~ Pt ~ Pd Theory shows that TOF decreases in the order Ru > Rh > Ni > Ir > Pt ~ Pd G. Jones et al., J. Catal., 259, 147, 2008

8 Dry Reforming of Methane to Syngas CH 4(g) + CO 2(g) 2 CO (g) + 2 H 2(g) Ni(111) Relationship of TOF (s -1 ) and H and CH 3 binding energies for T = 500 K E. D. German, M. Sheintuch, J. Phys. Chem. C, 107, 10229, 2013 TOF for CH 4 dissociation decrease in the order Rh > Ru ~ Ir > Ni ~ Pd ~ Pt For Ni(111), CO is formed from CHO Dissociation of CH to C and H is disfavored on Ni(111) S. G. Wang et al., Surf. Sci. 601, 1271, 2007

9 Kinetics of Steam and Dry Reforming of CH 4 Kinetics for the steam reforming of CH 4 at 873 K on Ni/MgO CH 4(g) + H 2 O (g) CO (g) + 3 H 2(g) j. Wei and E. Igelsia, J. Catal., 224, 370, 2004

10 Kinetics of Steam and Dry Reforming of CH 4 Kinetics for the dry reforming of CH 4 at 873 K on Ni/MgO CH 4(g) + CO 2(g) 2 CO (g) + 2 H 2(g)

11 Kinetics of Steam and Dry Reforming of CH 4 Kinetics for the dry reforming of CH 4 at 873 K on Ni/MgO The kinetics for the forward reaction in steam and dry reforming are identical

12 Kinetics of Steam and Dry Reforming of CH 4 Ni/MgO R f = k f P CH4 The rate expression of steam and dry reforming and for CH 4 decomposition on Ni are the same The rate coefficient for all three reactions is the same The process controlling all three reactions is the dissociative adsorption of CH 4

13 Kinetics of C Accumulation on Ni during Steam and Dry Reforming of CH 4 The kinetics of carbon accumulation are the same for steam and dry reforming of CH 4

14 Effects of Surface Structure and Surface Composition on Coke Deposition on Ni CH 4(g) CH 3(s) + H (s) F. Abild-Pedersen et al., Surf. Sci, 590, 127, 2005 CH 4 dissociative adsorption occurs preferentially at Ni(211) steps Graphene sheets nucleate at Ni(211) steps and then grow over the nanoparticle J. Sehested, Catal. Today, 111, 103, 2006

15 Carbon Growth Model Energy-driven Carbon Growth 1 : GG = NN tttttt μμ cc + 3 NN tttttt EE eeeeeeee + 2 NN tttttt EE ssssssssssss Graphene nucleus Bulk energy Surface cost Lattice mismatch (strain) cost Step edge Graphene growth ΔG = total free energy change for a graphene island N tot = total # atoms in graphene island Δμ C = carbon chemical potential E edge = energy/c atom on edge of island E stretch = energy cost for stretching graphene layer to match Pt lattice Graphene growth nucleates at steps To nucleate the step width has to be greater than a critical value 1. Nørskov and coworkers, J. Phys. Chem C, 114, 2010

16 Carbon Growth Model GG = NN tttttt μμ cc + 3 NN tttttt EE eeeeeeee + 2 NN tttttt EE ssssssssssss Bulk Energy Edge Energy Strain Energy Ni NiAu E strain (ev/atom) Ni Au Introduction of Au into Ni introduces additional strain and raises N tot required to nucleate the growth of graphene 1. Nørskov and coworkers, J. Phys. Chem C, 114, 2010

17 Thermodynamics of Methane Pyrolysis Thermodynamics predicts that the preferred products should be C(s) >> C 6 H 6(g) > C 2 H 4(g) Carbon deposition along with C 6 H 6 and C 2 H 4 is observed for MoC x /ZSM-5, Fe/SiO 2

18 Methane Pyrolysis 2 X. Bao and coworkers, Science, 344, 616, 2014 Only 2 produces ethene, benzene, and naphthalene but not coke A CH 4 conversion of 48% is achieved at 1363 K and a space velocity of 21,400 ml/g h

19 Methane Pyrolysis on 2 CH 4 pyrolysis at 1363 K over Fe@SiO 2 achieves 48% conversion and selectivity of 48.4% to C 2 H 4 and the rest to benzene and naphthalene Fe@SiO 2 is stable to for 60 h The high stability is attributed to isolated FeC 2 sites

20 Methane Pyrolysis on 2 Active site for 2 X. Bao and coworkers, Sci., 344, 616, 2014 Graphite is the thermodynamically preferred product of methane pyrolysis The absence of soot or coke is attributable to the very rapid quenching of the product gases, which inhibits the kinetics of soot formation Coke is not formed on 2 because the sites are too small to nucleate coke

21 Methane Oxidation to Methanol CH 4(g) + ½ O 2(g) CH 3 OH (g) CH 4 + [Cu 2 (µ-o) 2 ] 2+ [Cu 2 (CH 3 O)(OH)] 2+ [Cu 2 (CH 3 O)(OH)] 2+ + H 2 O [Cu 2 (µ-oh) 2 ] 2+ [Cu 2 (µ-oh) 2 ] 2+ + CH 3 OH [Cu 2 (µ-o) 2 ] 2+ + H 2 O M. H. Groothaert et al., J. Am. Chem. Soc. 127, The active center is taken to be a [Cu 2 (µ-o) 2 ] 2+ core based on UV-Vis observations and comparison with compounds of known structure CH 4 is activated on [Cu 2 (µ-o) 2 ] 2+ cores to produce CH 3 O species that can then be hydrolyzed to form CH 3 OH Catalyst reactivation in O 2 at elevated temperature is required

22 Methane Oxidation to Methanol J. Woortnik et al., PNAS 106, 18908, 2009 DFT calculations support the conclusion that the active center is a [Cu-O-Cu] 2+ cation

23 Methane Oxidation to Methanol The activity of Cu-MOR for the formation of CH 3 OH scales with Cu content The active center is best described as a [Cu 3 O 3 ] 2+ core S. Grunder et al., Nature Comm. DOI: /ncomms8546

24 Dehydrogenation of Light Alkanes Problem Pt is an active catalyst for alkane dehydrogenation but deactivates due coke accumulation Addition of Sn, Ga, In enhances alkene selectivity and catalyst stability C n H 2n+2 C n H 2n + H 2 Light alkenes can be used as monomers for oligomers or polymers H 2 can be used for HDS, HDN, etc. Objective To identify the role of Pt particle size and Sn addition on coke formation Identify the mechanism of coke formation and the influence of coke on Pt nanoparticles V. Galvita et al. J. Catal. 2010, 271, 209; P. Sun et al. J. Catal. 2011, 282, 165; F. Somodi et al. J. Phys. Chem. C 2011, 115, 19084; Z. Peng et al. J. Catal., 2012, 286, 22; F. Somodi et al. Langmuir 2012, 28, 3345; J. Wu et al. Appl. Catal. A, , ; J. Wu et al. J. Catal. 2014, 311, ; X. Feng et al. J. Phys. Chem. C, 2015, 119, ; J. Wu et al. Appl. Catal. A: Genl. 2015, 506, 25-32; J. Wu et al., J. Catal., 2016 in press.

25 Synthesis of Pt Model Catalysts Colloidal Method Reduction 563K Pt(acac) 2, Sn(acac) 2 oleylamine, oleic acid 1,2-hexadecanediol Mixing <d> = 2.5 nm Support - Mg(Al)O 623K, O 2 <d> = nm Support - Mg(Al)O Pt(acac) 2 Sn(acac) 2 Pt-Sn alloy (color representing level of alloying) J. Wu et al., J. Catal. 311 (2014) 161

26 Effects of Catalyst Sn/Pt Ratio and Particle Size on Catalyst Activity Pt/Mg(Al)O Pt 3 Sn/Mg(Al)O Ethane TOF (1/s) <d Pt > = 2.5 nm Sn/Pt Ethane TOF (1/s) Size (nm) Reaction conditions: W/F = 3.75x10-3 g s -1 cm -3, T = 873 K, C 2 H 6 : 20%, H 2 : C 2 H 6 :1.25 TOF increases with Sn/Pt ratio TOF increases with increasing particle size

27 Effect of Pt Particle Size and Sn/Pt Ratio on Carbon Accumulation τ = 3.8x10-3 g s cm -3 TOS = 2 h Pt particle size, nm Pt Loading = 0.8 wt% Pt Reaction conditions: T = 873 K, C 2 H 6 : 20%, H 2 : C 2 H 6 :1.25 Carbon accumulation: - Increases with Pt particles size - Decreases with the addition of Sn

28 Effect of Space Time on Coke Accumulation C 2 H 6 + s C 2 H 5s + H s C 2 H 5s + s C 2 H 4s + H s 2 H s H s or C 2 H 4 + s Desired C 2 H 5s + s CH 3 C s + 2H s CH 3 C s C s + CH 3s Undesired coke methane Experiments with 13 C-labeled C 2 H 4 show that coke and methane are formed by readsorption of C 2 H 4 C 2 H 4 as the source of coke is confirmed by high space velocity experiments, which show low coke depositions at high space velocities

29 Pt Effect of Pt Particle Size on C Accumulation 1 min 2 min 2.0 nm 3.8 nm Pt particle size, nm Amount and morphology of carbon change with Pt particle size. 6.0 nm TEM images acquired on TEAM 0.5 aberrationcorrected microscope at NCEM/LBNL Z. Peng, F. Somodi, S. Helveg, C. Kisielowski, P. Specht, A. T. Bell, J. Catal. 286, (2012) 22.

30 Graphene Initiation at Pt Steps Reaction Conditions: P C2H6 = 0.2 bar, P H2 = 0.25 bar, T= 873 K; 2 h Graphene sheets form at steps on the surface of large Pt particles

31 Carbon Growth Remaining questions Where does carbon nucleate? How do multiple layers grow? Does Pt restructure during coking? Ex situ Observe growth of carbon in situ (Haldor Topsøe) b In situ (a) Pt/MgO carburized in 0.2 bar ethane at 873 K for 1 h. (b) Pt/MgO carburized in situ under 1 mbar C 2 H 4 at 773 K for 20 min, taken at 500 e - /(Å 2 s) J. Wu et al., J. Catal., submitted

32 Effects of Coke formation on Surface Topology of Pt Nanoparticles a b <0 min 3 min Carbon deposition induces step formation Steps serve as nucleation points for carbon formation c d 12 min 20 min J. Wu et al., J. Catal., submitted

33 Oxidative Dehydrogenation of Light Alkanes C n H 2n+2(g) + ½ O 2(g) C n H 2n(g) + H 2 O (g) n = 2-4 Isolated monovanadate O V O O O Polyvanadate oligomer O O V O V O O O O 2.3 V nm -2 Al 2 O 3 Al 2 O 3 0-D VO x 2-D VO x 3 wt% V 2 O 5 /Al 2 O 3 Raman and UV-Vis spectroscopy indicate that VO x is principally present as isolated vanadate species M. Zboray et al., J. Phys. Chem. C, 113, 12980, 2009

34 Oxidative Dehydrogenation of Light Alkanes E a = 100 kj/mol The overall rate of reaction depends on the strength of the weakest C-H bond The ratio of k 2 /k 1 is and not very temperature sensitive

35 Oxidative Dehydrogenation of Light Alkanes k 3 depends more strongly on the heat of alkene adsorption than on the strength of the weakest C-H bond in the alkene k 3 is 1-5 fold higher than k 1 Alkene selectivity is limited by deep oxidation of both the alkane and the alkene

36 Concluding Remarks The activation of methane and light alkanes is rate limited by the cleavage of C-H bonds Steam and dry reforming of methane follow identical kinetics, as do the thermal dehydrogenation of light alkanes and the dehydroaromatization of methane Graphene formation is nucleated at steps on the surface of metal particles and graphene growth can cause step formation Graphene formation is reduced by reducing metal particle size and increasing the lattice mismatch between the graphene and the metal Soot formation is limited by very rapid thermal quenching The oxidation of methane to methanol is limited by catalyst reactivation Oxidative dehydrogenation of light alkanes is limited by both primary deep oxidation of the alkane and secondary oxidation of the alkene

37 Looking Over the Horizon Identify catalysts that operate at high temperature and are resistant to coke formation Identify single-site catalysts that enable the continuous conversion of methane to methanol Identify catalysts than can promote the oxidative dehydrogenation of alkanes to alkenes selectively Understand the nature of oxygen species and what controls their activity

38 Acknowledgements Office of Basic Energy Sciences US Department of Energy Chevron Energy Technology Co.

Computational Studies on Catalytic Light Alkane Dehydrogenation. Martin Hangaard Hansen Paul Jennings Thomas Bligaard Jens Nørskov

Computational Studies on Catalytic Light Alkane Dehydrogenation. Martin Hangaard Hansen Paul Jennings Thomas Bligaard Jens Nørskov Computational Studies on Catalytic Light Alkane Dehydrogenation Martin Hangaard Hansen Paul Jennings Thomas Bligaard Jens Nørskov 1 Coking and size effect [1] Wu, Peng, Bell, Journal of Catalysis 311 (2014)

More information

Efficient Synthesis of Ethanol from CH 4 and Syngas on

Efficient Synthesis of Ethanol from CH 4 and Syngas on Efficient Synthesis of Ethanol from CH 4 and Syngas on a Cu-Co/TiO 2 Catalyst Using a Stepwise Reactor Zhi-Jun Zuo 1, Fen Peng 1,2, Wei Huang 1,* 1 Key Laboratory of Coal Science and Technology of Ministry

More information

Kinetic Characterisation of Zeolite Catalysts Using Cracking, Alkylation and Other Chemical Reactions

Kinetic Characterisation of Zeolite Catalysts Using Cracking, Alkylation and Other Chemical Reactions Haldor Topsøe Catalysis Forum Munkerupgaard, 27-28 August 2015 Kinetic Characterisation of Zeolite Catalysts Using Cracking, Alkylation and Other Chemical Reactions Dmitry B. Lukyanov Catalysis & Reaction

More information

Heterogeneous catalysis: the fundamentals Kinetics

Heterogeneous catalysis: the fundamentals Kinetics www.catalysiscourse.com Heterogeneous catalysis: the fundamentals Kinetics Prof dr J W (Hans) Niemantsverdriet Schuit Institute of Catalysis Catalysis is a cycle A B separation P catalyst P bonding catalyst

More information

Supporting Information Fe-containing magnesium aluminate support for stability and carbon control during methane reforming

Supporting Information Fe-containing magnesium aluminate support for stability and carbon control during methane reforming Supporting Information Fe-containing magnesium aluminate support for stability and carbon control during methane reforming Stavros Alexandros Theofanidis 1, Vladimir V. Galvita 1*, Hilde Poelman 1, N.V.R.

More information

NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson

NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University Coworkers and Ackowledgement

More information

Dehydrogenation of Light Alkanes over Supported Pt Catalysts

Dehydrogenation of Light Alkanes over Supported Pt Catalysts Dehydrogenation of Light Alkanes over Supported Pt Catalysts by Jason Wu A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy In Chemical Engineering

More information

Surface reactivity and heterogeneous catalysis a theoretical perspective

Surface reactivity and heterogeneous catalysis a theoretical perspective Surface reactivity and heterogeneous catalysis a theoretical perspective J. K. Nørskov Center for Atomic-scale Materials Design Technical University of Denmark norskov@fysik.dtu.dk Heterogeneous Catalysis

More information

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) Hangzhou , PR China

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) Hangzhou , PR China 5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) Influence of Ni based catalysts on CH 4 -CO 2 reforming reaction Hangjie Li 1, Dongming Shen 2, Xikun Gai 3,

More information

Frank Abild-Pedersen - DTU Orbit (29/08/13) Abild-Pedersen, Frank Business Developer, Former employee

Frank Abild-Pedersen - DTU Orbit (29/08/13) Abild-Pedersen, Frank Business Developer, Former employee Frank Abild-Pedersen - DTU Orbit (29/08/13) Abild-Pedersen, Frank Business Developer, Former employee abild@fysik.dtu.dk Department of Physics Person: VIP Metal Oxide-Supported Platinum Overlayers as Proton-Exchange

More information

Theodore E. Madey. Department of Physics and Astronomy, and Laboratory for Surface Modification

Theodore E. Madey. Department of Physics and Astronomy, and Laboratory for Surface Modification The Science of Catalysis at the Nanometer Scale Theodore E. Madey Department of Physics and Astronomy, and Laboratory for Surface Modification http://www.physics.rutgers.edu/lsm/ Rutgers, The State University

More information

Catalytic and biological hydrogen production

Catalytic and biological hydrogen production Catalytic and biological hydrogen production J. K. Nørskov Center for Atomic-scale Materials Physics Technical University of Denmark norskov@fysik.dtu.dk Why make hydrogen? Ammonia synthesis (N 2 +3H 2

More information

Synthesis gas production via the biogas reforming reaction over Ni/MgO-Al 2 O 3 and Ni/CaO-Al 2 O 3 catalysts

Synthesis gas production via the biogas reforming reaction over Ni/MgO-Al 2 O 3 and Ni/CaO-Al 2 O 3 catalysts Synthesis gas production via the biogas reforming reaction over Ni/MgO-Al 2 O 3 and Ni/CaO-Al 2 O 3 catalysts N.D. Charisiou 1,2, A. Baklavaridis 1, V.G. Papadakis 2, M.A. Goula 1 1 Department of Environmental

More information

Preliminaries and Objectives. Experimental methods

Preliminaries and Objectives. Experimental methods Preliminaries and Objectives The industrial realisation of the CO 2 +CH 4 reaction could be a solution for both reducing the concentration of greenhouse gases and the utilisation of natural gases with

More information

Dehydrogenation of Propane to Propylene Over Pt-Sn/Al 2 O 3 Catalysts: The influence of operating conditions on product selectivity

Dehydrogenation of Propane to Propylene Over Pt-Sn/Al 2 O 3 Catalysts: The influence of operating conditions on product selectivity Iranian Journal of Chemical Engineering Vol. 7, No. (Spring), 1, IAChE Dehydrogenation of Propane to Propylene Over Pt-Sn/Al O 3 Catalysts: The influence of operating conditions on product selectivity

More information

Conversion of Methanol to Hydrocarbons: spectroscopic characterization of carbonaceous species formed over H-ZSM-5

Conversion of Methanol to Hydrocarbons: spectroscopic characterization of carbonaceous species formed over H-ZSM-5 Conversion of Methanol to Hydrocarbons: spectroscopic characterization of carbonaceous species formed over H-ZSM-5 Francesca Bonino 1, Luisa Palumbo 1, Morten Bjørgen 2, Pablo Beato 2, Stian Svelle 3,

More information

A SYNCHROTRON LOOK INTO THE LIFECYCLE OF PT-IN CATALYSTS

A SYNCHROTRON LOOK INTO THE LIFECYCLE OF PT-IN CATALYSTS LABORATORY FOR CHEMICAL TECHNOLOGY, GHENT UNIVERSITY HTTP://WWW.LCT.UGENT.BE/ A SYNCHROTRON LOOK INTO THE LIFECYCLE OF PT-IN CATALYSTS H. POELMAN, M. FILEZ, E. REDEKOP, V.V. GALVITA, G.B. MARIN M. MELEDINA,

More information

Selectivity in the initial C-H bond cleavage of n-butane on PdO(101)

Selectivity in the initial C-H bond cleavage of n-butane on PdO(101) Supporting Information for Selectivity in the initial C-H bond cleavage of n-butane on PdO(101) Can Hakanoglu (a), Feng Zhang (a), Abbin Antony (a), Aravind Asthagiri (b) and Jason F. Weaver (a) * (a)

More information

Hydrogen Effect on Coke Removal and Catalytic Performance in Pre-Carburization and Methane Dehydro-Aromatization Reaction on Mo/HZSM-5

Hydrogen Effect on Coke Removal and Catalytic Performance in Pre-Carburization and Methane Dehydro-Aromatization Reaction on Mo/HZSM-5 Journal of Natural Gas Chemistry 14(2005)129 139 Hydrogen Effect on Coke Removal and Catalytic Performance in Pre-Carburization and Methane Dehydro-Aromatization Reaction on Mo/HZSM-5 Hongtao Ma, Ryoichi

More information

Catalysis by supported metal clusters and model systems

Catalysis by supported metal clusters and model systems Catalysis by supported metal clusters and model systems Gianfranco Pacchioni Dipartimento di Scienza dei Materiali Università Milano-Bicocca Part I Catalysis by supported metal clusters and model systems

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2012 Design of a Highly Nanodispersed Pd MgO/SiO 2 Composite Catalyst with Multifunctional Activity for CH 4 Reforming

More information

Bifunctional alloys for the electroreduction of CO 2 and CO

Bifunctional alloys for the electroreduction of CO 2 and CO Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 Bifunctional alloys for the electroreduction of CO 2 and CO Heine A.Hansen a, Chuan

More information

Hydrogenation of Single Walled Carbon Nanotubes

Hydrogenation of Single Walled Carbon Nanotubes Hydrogenation of Single Walled Carbon Nanotubes Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University Coworkers and Ackowledgement A. Nikitin 1), H. Ogasawara 1), D.

More information

Part A: Operando FT-IR Studies of heterogeneous catalytic reactions: pitfalls and benefits.

Part A: Operando FT-IR Studies of heterogeneous catalytic reactions: pitfalls and benefits. Part A: Operando FT-IR Studies of heterogeneous catalytic reactions: pitfalls and benefits. Fred Meunier fcm@ircelyon.univ-lyon1.fr Institut de Recherche sur la Catalyse et l Environnement de Lyon Villeurbanne,

More information

Tropospheric OH chemistry

Tropospheric OH chemistry Tropospheric OH chemistry CO Oxidation mechanism: CO + OH CO 2 + H, H + O 2 + M HO 2 + M, HO 2 + NO OH + NO 2 NO 2 + hν (+O 2 ) NO + O 3 Initiation step Propagation Net: CO + 2 O 2 CO 2 + O 3 HO 2 + HO

More information

Direct Synthesis of H 2 O 2 on AgPt Octahedra: The Importance of Ag-Pt Coordination for High H 2 O 2 Selectivity

Direct Synthesis of H 2 O 2 on AgPt Octahedra: The Importance of Ag-Pt Coordination for High H 2 O 2 Selectivity Supporting Information Direct Synthesis of H 2 O 2 on AgPt Octahedra: The Importance of Ag-Pt Coordination for High H 2 O 2 Selectivity Neil M. Wilson, 1 Yung-Tin Pan, 1 Yu-Tsun Shao, 2 Jian-Min Zuo, 2

More information

Zhenmeng Peng, Ph.D.

Zhenmeng Peng, Ph.D. CONTACT, Ph.D. Mail: Department of Chemical and Biomolecular Engineering 201A Whitby Hall University of Akron Akron, OH 44325 E-Mail: zpeng@uakron.edu Office: (330) 972-5810 PROFESSOIONAL EXPERIENCE UNIVERSITY

More information

Heterogeneous catalysis: the fundamentals

Heterogeneous catalysis: the fundamentals www.catalysiscourse.com Heterogeneous catalysis: the fundamentals Introduction Prof dr J W (Hans) Niemantsverdriet Schuit Institute of Catalysis What is Catalysis? a phenomenon in which a small quantity

More information

Towards the pressure and material gap in heterogeneous catalysis: hydrogenation of acrolein over silver catalysts

Towards the pressure and material gap in heterogeneous catalysis: hydrogenation of acrolein over silver catalysts Towards the pressure and material gap in heterogeneous catalysis: hydrogenation of acrolein over silver catalysts M. Bron 1, M. Bonifer 1, A. Knop-Gericke 2, D. Teschner 2, J. Kröhnert 2, F.C. Jentoft

More information

Zeolitter Mekanismestudier som nøkkel til nye materialer

Zeolitter Mekanismestudier som nøkkel til nye materialer Zeolitter Mekanismestudier som nøkkel til nye materialer Morten Bjørgen University of Oslo NIS Centre of Excellence Turin Reaction The catalysis group at UiO Research vision Catalyst Reaction mechanism

More information

Supporting Online Material (1)

Supporting Online Material (1) Supporting Online Material The density functional theory (DFT) calculations were carried out using the dacapo code (http://www.fysik.dtu.dk/campos), and the RPBE (1) generalized gradient correction (GGA)

More information

Supporting Information

Supporting Information Supporting Information First-Principles-based Microkinetics Simulations of Synthesis Gas Conversion on a Stepped Rhodium Surface Ivo A.W. Filot, Robin J.P. Broos, Jeaphianne P.M. van Rijn, Gerardus J.H.A.

More information

A mini review on the chemistry and catalysis of the water gas shift reaction

A mini review on the chemistry and catalysis of the water gas shift reaction A mini review on the chemistry and catalysis of the water gas shift reaction Abstract: Bifunctional/bimetallic catalysts are a set of important catalytic materials that find their applications in many

More information

CHEM Chemical Kinetics

CHEM Chemical Kinetics Chemical Kinetics Catalysts A catalyst is a substance that increases the rate of the reaction but is neither created nor destroyed in the process. Catalysts can be divided into two broad categories. Homogeneous

More information

Supporting Information

Supporting Information Supporting Information Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications Jingyu Sun, Yubin Chen, Manish Kr. Priydarshi, Zhang Chen, Alicja Bachmatiuk,, Zhiyu

More information

Supporting information for Activity descriptors for CO 2 electroreduction to methane on transition-metal catalysts

Supporting information for Activity descriptors for CO 2 electroreduction to methane on transition-metal catalysts Supporting information for Activity descriptors for CO 2 electroreduction to methane on transition-metal catalysts Andrew A. Peterson 1,3, Jens K. Nørskov 1,2 SUNCAT Center for Interface Science and Catalysis,

More information

Raman Spectroscopy. Kalachakra Mandala of Tibetian Buddhism. Dr. Davide Ferri Paul Scherrer Institut

Raman Spectroscopy. Kalachakra Mandala of Tibetian Buddhism. Dr. Davide Ferri Paul Scherrer Institut Raman Spectroscopy Kalachakra Mandala of Tibetian Buddhism Dr. Davide Ferri Paul Scherrer Institut 056 310 27 81 davide.ferri@psi.ch Raman spectroscopy Chandrasekhara Venkata Raman (1888 1970) February

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction Danielle A. Hansgen, Dionisios G. Vlachos, Jingguang G. Chen SUPPLEMENTARY INFORMATION.

More information

Effect of Catalyst Structure on Oxidative Dehydrogenation of Ethane and Propane on Alumina-Supported Vanadia

Effect of Catalyst Structure on Oxidative Dehydrogenation of Ethane and Propane on Alumina-Supported Vanadia LBNL-49411 Effect of Catalyst Structure on Oxidative Dehydrogenation of Ethane and Propane on Alumina-Supported Vanadia Morris D. Argyle, Kaidong Chen, Alexis T. Bell*, and Enrique Iglesia* Chemical and

More information

SYNTHESIS OF CARBON NANOTUBES BY CATALYTIC CVD USING Fe-Mo/MgO AND Fe- Mo/Al 2 O 3 CATALYSTS. Abstract. Introduction. Experimental

SYNTHESIS OF CARBON NANOTUBES BY CATALYTIC CVD USING Fe-Mo/MgO AND Fe- Mo/Al 2 O 3 CATALYSTS. Abstract. Introduction. Experimental SYNTHESIS OF CARBON NANOTUBES BY CATALYTIC CVD USING Fe-Mo/MgO AND Fe- Mo/Al 2 O 3 CATALYSTS Shinn-Shyong Tzeng, Ting-Bin Liang, Sheng-Chuan Wang, Ting-Yu Wu and Yu-Hun Lin Department of Materials Engineering,

More information

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*,

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, Supported Single Pt 1 /Au 1 Atoms for Methanol Steam Reforming Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, State Key

More information

Catalytic Activity of IrO 2 (110) Surface: A DFT study

Catalytic Activity of IrO 2 (110) Surface: A DFT study Catalytic Activity of IrO 2 (110) Surface: A DFT study Jyh-Chiang Jiang Department of Chemical Engineering, National Taiwan University of Science and Technology (NTUST) NCTS-NCKU 9/7, 2010 Computational

More information

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2 Supplementary Figure 1. (a-b) EDX of Mo 2 C@NPC/NPRGO and Mo 2 C@NPC. Supplementary Figure 2. (a) SEM image of PMo 12 2-PPy, (b) TEM, (c) HRTEM, (d) STEM image and EDX elemental mapping of C, N, P, and

More information

Special Properties of Au Nanoparticles

Special Properties of Au Nanoparticles Special Properties of Au Nanoparticles Maryam Ebrahimi Chem 7500/750 March 28 th, 2007 1 Outline Introduction The importance of unexpected electronic, geometric, and chemical properties of nanoparticles

More information

Effect of Catalyst Structure on Oxidative Dehydrogenation of Ethane and Propane on Alumina-Supported Vanadia

Effect of Catalyst Structure on Oxidative Dehydrogenation of Ethane and Propane on Alumina-Supported Vanadia Journal of Catalysis 28, 139 149 (22) doi:1.16/jcat.22.357, available online at http://www.idealibrary.com on Effect of Catalyst Structure on Oxidative Dehydrogenation of Ethane and Propane on Alumina-Supported

More information

Kinetics and Mechanism of the Reaction of Catalytic Dehydroaromatization of Methane

Kinetics and Mechanism of the Reaction of Catalytic Dehydroaromatization of Methane International Journal of Oil, Gas and Coal Engineering 2017; 5(6): 124-129 http://www.sciencepublishinggroup.com/j/ogce doi: 10.11648/j.ogce.20170506.11 ISSN: 2376-7669(Print); ISSN: 2376-7677(Online)

More information

Oxygen Reduction Reaction

Oxygen Reduction Reaction Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Oxygen Reduction Reaction Oxygen is the most common oxidant for most fuel cell cathodes simply

More information

In situ molecular beam mass spectrometry for high temperature catalysis research: Heterogeneous Homogeneous Catalytic Oxidations

In situ molecular beam mass spectrometry for high temperature catalysis research: Heterogeneous Homogeneous Catalytic Oxidations In situ molecular beam mass spectrometry for high temperature catalysis research: Heterogeneous Homogeneous Catalytic Oxidations Katrin Pelzer Co-workers MBMS group Catalytic Oxidations Enormous industrial

More information

Sustainable Energy Technologies

Sustainable Energy Technologies Sustainable Energy Technologies Molecular Heterogeneous Catalysis Hydrogen Technology Renewable feedstocks Fuel cell catalysis Prof. Dr. Emiel Hensen Prof. Dr. Peter Notten Prof. Dr. Jaap Schouten Chemical

More information

Modern Alchemy : Catalysis by Gold Nano-particles: Part 1

Modern Alchemy : Catalysis by Gold Nano-particles: Part 1 Modern Alchemy : Catalysis by Gold Nano-particles: Part 1 PIRE-ECCI/ICMR Summer Conference SantaBarbara 17 August, 2006 Masatake Haruta Tokyo Metropolitan University 1. Overview on Gold 2. CO Oxidation

More information

Molecular Scaffolding Strategy with Synergistic Active Centers to Facilitate Electrocatalytic CO2 Reduction to Hydrocarbon/Alcohol

Molecular Scaffolding Strategy with Synergistic Active Centers to Facilitate Electrocatalytic CO2 Reduction to Hydrocarbon/Alcohol Supporting Information Molecular Scaffolding Strategy with Synergistic Active Centers to Facilitate Electrocatalytic CO2 Reduction to Hydrocarbon/Alcohol Yan Jiao 1,, Yao Zheng 1,, Ping Chen 1,2,, Mietek

More information

Rh 3d. Co 2p. Binding Energy (ev) Binding Energy (ev) (b) (a)

Rh 3d. Co 2p. Binding Energy (ev) Binding Energy (ev) (b) (a) Co 2p Co(0) 778.3 Rh 3d Rh (0) 307.2 810 800 790 780 770 Binding Energy (ev) (a) 320 315 310 305 Binding Energy (ev) (b) Supplementary Figure 1 Photoemission features of a catalyst precursor which was

More information

Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The. scale bars are 5 nm.

Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The. scale bars are 5 nm. Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The scale bars are 5 nm. S1 Supplementary Figure 2. TEM image of PtNi/Ni-B composite obtained under N 2 protection.

More information

PdZn/Mg(Al)(Pd)(Zn)O x for ethanol conversion:

PdZn/Mg(Al)(Pd)(Zn)O x for ethanol conversion: EUROPACAT 2017, FIRENZE, AUGUST 27-31 PdZn/Mg(Al)(Pd)(Zn)O x for ethanol conversion: reconstruction of the active phase upon a water containing feed J. De Waele, V.V. Galvita, H. Poelman, J.W. Thybaut

More information

Graphene is a single, two-dimensional nanosheet of aromatic sp 2 hybridized carbons that

Graphene is a single, two-dimensional nanosheet of aromatic sp 2 hybridized carbons that Chemical Identity and Applications of Graphene-Titanium Dioxide Graphene is a single, two-dimensional nanosheet of aromatic sp 2 hybridized carbons that enhances the performance of photocatalysts. 1 The

More information

Part B: Unraveling the mechanism of catalytic reactions through kinetics and thermodynamics

Part B: Unraveling the mechanism of catalytic reactions through kinetics and thermodynamics Part B: Unraveling the mechanism of catalytic reactions through kinetics and thermodynamics F.C. Meunier, J. Scalbert and F. Thibault-Starzyk Appl. Catal. A: Gen. (2015), in press, doi:10.1016/j.apcata.2014.12.028

More information

Applied Catalysis A: General

Applied Catalysis A: General Applied Catalysis A: General 358 (2009) 269 278 Contents lists available at ScienceDirect Applied Catalysis A: General journal homepage: www.elsevier.com/locate/apcata Effect of alloying on carbon formation

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 217 Supporting Information Catalyst preparation A certain of aqueous NiCl 2 6H 2 O (2 mm), H 2 PtCl

More information

Non-oxidative methane aromatization in a catalytic membrane reactor

Non-oxidative methane aromatization in a catalytic membrane reactor Non-oxidative methane aromatization in a catalytic membrane reactor Olivier RIVAL, Bernard GRANDJEAN, Abdelhamid SAYARI, Faïçal LARACHI Department of Chemical Engineering and CERPIC Université Laval, Ste-Foy,

More information

Catalyst structure and C-O activation during FTS: new ideas from computational catalysis. Mark Saeys

Catalyst structure and C-O activation during FTS: new ideas from computational catalysis. Mark Saeys Catalyst structure and C-O activation during FTS: new ideas from computational catalysis Mark Saeys Laboratory for Chemical Technology, Ghent University Laboratory for Chemical http://www.lct.ugent.be

More information

Recent activities in TP C6:

Recent activities in TP C6: Recent activities in TP C6: Adsorption, diffusion, and reaction at MoO 3 and V 2 O 5 substrate K. Hermann, M. Gruber, and X. Shi Theory Department, Fritz-Haber-Institut, Berlin Sfb 546 Workshop, Schmöckwitz,

More information

Supplementary Figure 1 Morpholigical properties of TiO 2-x SCs. The statistical particle size distribution (a) of the defective {001}-TiO 2-x SCs and

Supplementary Figure 1 Morpholigical properties of TiO 2-x SCs. The statistical particle size distribution (a) of the defective {001}-TiO 2-x SCs and Supplementary Figure 1 Morpholigical properties of TiO 2-x s. The statistical particle size distribution (a) of the defective {1}-TiO 2-x s and their typical TEM images (b, c). Quantity Adsorbed (cm 3

More information

Journal of Catalysis. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts

Journal of Catalysis. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts Journal of Catalysis 259 (2008) 147 160 Contents lists available at ScienceDirect Journal of Catalysis www.elsevier.com/locate/jcat First principles calculations and experimental insight into methane steam

More information

Thickness-tunable Core-shell Nanoparticles Encapsulated in Sandwich-like Carbon

Thickness-tunable Core-shell Nanoparticles Encapsulated in Sandwich-like Carbon Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information: Thickness-tunable Core-shell Co@Pt Nanoparticles

More information

Tuning the Oxygen Reduction Activity of Pd Shell Nanoparticles with Random Alloy Cores

Tuning the Oxygen Reduction Activity of Pd Shell Nanoparticles with Random Alloy Cores pubs.acs.org/jpcc Tuning the Oxygen Reduction Activity of Pd Shell Nanoparticles with Random Alloy Cores Liang Zhang and Graeme Henkelman* Department of Chemistry and Biochemistry and the Institute for

More information

Understanding Chemical Reactions through Computer Modeling. Tyler R. Josephson University of Delaware 4/21/16

Understanding Chemical Reactions through Computer Modeling. Tyler R. Josephson University of Delaware 4/21/16 Understanding Chemical Reactions through Computer Modeling Tyler R. Josephson University of Delaware 4/21/16 A little about me B.S. in Chem E from U of M, 2011 Currently, Ph.D. student at University of

More information

Catalysis for sustainable energy: The challenge of harvesting and converting energy

Catalysis for sustainable energy: The challenge of harvesting and converting energy Catalysis for sustainable energy: The challenge of harvesting and converting energy Tokyo, Japan 22 November 2011 I. Chorkendorff The common denominator is surface science where the functionality of nanoparticles

More information

Combined Science: Trilogy

Combined Science: Trilogy Co-teaching GCSE Chemistry and GCSE Combined Science: Trilogy This high level co-teaching guide will help you plan your route through the course. You ll be able to see what common themes and topics span

More information

Transition State Enthalpy and Entropy Effects on Reactivity. and Selectivity in Hydrogenolysis of n-alkanes

Transition State Enthalpy and Entropy Effects on Reactivity. and Selectivity in Hydrogenolysis of n-alkanes Transition State Enthalpy and Entropy Effects on Reactivity and Selectivity in Hydrogenolysis of n-alkanes David W. Flaherty, Enrique Iglesia * Department of Chemical Engineering, University of California

More information

Supplementary information

Supplementary information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary information Real-time imaging and elemental mapping of AgAu nanoparticle transformations

More information

Supporting Information. DFT Study of Methane Synthesis from Syngas on Ce Doped Ni(111) Surface

Supporting Information. DFT Study of Methane Synthesis from Syngas on Ce Doped Ni(111) Surface Supporting Information DFT Study of Methane Synthesis from Syngas on Ce Doped Ni(111) Surface Kai Li, 1 Cong Yin, 2 Yi Zheng, 3 Feng He, 1 Ying Wang, 1 Menggai Jiao, 1 Hao Tang, 2,* Zhijian Wu 1,* 1 State

More information

Design of High-Performance Pd-based Alloy Nanocatalysts for Direct Synthesis of H 2 O 2

Design of High-Performance Pd-based Alloy Nanocatalysts for Direct Synthesis of H 2 O 2 Supporting Information Design of High-Performance Pd-based Alloy Nanocatalysts for Direct Synthesis of H 2 O 2 HaoxiangXu a, DaojianCheng a*, Yi Gao b,* a International Research Center for Soft Matter,

More information

Comparison of acid catalysts for the dehydration of methanol to dimethyl ether

Comparison of acid catalysts for the dehydration of methanol to dimethyl ether Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, 16-2 September 27 Comparison of acid catalysts for the dehydration of methanol to dimethyl ether I. Sierra, J. Ereña, A. T.

More information

Supporting Information

Supporting Information Supporting Information Trace Levels of Copper in Carbon Materials Show Significant Electrochemical CO 2 Reduction Activity Yanwei Lum,,,, Youngkook Kwon,,, Peter Lobaccaro,,,# Le Chen,, Ezra Lee Clark,,,#

More information

Curriculum Vitae. or

Curriculum Vitae. or Curriculum Vitae Personal details Name Surname Tao Wang Place and Date of Birth (mm/dd/yy) Shandong, P.R. China, 10/09/1986 Marital status E-mail Married to XiaoHong Guo, one son tao.wang@ens-lyon.fr or

More information

X-ray absorption spectroscopy

X-ray absorption spectroscopy X-ray absorption spectroscopy Jagdeep Singh Jeroen A. van Bokhoven Absorption as function of energy of the x-ray Data-analysis Absorption (a.u.) 2.0 Pre-edge subtraction 1.5 1.0 0.5 0.0-0.5 8800 9000 9200

More information

M09/4/CHEMI/SPM/ENG/TZ1/XX+ CHEMISTRY. Monday 18 May 2009 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M09/4/CHEMI/SPM/ENG/TZ1/XX+ CHEMISTRY. Monday 18 May 2009 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M09/4/CHEMI/SPM/ENG/TZ1/XX+ 22096110 CHEMISTRY standard level Paper 1 Monday 18 May 2009 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so.

More information

Design of Efficient Catalysts with Double Transition Metal. Atoms on C 2 N Layer

Design of Efficient Catalysts with Double Transition Metal. Atoms on C 2 N Layer Supporting Information Design of Efficient Catalysts with Double Transition Metal Atoms on C 2 N Layer Xiyu Li, 1, Wenhui Zhong, 2, Peng Cui, 1 Jun Li, 1 Jun Jiang 1, * 1 Hefei National Laboratory for

More information

Ethane Oxidative Dehydrogenation Pathways on Vanadium Oxide Catalysts

Ethane Oxidative Dehydrogenation Pathways on Vanadium Oxide Catalysts J. Phys. Chem. B 2002, 106, 5421-5427 5421 Ethane Oxidative Dehydrogenation Pathways on Vanadium Oxide Catalysts Morris D. Argyle, Kaidong Chen, Alexis T. Bell,* and Enrique Iglesia* Chemical Sciences

More information

Supporting Information. Heterostructures of MXene and N-doped graphene as highly. active bifunctional electrocatalysts

Supporting Information. Heterostructures of MXene and N-doped graphene as highly. active bifunctional electrocatalysts Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting Information Heterostructures of MXene and N-doped graphene as highly active bifunctional

More information

Os/Pt Core-Shell Catalysts Validated by

Os/Pt Core-Shell Catalysts Validated by Supporting Information DFT Study of Oxygen Reduction Reaction on Os/Pt Core-Shell Catalysts Validated by Electrochemical Experiment Ho-Cheng Tsai, Yu-Chi Hsie,,, Ted H. Yu,, Yi-Juei Lee, Yue-Han Wu, Boris

More information

Catalysts Applied in Low-Temperature Methane Oxidation

Catalysts Applied in Low-Temperature Methane Oxidation Polish J of Environ Stud Vol 17, No 3 (2008), 433-437 Original Research Catalytic Properties of Ag/ Catalysts Applied in Low-Temperature Methane Oxidation A Lewandowska*, I Kocemba, J Rynkowski Institute

More information

materials and their properties

materials and their properties materials and their properties macroscopic properties phase state strength / stiffness electrical conductivity chemical properties color / transparence spectroscopical properties surface properties density

More information

Catalytic Aromatization of Methane

Catalytic Aromatization of Methane Catalytic Aromatization of Methane N.I.FAYZULLAYEV* 1, S.M.TUROBJONOV 2 1 Department of Natural Sciences, Division of Chemistry, Samarkand State University, Samarkand, Uzbekistan 2 Tashkent chemistry-technology

More information

Electrically pulsatile responsive drug delivery platform for treatment of Alzheimer s disease

Electrically pulsatile responsive drug delivery platform for treatment of Alzheimer s disease Electronic Supplementary Material Electrically pulsatile responsive drug delivery platform for treatment of Alzheimer s disease Li Wu 1,2, Jiasi Wang 1,2, Nan Gao 1, Jinsong Ren 1, Andong Zhao 1,2, and

More information

CO and NO induced disintegration of Rh, Pd, and Pt nanoparticles on TiO 2 (110): ab initio thermodynamics study

CO and NO induced disintegration of Rh, Pd, and Pt nanoparticles on TiO 2 (110): ab initio thermodynamics study CO and NO induced disintegration of Rh, Pd, and Pt nanoparticles on TiO 2 (110): ab initio thermodynamics study Bryan R. Goldsmith, Evan. D. Sanderson, Runhai Ouyang, Wei Xue Li University of California,

More information

Studies on Mo/HZSM-5 Complex catalyst for Methane Aromatization

Studies on Mo/HZSM-5 Complex catalyst for Methane Aromatization Journal of Natural Gas Chemistry 13(2004)36 40 Studies on Mo/HZSM-5 Complex catalyst for Methane Aromatization Qun Dong 1, Xiaofei Zhao 1, Jian Wang 1, M Ichikawa 2 1. Department of Petrochemical Engineering,

More information

School of Physical Science and Technology, ShanghaiTech University, Shanghai

School of Physical Science and Technology, ShanghaiTech University, Shanghai Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 1 Facile Two-step thermal annealing of graphite oxide in air for graphene with a 2 higher C/O

More information

Conversion of CO2. Shigeru FUTAMURA. National Institute of Advanced Industrial Science and Technology AIST Tsukuba West, 16-1 Onogawa, Tsukuba,

Conversion of CO2. Shigeru FUTAMURA. National Institute of Advanced Industrial Science and Technology AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Application of Nonthermal Plasma to Chemical Conversion of CO2 Shigeru FUTAMURA National Institute of Advanced Industrial Science and Technology AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki, 35-8569

More information

BIOENERGY II Temperature effect on hydrogen production from reactions between ethanol and steam in the presence of Pd- Ru/Nb O -TiO catalyst

BIOENERGY II Temperature effect on hydrogen production from reactions between ethanol and steam in the presence of Pd- Ru/Nb O -TiO catalyst BIOENERGY II Temperature effect on hydrogen production from reactions between ethanol and steam in the presence of Pd- Ru/Nb O -TiO catalyst 2 5 2 Christian G. Alonso 1, Andréia C. Furtado 1, Mauricio

More information

Molecular-Level Insight into Selective Catalytic Reduction of NO x with NH 3 to N 2

Molecular-Level Insight into Selective Catalytic Reduction of NO x with NH 3 to N 2 Supporting Information Molecular-Level Insight into Selective Catalytic Reduction of NO x with to N 2 over Highly Efficient Bifunctional V a Catalyst at Low Temperature Ying Xin, Hao Li, Nana Zhang, Qian

More information

Isotopic Tracer Studies of Reaction Pathways for Propane Oxidative Dehydrogenation on Molybdenum Oxide Catalysts

Isotopic Tracer Studies of Reaction Pathways for Propane Oxidative Dehydrogenation on Molybdenum Oxide Catalysts 646 J. Phys. Chem. B 2001, 105, 646-653 Isotopic Tracer Studies of Reaction Pathways for Propane Oxidative Dehydrogenation on Molybdenum Oxide Catalysts Kaidong Chen, Enrique Iglesia,* and Alexis T. Bell*

More information

Supporting Information Towards N-doped graphene via solvothermal synthesis

Supporting Information Towards N-doped graphene via solvothermal synthesis Supporting Information Towards N-doped graphene via solvothermal synthesis Dehui Deng1, Xiulian Pan1*, Liang Yu1, Yi Cui1, Yeping Jiang2, Jing Qi3, Wei-Xue Li1, Qiang Fu1, Xucun Ma2, Qikun Xue2, Gongquan

More information

Consequences of Surface Oxophilicity of Ni, Ni-Co, and Co Clusters on Methane. Activation

Consequences of Surface Oxophilicity of Ni, Ni-Co, and Co Clusters on Methane. Activation Supporting Information for: Consequences of Surface Oxophilicity of Ni, Ni-Co, and Co Clusters on Methane Activation Weifeng Tu, 1 Mireille Ghoussoub, Chandra Veer Singh,,3** and Ya-Huei (Cathy) Chin 1,*

More information

Oxide Formation of Transition Metal Surfaces and Effect on Catalysis

Oxide Formation of Transition Metal Surfaces and Effect on Catalysis Oxide Formation of Transition Metal Surfaces and Effect on Catalysis Wei-Xue Li State Key Laboratory of Catalysis, and Center for Theoretical and Computational Chemistry Dalian Institute of Chemical Physics,

More information

Supporting Information

Supporting Information Supporting Information Uniformly Sized (112) Facet Co 2 P on Graphene for Highly Effective Photocatalytic Hydrogen Evolution Bin Tian, a, b Zhen Li, a, b Wenlong Zhen c and Gongxuan Lu *a a State Key Laboratory

More information

The Seeding of Methane Oxidation

The Seeding of Methane Oxidation The Seeding of Methane Oxidation M. B. DAVIS and L. D. SCHMIDT* Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA Mixtures of light alkanes and

More information

Sorption Mechanism for CO 2 on Hydrotalcites For Sorption Enhanced Water Gas Shift processes

Sorption Mechanism for CO 2 on Hydrotalcites For Sorption Enhanced Water Gas Shift processes Sorption Mechanism for CO 2 on Hydrotalcites For Sorption Enhanced Water Gas Shift processes Soledad van Eijk Veldhoven 11 th February 2014 www.ecn.nl The world of SEWGS pre-combustion capture What is

More information

Facile Surface Functionalization of Carbon/Nafion for Enhancement of Methanol Electro-Oxidation. Hsin-Chu 30010, Taiwan

Facile Surface Functionalization of Carbon/Nafion for Enhancement of Methanol Electro-Oxidation. Hsin-Chu 30010, Taiwan 10.1149/1.3484693 The Electrochemical Society Facile Surface Functionalization of Carbon/Nafion for Enhancement of Methanol Electro-Oxidation Yu-Chi Hsieh, a Li-Chung Chang, b Pu-Wei Wu, a, * Jyh-Fu Lee,

More information

A new method of growing graphene on Cu by hydrogen etching

A new method of growing graphene on Cu by hydrogen etching A new method of growing graphene on Cu by hydrogen etching Linjie zhan version 6, 2015.05.12--2015.05.24 CVD graphene Hydrogen etching Anisotropic Copper-catalyzed Highly anisotropic hydrogen etching method

More information