CHEM 254 EXPERIMENT 2 Critical point determination for SF 6

Size: px
Start display at page:

Download "CHEM 254 EXPERIMENT 2 Critical point determination for SF 6"

Transcription

1 CHEM 254 EXPERIMENT 2 Critical point determination for SF 6 The equation of state of a gas defines the relationship between the pressure, temperature and volume of the gas. For ideal gases the equation of state is given as follows; P V m = R T (1) where P pressure, V m is the molar volume, R is the gas constant and T is the temperature. Real gases show deviations from the ideal behavior so when the real gases are considered interaction between the gas molecules and the volumes of the molecules must be included. When the equation of state (equation 1) is expressed with the virial coefficients as in equation (2) the behavior of real gases can be explained. P V m = R T + B (T) P + C (T) P 2 + (2) P V m = R T + B V m 1 + C V m 2 Most commonly used equation of state for real gases is the Van der Waal s equation written in terms of molar volume; (3) In this equation a and b are known as Van der Waals constants. These constants define the deviations from ideal gas behavior and they are characteristics of individual gases. Since there are intermolecular attractive forces between the molecules the constant a provides correction for these forces in real gases. So the term in the equation is concerned with the attraction forces where attraction behaves as an additional pressure and this pressure is called as cohesion pressure. The cohesion pressure of a real gas is considered to be caused by the collision interaction of the gas molecules. The constant b provides correction for the volume of the individual gas molecules and called as co-volume. The available free volume where the molecules move around is reduced by this co-volume. The radius of a gas molecule can be estimated by means of this constant b since it is related to the molecular volume. b= 4. N A. 4/3. π. r 3 (4) The constants of the Van der Waals equation of state can be used to calculate the Boyle Temperature in the equation (5). The temperature where the second virial coefficient B(T) is zero called as Boyle temperature. At this temperature, the properties of real gases are close to the properties of ideal gases.

2 Van der Waals constants can be experimentally determined from the measurement of the critical values of the gas. The temperature, pressure, and the volume at critical point are called the critical temperature, T c, critical pressure, P c, and critical volume, V c, of the gas. When the gas is compressed at a temperature below the critical temperature, Tc, the gas can be liquefied and there occurs a distinguishable phase boundary between the gas and liquid phases. However, at the critical temperature or above, the gas cannot be condensed and there no longer exists a phase boundary. The pressure corresponding to this temperature is called as critical pressure. In the figure below P-V m graph for CO 2 gas is given. The critical temperature can be determined from the graph which in this case corresponds to C and marked with a star. Figure 1: Experimental isotherms of CO 2 gas at several temperatures When these critical quantities are determined experimentally it is possible to calculate the constants a and b from the following equations; Purpose: In this experiment sulfur hexafluoride gas will be enclosed in a variable volume and the variation of pressure with the change in the volume is recorded at different temperatures. The critical point and the critical quantities of SF 6 gas will be determined. Constants of the Van der Waals equation, the Boyle temperature and the radius of the molecules will be calculated.

3 Apparatus and Chemicals Chemical: SF 6 Figure 2. Experimental set-up. Procedure 1. Set up the experiment as shown in Figure The P-V isotherms of SF 6 should be measured at the following temperatures: 37, 40, 43, 46, and 49 C. 3. Adjust the temperature of the thermostat (water bath) to 30 C. 4. Carefully turn the handwheel anti-clockwise down to the lower stop, so that the mercury surface is certainly below the inner opening of the valves. 5. Remove all residues of gas from the pressure chamber. To achieve this, evacuate the chamber for at least 30 minutes, so that any gas which might have been dissolved in the mercury is removed. 6. Fill the apparatus with SF 6. When connecting the gas container, it is necessary to prevent any potentially disturbing remnant air from the chamber. Connect the gas container, open the inlet valve a little, and rinse out any remaining air. Close the inlet valve and again evacuate the pressure chamber. After pumping for about 2 minutes, close the outlet valve and open the inlet valve to allow gas to flow into the chamber. Close the inlet valve. Remove the gas container and vacuum pump. The apparatus is now ready for use.

4 7. The pressure of the gas can be controlled using a mercury column. Perform a pressure reading for every 0.2 ml of volume difference. Read and record the exact pressure shown by the manometer. 8. Repeat the experiment for the temperature values mentioned above, collect data at these temperatures and fill in the table When you finish the experiment the piston must be lowered fully (i.e. the wheel turned as far anticlockwise as possible) Note! The setup includes a glass tube filled with SF 6 gas. This tube is surrounded by a water jacket where the temperature can be varied using the thermostat in the water bath. This allows you to control the temperature of the gas in the experiment. After a temperature change, wait for few minutes before reading the temperature to allow temperature equilibrium between the water bath and the gas to take place. Turn the handwheel to compress the gas until the mercury column is visible in the measuring capillary. With suitable gases, and on increasing compression, an increasing liquefaction of the gas can be seen above the mercury meniscus. The corresponding pressure values can be determined more accurately by lightly tapping the manometer to reduce frictional effects. Treatment of Data 1) Plot P-V graph for different temperatures (show each isotherm on the same graph) then find T cr from the graph and its corresponding P cr. 2) Calculate V cr from equation (6). 3) Calculate Van der Waals constants a and b by using the equations (7) and (8). 4) By using theoretical values of T cr and P cr calculate theoretical values of V cr, a and b. Find percent error for the Van der Waals constants. 5) Calculate radius of SF 6 gas from equation (4) and find percent error for this value. 6) Calculate Boyle Temperature from equation (5) for both experimental and theoretical values of a and b, then find percent error.

5 Questions 1) Define critical point and triple point. 2) What are the factors that affect the magnitude of a and b in Van der Walls equation? What is the difference between the two phase diagrams below? 3) Discuss your graph in terms of physical conditions & processes that take place in different regions. 4) What is the importance of supercritical fluids?

6 Data Sheet Table 1. SF 6 : s Volume (cm 3 ) 37 C 40 C 43 C 46 C 49 C

7

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc. Permission

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following is most likely not a gas at room temperature? 1) A) H2 B) Cl2

More information

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A.

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 3 PROPERTIES OF PURE SUBSTANCES Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc.

More information

Chapter 1. The Properties of Gases Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 1. The Properties of Gases Fall Semester Physical Chemistry 1 (CHM2201) Chapter 1. The Properties of Gases 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The Perfect Gas 1.1 The states of gases 1.2 The gas laws Real Gases 1.3 Molecular interactions 1.4 The van

More information

Fig Note the three different types of systems based on the type of boundary between system and surroundings.

Fig Note the three different types of systems based on the type of boundary between system and surroundings. CHAPTER 1 LECTURE NOTES System, Surroundings, and States Fig. 1.4 Note the three different types of systems based on the type of boundary between system and surroundings. Intensive and Extensive Properties

More information

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces Pearson Education, Inc.

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces Pearson Education, Inc. Lecture Presentation Chapter 11 Liquids and States of Matter The fundamental difference between states of matter is the strength of the intermolecular forces of attraction. Stronger forces bring molecules

More information

Copyright 2018 Dan Dill 1

Copyright 2018 Dan Dill 1 TP CO 2 gas at 1 atm, 0 is heated to 1 atm, 60 ; then compressed to 75 atm, 60 ; then cooled to 75 atm, 0 ; then expanded to 73 atm, 0. 1. gas 2. supercritical fluid 3. liquid 4. solid Lecture CH2 A2 (MWF

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc.

More information

Kinetic Theory (Kinetikos - Moving ) Based on the idea that particles of matter are always in motion

Kinetic Theory (Kinetikos - Moving ) Based on the idea that particles of matter are always in motion Chapter 10 Kinetic Theory (Kinetikos - Moving ) Based on the idea that particles of matter are always in motion The motion has consequences Behavior of Gases Physical Properties of Gases Ideal Gas an imaginary

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY

Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Compressed liquid (sub-cooled liquid): A substance that it is

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 5 Aleksey Kocherzhenko February 10, 2015" Last time " Diffusion, effusion, and molecular collisions" Diffusion" Effusion" Graham s law: " " " 1 2 r / M " (@ fixed T

More information

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vacuum (VAK) Group B412. Patrick Christ and Daniel Biedermann

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vacuum (VAK) Group B412. Patrick Christ and Daniel Biedermann TECHNISCHE UNIVERSITÄT MÜNCHEN Vacuum (VAK) Group B412 Patrick Christ and Daniel Biedermann 12.10.2009 0. CONTENT 0. CONTENT... 2 1. INTRODUCTION... 2 2. DESCRIPTION OF THE USED METHODS... 2 3. EXPERIMENTAL

More information

CHAPTER 10. States of Matter

CHAPTER 10. States of Matter CHAPTER 10 States of Matter Kinetic Molecular Theory Kinetikos - Moving Based on the idea that particles of matter are always in motion The motion has consequences Explains the behavior of Gases, Liquids,

More information

CHAPTER 10. Kinetic Molecular Theory. Five Assumptions of the KMT. Atmospheric Pressure

CHAPTER 10. Kinetic Molecular Theory. Five Assumptions of the KMT. Atmospheric Pressure Kinetic Molecular Theory CHAPTER 10 States of Matter Kinetikos - Moving Based on the idea that particles of matter are always in motion The motion has consequences Explains the behavior of Gases, Liquids,

More information

Real Gases. Sections (Atkins 6th Ed.), (Atkins 7-9th Eds.)

Real Gases. Sections (Atkins 6th Ed.), (Atkins 7-9th Eds.) Real Gases Sections 1.4-1.6 (Atkins 6th Ed.), 1.3-1.5 (Atkins 7-9th Eds.) Molecular Interactions Compression factor Virial coefficients Condensation Critical Constants Van der Waals Equation Corresponding

More information

Chapters 11 and 12: Intermolecular Forces of Liquids and Solids

Chapters 11 and 12: Intermolecular Forces of Liquids and Solids 1 Chapters 11 and 12: Intermolecular Forces of Liquids and Solids 11.1 A Molecular Comparison of Liquids and Solids The state of matter (Gas, liquid or solid) at a particular temperature and pressure depends

More information

Chemistry: The Central Science

Chemistry: The Central Science Chemistry: The Central Science Fourteenth Edition Chapter 11 Liquids and Intermolecular Forces Intermolecular Forces The attractions between molecules are not nearly as strong as the intramolecular attractions

More information

Satish Chandra. Unit I, REAL GASES. Lecture Notes Dated: Dec 08-14, Vander-Waals Gas

Satish Chandra. Unit I, REAL GASES. Lecture Notes Dated: Dec 08-14, Vander-Waals Gas Vander-Waals Gas Lecture Notes Dated: Dec 08-14, 01 Many equations have been proposed which describe the pvt relations of real gases more accurately than does the equation of state of an ideal gas. Some

More information

Theory (NOTE: This theory is the same that we covered before in Experiment 11on the Ideal Gas model)

Theory (NOTE: This theory is the same that we covered before in Experiment 11on the Ideal Gas model) Experiment 12 CHARLES LAW Objectives 1. To set up a model of thermal machine, 2. To put to work the model to verify Charles law, 3. To describe and explain Charles law Theory (NOTE: This theory is the

More information

Properties of Gases. The perfect gas. States of gases Gas laws Kinetic model of gases (Ch th ed, th ed.) Real gases

Properties of Gases. The perfect gas. States of gases Gas laws Kinetic model of gases (Ch th ed, th ed.) Real gases Properties of Gases Chapter 1 of Physical Chemistry - 6th Edition P.W. Atkins. Chapter 1 and a little bit of Chapter 24 of 7th Edition. Chapter 1 and a little bit of Chapter 21 of 8th edition. The perfect

More information

CHEMISTRY. CHM202 Class #2 CHEMISTRY. Chapter 10. Chapter Outline for Class #2

CHEMISTRY. CHM202 Class #2 CHEMISTRY. Chapter 10. Chapter Outline for Class #2 CHEMISTRY Fifth Edition Gilbert Kirss Foster Bretz Davies CHM202 Class #2 1 Chemistry, 5 th Edition Copyright 2017, W. W. Norton & Company CHEMISTRY Fifth Edition Gilbert Kirss Foster Bretz Davies Chapter

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11 Liquids and Intermolecular Forces States of Matter The three states of matter are 1) Solid Definite shape Definite volume 2) Liquid Indefinite shape Definite volume 3) Gas Indefinite shape Indefinite

More information

Thermodynamics I. Properties of Pure Substances

Thermodynamics I. Properties of Pure Substances Thermodynamics I Properties of Pure Substances Dr.-Eng. Zayed Al-Hamamre 1 Content Pure substance Phases of a pure substance Phase-change processes of pure substances o Compressed liquid, Saturated liquid,

More information

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces Liquids, Solids, and Intermolecular Forces Chapter 11 Comparisons of the States of Matter The solid and liquid states have a much higher density than the gas state The solid and liquid states have similar

More information

What we will learn about now

What we will learn about now Chapter 4: Gases What we will learn about now We will learn how volume, pressure, temperature are related. You probably know much of this qualitatively, but we ll learn it quantitatively as well with the

More information

All gases display distinctive properties compared with liquid or solid. Among them, five properties are the most important and listed below:

All gases display distinctive properties compared with liquid or solid. Among them, five properties are the most important and listed below: CHEM 1111 117 Experiment 8 Ideal gas Objective: 1. Advance core knowledge of ideal gas law; 2. Construct the generator to produce gases; 3. Collect the gas under ambient temperature. Introduction: An ideal

More information

Ch 6 Gases 6 GASES. Property of gases. pressure = force/area

Ch 6 Gases 6 GASES. Property of gases. pressure = force/area 6 GASES Gases are one of the three states of matter, and while this state is indispensable for chemistry's study of matter, this chapter mainly considers the relationships between volume, temperature and

More information

Chapter 11. Intermolecular Forces, Liquids, and Solids

Chapter 11. Intermolecular Forces, Liquids, and Solids Chapter 11. Intermolecular Forces, Liquids, and Solids A Molecular Comparison of Gases, Liquids, and Solids Physical properties of substances are understood in terms of kinetic-molecular theory: Gases

More information

1. What is the value of the quantity PV for one mole of an ideal gas at 25.0 C and one atm?

1. What is the value of the quantity PV for one mole of an ideal gas at 25.0 C and one atm? Real Gases Thought Question: How does the volume of one mole of methane gas (CH4) at 300 Torr and 298 K compare to the volume of one mole of an ideal gas at 300 Torr and 298 K? a) the volume of methane

More information

Ideal Gases. 247 minutes. 205 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments:

Ideal Gases. 247 minutes. 205 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments: Ideal Gases Name: Class: Date: Time: 247 minutes Marks: 205 marks Comments: Page 1 of 48 1 Which one of the graphs below shows the relationship between the internal energy of an ideal gas (y-axis) and

More information

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 3: The Three States of Matter

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 3: The Three States of Matter General Chemistry I Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University Module 3: The Three States of Matter Gas state (Equation of state: ideal gas and real gas). Liquid state

More information

PV = nrt where R = universal gas constant

PV = nrt where R = universal gas constant Ideal Gas Law Dd Deduced dfrom Combination of Gas Relationships: V 1/P, Boyle's Law V, Charles's Law V n, Avogadro'sLaw Therefore, V nt/p or PV nt PV = nrt where R = universal gas constant The empirical

More information

Properties of Gases. Molecular interactions van der Waals equation Principle of corresponding states

Properties of Gases. Molecular interactions van der Waals equation Principle of corresponding states Properties of Gases Chapter 1 of Atkins and de Paula The Perfect Gas States of gases Gas laws Real Gases Molecular interactions van der Waals equation Principle of corresponding states Kinetic Model of

More information

Ch. 11: Liquids and Intermolecular Forces

Ch. 11: Liquids and Intermolecular Forces Ch. 11: Liquids and Intermolecular Forces Learning goals and key skills: Identify the intermolecular attractive interactions (dispersion, dipole-dipole, hydrogen bonding, ion-dipole) that exist between

More information

CHAPTER. Properties of Pure Substances

CHAPTER. Properties of Pure Substances CHAPTER 2 Properties of Pure Substances A Pure Substance Is a substance that is chemically homogenous and fixed in chemical composition.(e.g. water, nitrogen, air & etc.) mixture of oil and water is not

More information

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings.

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Chapter 5 Gases Chapter 5 A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Copyright Cengage Learning. All rights reserved

More information

States of Matter. Reviewing Vocabulary. Match the definition in Column A with the term in Column B.

States of Matter. Reviewing Vocabulary. Match the definition in Column A with the term in Column B. Name Date Class States of Matter Reviewing Vocabulary Match the definition in Column A with the term in Column B. Column A 1. A measure of the resistance of a liquid to flow 2. The energy required to increase

More information

Basic Thermodynamics Module 1

Basic Thermodynamics Module 1 Basic Thermodynamics Module 1 Lecture 9: Thermodynamic Properties of Fluids Thermodynamic Properties of fluids Most useful properties: Properties like pressure, volume and temperature which can be measured

More information

1 Points to Remember Subject: Chemistry Class: XI Chapter: States of matter Top concepts 1. Intermolecular forces are the forces of attraction and repulsion between interacting particles (atoms and molecules).

More information

Chapter 11 Gases 1 Copyright McGraw-Hill 2009

Chapter 11 Gases 1 Copyright McGraw-Hill 2009 Chapter 11 Gases Copyright McGraw-Hill 2009 1 11.1 Properties of Gases The properties of a gas are almost independent of its identity. (Gas molecules behave as if no other molecules are present.) Compressible

More information

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives 3 i i 2 1 INTRODUCTION Property:

More information

Chapter 10. Chapter 10 Gases

Chapter 10. Chapter 10 Gases Chapter 10 Gases Earth is surrounded by a layer of gaseous molecules - the atmosphere - extending out to about 50 km. 10.1 Characteristics of Gases Gases low density; compressible volume and shape of container

More information

Mr. Bracken. Intermolecular Forces Notes #1

Mr. Bracken. Intermolecular Forces Notes #1 Mr. Bracken AP Chemistry Name Period Intermolecular Forces Notes #1 States of Matter: A gas expands to fill its container, has neither a fixed volume nor shape, and is easily compressible. A liquid has

More information

Name AP Chemistry / / Chapter 5 Collected AP Exam Free Response Questions Answers

Name AP Chemistry / / Chapter 5 Collected AP Exam Free Response Questions Answers Name AP Chemistry / / Chapter 5 Collected AP Exam Free Response Questions 1980 2010 - Answers 1982 - #5 (a) From the standpoint of the kinetic-molecular theory, discuss briefly the properties of gas molecules

More information

van der Waals Isotherms near T c

van der Waals Isotherms near T c van der Waals Isotherms near T c v d W loops are not physical. Why? Patch up with Maxwell construction van der Waals Isotherms, T/T c van der Waals Isotherms near T c Look at one of the van der Waals isotherms

More information

Gases. A gas. Difference between gas and vapor: Why Study Gases?

Gases. A gas. Difference between gas and vapor: Why Study Gases? Gases Chapter 5 Gases A gas Uniformly fills any container. Is easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Difference between gas and vapor: A gas is a substance

More information

Solid to liquid. Liquid to gas. Gas to solid. Liquid to solid. Gas to liquid. +energy. -energy

Solid to liquid. Liquid to gas. Gas to solid. Liquid to solid. Gas to liquid. +energy. -energy 33 PHASE CHANGES - To understand solids and liquids at the molecular level, it will help to examine PHASE CHANGES in a little more detail. A quick review of the phase changes... Phase change Description

More information

Real Gases 1. The value of compressibility factor for one mole of a gas under critical states is 1) 3/8 2) 2/3 3) 8/27 4) 27/8 2. an der Waal s equation for one mole of CO2 gas at low pressure will be

More information

Thermodynamics 1 Lecture Note 1

Thermodynamics 1 Lecture Note 1 Thermodynamics 1 Lecture Note 1 March 02, 2015 Kwang Kim Yonsei University kbkim@yonsei.ac.kr 39 8 7 34 53 Y O N Se I 88.91 16.00 14.01 78.96 126.9 Scientific Thinking - System under investigation - Description

More information

B 2, C 2, N 2. O 2, F 2, Ne 2. Energy order of the p 2p and s 2p orbitals changes across the period.

B 2, C 2, N 2. O 2, F 2, Ne 2. Energy order of the p 2p and s 2p orbitals changes across the period. Chapter 11 Gases Energy order of the p p and s p orbitals changes across the period. Due to lower nuclear charge of B, C & N there is no s-p orbitals interaction Due to high nuclear charge of O, F& Ne

More information

AE 3051, Lab #16. Investigation of the Ideal Gas State Equation. By: George P. Burdell. Group E3

AE 3051, Lab #16. Investigation of the Ideal Gas State Equation. By: George P. Burdell. Group E3 AE 3051, Lab #16 Investigation of the Ideal Gas State Equation By: George P. Burdell Group E3 Summer Semester 000 Abstract The validity of the ideal gas equation of state was experimentally tested for

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

CHM2045 F13: Exam # MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHM2045 F13: Exam # MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CHM2045 F13: Exam #3 2013.11.15 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A metal crystallizes in a face centered cubic structure and has

More information

Question Bank Study of Gas Laws

Question Bank Study of Gas Laws Study of Gas Laws. Fill in the blank spaces with appropriate words given within the brackets. (i) Pressure remaining constant, the (mass/volume) of an enclosed gas is directly proportional to the kelvin

More information

PC1142 Physics II. The Ideal Gas Law

PC1142 Physics II. The Ideal Gas Law PC114 Physics II The Ideal Gas Law 1 Objectives Determine experimentally the ideal gas law governing the pressure P, volume V and temperature T of an ideal gas. Determine an experimental value for the

More information

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams.

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams. CHM 111 Chapter 9 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

SPH 302 THERMODYNAMICS

SPH 302 THERMODYNAMICS THERMODYNAMICS Nyongesa F. W., PhD. e-mail: fnyongesa@uonbi.ac.ke 1 Objectives Explain the Laws of thermodynamics & their significance Apply laws of thermodynamics to solve problems relating to energy

More information

Thermodynamics. Joule-Thomson effect Ideal and Real Gases. What you need: Complete Equipment Set, Manual on CD-ROM included

Thermodynamics. Joule-Thomson effect Ideal and Real Gases. What you need: Complete Equipment Set, Manual on CD-ROM included Ideal Real Gases Thermodynamics 30600 What you can learn about Real gas Intrinsic energy Gay-Lussac theory Throttling Van der Waals equation Van der Waals force Inverse Inversion temperature Principle:

More information

CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY

CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY . Pressure CHAPER GASES AND KINEIC-MOLECULAR HEORY. Boyle s Law: he -P Relationship 3. Charles Law: he - Relationship 4. Standard &P 5. he Combined Gas Law Equation 6. Avogadro s Law and the Standard Molar

More information

S OF MATTER TER. Unit. I. Multiple Choice Questions (Type-I)

S OF MATTER TER. Unit. I. Multiple Choice Questions (Type-I) Unit 5 STATE TES TE S OF MATTER MA TER I. Multiple Choice Questions (Type-I) 1. A person living in Shimla observed that cooking food without using pressure cooker takes more time. The reason for this observation

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11. Liquids and Intermolecular Forces 11.1 A Molecular Comparison of Gases, Liquids, and Solids Gases are highly compressible and assume the shape and volume of their container. Gas molecules are

More information

pv = nrt Where n is the number of moles of gas and R, the molar constant of gases, with a value of

pv = nrt Where n is the number of moles of gas and R, the molar constant of gases, with a value of Experiment 11 IDEAL GAS Objectives 1. To set up a thermal machine laboratory model, 2. To raise an object of a given mass using the thermal machine model, and 3. To describe and explain the operation of

More information

EXPERIMENT 4 THE RATIO OF HEAT CAPACITIES

EXPERIMENT 4 THE RATIO OF HEAT CAPACITIES EXPERIMENT 4 THE RATIO OF HEAT CAPACITIES Air contained in a large jar is subjected to an adiabatic expansion then an isochoric process. If the initial, final, and atmospheric pressures are known, then

More information

Chapter 5 Gases. Chapter 5: Phenomena. Properties of Gases. Properties of Gases. Pressure. Pressure

Chapter 5 Gases. Chapter 5: Phenomena. Properties of Gases. Properties of Gases. Pressure. Pressure Chapter 5: Phenomena Phenomena: To determine the properties of gases scientists recorded various observations/measurements about different gases. Analyze the table below looking for patterns between the

More information

Equation of state of ideal gases Students worksheet

Equation of state of ideal gases Students worksheet 3.2.1 Tasks For a constant amount of gas (in our case air) investigate the correlation between 1. Volume and pressure at constant temperature (Boyle-Marriotte s law) 2. Temperature and volume at constant

More information

JSUNIL TUTORIAL. 6. Gay lussac s Law : At constant V, The pressure of fixed amount of gas varies directly with its absolute temperature.

JSUNIL TUTORIAL. 6. Gay lussac s Law : At constant V, The pressure of fixed amount of gas varies directly with its absolute temperature. CHAER 5 SAES OF MAER. Change in state : It is over all effect of Intermolecular forces, molecular Interactional energy & thermal energy:. Measurable properties of gases :,,, n, iscosity, specific heat

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Chapter 3 PROPERTIES OF PURE SUBSTANCES PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure

More information

Visit For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12 V T P T. const, T

Visit  For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12 V T P T. const, T isit www.ncerthelp.com For All NCER solutions, CBSE sample papers, Question papers, Notes for Class 6 to CHAER 5 SAES OF MAER. Change in state : It is over all effect of Intermolecular forces, molecular

More information

Kinetic Molecular Theory. 1. What are the postulates of the kinetic molecular theory?

Kinetic Molecular Theory. 1. What are the postulates of the kinetic molecular theory? Kinetic Molecular Theory 1. What are the postulates of the kinetic molecular theory? *These postulates are particularly problematic when it comes to extending this theory to real gases. Regardless of how

More information

askiitians Class: 11 Subject: Chemistry Topic: Kinetic theory of gases No. of Questions: The unit of universal gas constant in S.I.

askiitians Class: 11 Subject: Chemistry Topic: Kinetic theory of gases No. of Questions: The unit of universal gas constant in S.I. Class: 11 Subject: Chemistry Topic: Kinetic theory of gases No. of Questions: 33 1. The unit of universal gas constant in S.I.unit is A. calorie per degree Celsius B. joule per mole C. joule/k mole C 2.

More information

Chapter 10. Lesson Starter. Why did you not smell the odor of the vapor immediately? Explain this event in terms of the motion of molecules.

Chapter 10. Lesson Starter. Why did you not smell the odor of the vapor immediately? Explain this event in terms of the motion of molecules. Preview Lesson Starter Objectives The Kinetic-Molecular Theory of Gases The Kinetic-Molecular Theory and the Nature of Gases Deviations of Real Gases from Ideal Behavior Section 1 The Kinetic-Molecular

More information

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES 30 SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES * Gas molecules are small compared to the space between them. * Gas molecules move in straight lines

More information

CHEM. Ch. 12 Notes ~ STATES OF MATTER

CHEM. Ch. 12 Notes ~ STATES OF MATTER CHEM. Ch. 12 Notes ~ STATES OF MATTER NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 12.1 topics States of Matter: SOLID, LIQUID, GAS, PLASMA I. Kinetic Theory

More information

Lecture 2 PROPERTIES OF GASES

Lecture 2 PROPERTIES OF GASES Lecture 2 PROPERTIES OF GASES Reference: Principles of General Chemistry, Silberberg Chapter 6 SOME FUNDAMENTAL DEFINITIONS: SYSTEM: the part of the universe being the subject of study 1 SOME FUNDAMENTAL

More information

Review of differential and integral calculus and introduction to multivariate differential calculus.

Review of differential and integral calculus and introduction to multivariate differential calculus. Chemistry 2301 Introduction: Review of terminology used in thermodynamics Review of differential and integral calculus and introduction to multivariate differential calculus. The properties of real gases:

More information

Chapter 10: States of Matter. Concept Base: Chapter 1: Properties of Matter Chapter 2: Density Chapter 6: Covalent and Ionic Bonding

Chapter 10: States of Matter. Concept Base: Chapter 1: Properties of Matter Chapter 2: Density Chapter 6: Covalent and Ionic Bonding Chapter 10: States of Matter Concept Base: Chapter 1: Properties of Matter Chapter 2: Density Chapter 6: Covalent and Ionic Bonding Pressure standard pressure the pressure exerted at sea level in dry air

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

Chapter 10 Gases. Measurement of pressure: Barometer Manometer Units. Relationship of pressure and volume (Boyle s Law)

Chapter 10 Gases. Measurement of pressure: Barometer Manometer Units. Relationship of pressure and volume (Boyle s Law) Chapter 10 Gases Conditions of ideal gases: Ideal gases have no attractive forces between the molecules. the atoms volume taken into account when looking at the volume a gas occupies. Low pressure and

More information

Liquids and Intermolecular Forces. Course Learning Outcomes for Unit I. Reading Assignment. Unit Lesson UNIT I STUDY GUIDE

Liquids and Intermolecular Forces. Course Learning Outcomes for Unit I. Reading Assignment. Unit Lesson UNIT I STUDY GUIDE UNIT I STUDY GUIDE Liquids and Intermolecular Forces Course Learning Outcomes for Unit I Upon completion of this unit, students should be able to: 1. Identify the intermolecular attractive interactions

More information

Ch Kinetic Theory. 1.All matter is made of atoms and molecules that act like tiny particles.

Ch Kinetic Theory. 1.All matter is made of atoms and molecules that act like tiny particles. Ch. 15.1 Kinetic Theory 1.All matter is made of atoms and molecules that act like tiny particles. Kinetic Theory 2.These tiny particles are always in motion. The higher the temperature, the faster the

More information

Name Quarterly Practice # 1 Period

Name Quarterly Practice # 1 Period Name Quarterly Practice # 1 Period 1. Based on data collected during a laboratory investigation, a student determined an experimental value of 322 joules per gram for the heat of fusion of H2O. Calculate

More information

Quick Review 1. Properties of gases. 2. Methods of measuring pressure of gases. 3. Boyle s Law, Charles Law, Avogadro s Law. 4. Ideal gas law.

Quick Review 1. Properties of gases. 2. Methods of measuring pressure of gases. 3. Boyle s Law, Charles Law, Avogadro s Law. 4. Ideal gas law. Quick Review 1. Properties of gases. 2. Methods of measuring pressure of gases. 3. Boyle s Law, Charles Law, Avogadro s Law. 4. Ideal gas law. 5. Dalton s law of partial pressures. Kinetic Molecular Theory

More information

Chapter 5 Gases and the Kinetic-Molecular Theory

Chapter 5 Gases and the Kinetic-Molecular Theory Chapter 5 Gases and the Kinetic-Molecular Theory Name (Formula) Methane (CH 4 ) Ammonia (NH 3 ) Chlorine (Cl 2 ) Oxygen (O 2 ) Ethylene (C 2 H 4 ) Origin and Use natural deposits; domestic fuel from N

More information

Name Date Class STATES OF MATTER. Match the correct state of matter with each description of water by writing a letter on each line.

Name Date Class STATES OF MATTER. Match the correct state of matter with each description of water by writing a letter on each line. 10 STATES OF MATTER SECTION 10.1 THE NATURE OF GASES (pages 267 272) This section describes how the kinetic theory applies to gases. It defines gas pressure and explains how temperature is related to the

More information

LAB 12 - THE IDEAL GAS LAW

LAB 12 - THE IDEAL GAS LAW L12-1 Name Date Partners LAB 12 - THE IDEAL GAS LAW OBJECTIVES... the hypothesis, that supposes the pressures and expansions to be in reciprocal proportions.. Robert Boyle To understand how a gaseous system

More information

Ideal Gas Law. Name, Date, Partner Lab Section. Date, Partner and Lab Section

Ideal Gas Law. Name, Date, Partner Lab Section. Date, Partner and Lab Section Ideal Gas Law Jane Doe Physics 16, Tuesday Section Title Title Partner: Michelle Smith Sept. 12, 2006 Introduction: Name, Date, Partner and Name, Lab Section Date, Partner and Lab Section The purpose of

More information

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant Forces-Archimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation

More information

Pressure. Pressure Units. Molecular Speed and Energy. Molecular Speed and Energy

Pressure. Pressure Units. Molecular Speed and Energy. Molecular Speed and Energy Pressure is defined as force per unit area. Pressure Pressure is measured with a device called a barometer. A mercury barometer uses the weight of a column of Hg to determine the pressure of gas pushing

More information

AP Chemistry Ch 5 Gases

AP Chemistry Ch 5 Gases AP Chemistry Ch 5 Gases Barometer - invented by Evangelista Torricelli in 1643; uses the height of a column of mercury to measure gas pressure (especially atmospheric) Manometer- a device for measuring

More information

9/2/10 TYPES OF INTERMOLECULAR INTERACTIONS

9/2/10 TYPES OF INTERMOLECULAR INTERACTIONS Tro Chpt. 11 Liquids, solids and intermolecular forces Solids, liquids and gases - A Molecular Comparison Intermolecular forces Intermolecular forces in action: surface tension, viscosity and capillary

More information

Thermodynamic Systems

Thermodynamic Systems Thermodynamic Systems For purposes of analysis we consider two types of Thermodynamic Systems: Closed System - usually referred to as a System or a Control Mass. This type of system is separated from its

More information

7/16/2012. Characteristics of Gases. Chapter Five: Pressure is equal to force/unit area. Manometer. Gas Law Variables. Pressure-Volume Relationship

7/16/2012. Characteristics of Gases. Chapter Five: Pressure is equal to force/unit area. Manometer. Gas Law Variables. Pressure-Volume Relationship 7/6/0 Chapter Five: GASES Characteristics of Gases Uniformly fills any container. Mixes completely with any other gas. Exerts pressure on its surroundings. When subjected to pressure, its volume decreases.

More information

Thermochemistry/Calorimetry. Determination of the enthalpy of vaporization of liquids LEC 02. What you need: What you can learn about

Thermochemistry/Calorimetry. Determination of the enthalpy of vaporization of liquids LEC 02. What you need: What you can learn about LEC 02 Thermochemistry/Calorimetry Determination of the enthalpy of vaporization of liquids What you can learn about Enthalpy of vaporisation Entropy of vaporisation Trouton s rule Calorimetry Heat capacity

More information

CM 3230 Thermodynamics, Fall 2016 Lecture 16

CM 3230 Thermodynamics, Fall 2016 Lecture 16 CM 3230 Thermodynamics, Fall 2016 Lecture 16 1. Joule-Thomsom Expansion - For a substance flowing adiabatically through a throttle (valve or pourous plug): in > out and negligible change in kinetic and

More information

C a h p a t p er 3 The Importance of State Functions: Internal Energy and Enthalpy

C a h p a t p er 3 The Importance of State Functions: Internal Energy and Enthalpy Chapter 3 he Importance of State Functions: Internal Energy and Enthalpy Engel & Reid 1 Outline 3.1 he Mathematical roperties of State Functions 3.2 he Dependence of U on and 3.3 Does he Internal Energy

More information

CHEM 254 EXPERIMENT 7. Phase Diagrams - Liquid Vapour Equilibrium for two component solutions

CHEM 254 EXPERIMENT 7. Phase Diagrams - Liquid Vapour Equilibrium for two component solutions pressure CHEM 254 EXPERIMENT 7 Phase Diagrams - Liquid Vapour Equilibrium for two component solutions The partial pressures of the components of an ideal solution of two volatile liquids are related to

More information

EXPERIMENTAL APPARATUS FOR MEASUREMENT OF DENSITY OF SUPERCOOLED WATER AT HIGH PRESSURE

EXPERIMENTAL APPARATUS FOR MEASUREMENT OF DENSITY OF SUPERCOOLED WATER AT HIGH PRESSURE EPJ Web of Conferences, 010 (2012) DOI: 10.1051/epjconf/201225010 Owned by the authors, published by EDP Sciences, 2012 EXPERIMENTAL APPARATUS FOR MEASUREMENT OF DENSITY OF SUPERCOOLED WATER AT HIGH PRESSURE

More information

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES 30 SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES * Gas molecules are small compared to the space between them. * Gas molecules move in straight lines

More information

Activities for chapter 13: States of matter

Activities for chapter 13: States of matter Activities for chapter 13: States of matter What do I already know about states of matter? (index card) and Vocabulary table Chapter 13 reading guide (feb break assignment) and Powerpoints POGIL activities:

More information

Liquids & Solids: Section 12.3

Liquids & Solids: Section 12.3 Liquids & Solids: Section 12.3 MAIN IDEA: The particles in and have a range of motion and are not easily. Why is it more difficult to pour syrup that is stored in the refrigerator than in the cabinet?

More information