Exploring the spatial resolution of positionsensitive microchannel plate detectors

Size: px
Start display at page:

Download "Exploring the spatial resolution of positionsensitive microchannel plate detectors"

Transcription

1 Exploring the spatial resolution of positionsensitive microchannel plate detectors Blake Wiggins, Davinder Siwal, Romualdo T. desouza Cold neutrons A. S. Tremsin et al, Nucl. Instr. Meth. A 652, 400 (2011). Good spatial information is essential for quality imaging. Whether detecting photons, ions, or neutrons inevitably one is concerned with the detection of electrons. Goal: Development of a detector with (a) single-electron sensitivity, (b) submillimeter spatial resolution, (c) sub-nanosecond time resolution, and (d) the capability of resolving two spatially separated, simultaneous electrons. Supported by the NNSA under award no. DE-NA E. H. Gschweng et al, Cancer Res. 74, 5173 (2014).

2 Introduction to the Induced Signal Approach A single electron is amplified to a cloud of electrons, which is sensed by a wire plane (2 orthogonal planes can provide 2D). Wires in the sense wire plane have a 1 mm pitch and are connected to taps on a delay line. Position is related to the time difference between the signals arriving at the ends of the delay line. Resolution = 466 μm FWHM R. T. desouza et al, Rev. Sci. Instrum. 83, (2012). Blake Wiggins Indiana University 2

3 Improvement to the Induced Signal Approach Digitized Sense Wires x 2 FFT (150 MHz cutoff frequency) Linear Interpolation (0.5ns step -> 0.05 ns step) Take Derivative 1) FFT (500 MHz cutoff frequency) 2) Extract Max With digital signal processing, resolution = 115 μm FWHM To date only the zero-crossing point in the induced signal has been utilized. However, the entire pulse shape contains information. To use this information, we need to understand the dependence of the detailed shape of the induced signal on position. Blake Wiggins Indiana University 3

4 An Approach to Characterize the Induced Signals Idea: Use independent measure of position to characterize the induced signals. Replaced sense wires and metal anode with a resistive anode (Quantar Technology). Q 1 Y=1 Q 0 Charge-Division Method: X=0 X=1 Q 2 Y=0 Q 3 Total charge of the event is measured from the MCP. Position is derived from the four corners of the resistive anode using conventional electronics: charge-sensitive amplifiers, shaping amplifiers, and a peak-sensing ADC. Using only charge division, resolution = 157 μm FWHM Can the joint use of charge division and pulse shape information improve the spatial resolution? B. B. Wiggins et al, Rev. Sci. Instrum. 86, (2015). Blake Wiggins Indiana University 4

5 Spatial Resolution of the Resistive Anode (RA) A clear correlation is evident between the signal risetime and Y position. Use of the signal risetime in addition to the charge-division method results in a significantly improved resolution. Using pulse shape analysis, resolution = 64 μm (FWHM) However, insertion of a sense wire plane prior to the RA resulted in large coupling of RA to the sense wire plane. Thus, it is not feasible to use the RA to characterize the induced signals. D. Siwal et al, Nucl. Instr. Meth. A 804, 144 (2015). Blake Wiggins Indiana University 5

6 Spatial Resolution of the Resistive Anode (RA) A clear correlation is evident between the signal risetime and Y position. Use of the signal risetime in addition to the charge-division method results in a significantly improved resolution. Using pulse shape analysis, resolution = 64 μm (FWHM) However, insertion of a sense wire plane prior to the RA resulted in large coupling of RA to the sense wire plane. Thus, it is not feasible to use the RA to characterize the induced signals. D. Siwal et al, Nucl. Instr. Meth. A 804, 144 (2015). Blake Wiggins Indiana University 5

7 Multi-Strip Anode Anode strips are 250 μm wide with 75 μm interstrip isolation. Anode area is approximately 3 cm x 3 cm. Even and odd strips are independently coupled to the taps of a delay line. Signals from the delay line are processed in a similar fashion to the induced signal approach. Z-Stack MCP Resolution = 94 μm FWHM Sense Wire Plane (1 mm pitch) Multi-Strip Anode Can correlating the induced signal shape with the position measured by the multi-strip anode be used to improve the spatial resolution of the induced signal approach? Blake Wiggins Indiana University 6

8 Conclusions Position-Sensitive MCP Detector Spatial Resolution FWHM (μm) Resistive Anode 157 Resistive Anode- Risetime Analysis 64 Multi-Strip Anode (delay line) 94 First Generation Induced Signal 466 Induced Signal with DSP 115 1) Using pulse-shape (risetime) analysis for the resistive anode, we have achieved more than a factor of two better than what has been previously obtained. 2) Using a multi-strip anode with delay line readout, we achieved a sub 100 μm resolution typically obtained only with high density, complex charge sensitive readout. 3) For the induced signal detector, we have achieved a resolution of 115 μm using only the zero-crossing point of the signal and are now poised to characterize and make use of the entire signal shape. Blake Wiggins Indiana University 7

9 Outlook: Neutron Imaging The detector will be used for neutron imaging using both slow and fast neutrons. The measurements will be carried out at the LENS facility at Indiana University. Low Energy Neutron Source (LENS) Characteristics of LENS: 13 MeV proton linac driver 9 Be(p,n) reaction to produce neutrons Thermalization (polyethylene, solid CH 4 at 6.5K) 100 n/(ms.cm 2 ) neutron flux 10 B + n 11 B* 6% 94% 7 Li* 478 kev ϒ 7 Li Blake Wiggins Indiana University 8

10 Acknowledgements Indiana University Nuclear Chemistry: D. Siwal, S. Hudan, R. T. desouza, Z. desouza, J. Huston, T. K. Steinbach, V. Singh, J. Vadas Indiana University Chemistry Department: Mechanical Instrument Services and Electronic Instrument Services National Nuclear Security Association: Award No. DE-NA Blake Wiggins Indiana University 9

Optimizing the position resolution of a Z-stack microchannel plate resistive anode detector for low intensity signals

Optimizing the position resolution of a Z-stack microchannel plate resistive anode detector for low intensity signals Optimizing the position resolution of a Z-stack microchannel plate resistive anode detector for low intensity signals B.B. Wiggins, E. Richardson,, a) D. Siwal, S. Hudan,, b) and R.T. desouza Indiana University,

More information

BEAM BEAM. cathode anode cathode

BEAM BEAM. cathode anode cathode High-rate axial-field ioniza2on chamber for par2cle iden2fica2on of radioac2ve beams, J. Vadas, Varinderjit Singh, G. Visser, A. Alexander, J. Huston, B.B. Wiggins, A. Chbihi, M. Famiano, M. Bischak To

More information

Novel Plastic Microchannel-Based Direct Fast Neutron Detection

Novel Plastic Microchannel-Based Direct Fast Neutron Detection Novel Plastic Microchannel-Based Direct Fast Neutron Detection D. Beaulieu, P. de Rouffignac, D. Gorelikov, H. Klotzsch, J. Legere*, J. Ryan*, K. Saadatmand, K. Stenton, N. Sullivan, A. Tremsin Arradiance

More information

Development of New MicroStrip Gas Chambers for X-ray Applications

Development of New MicroStrip Gas Chambers for X-ray Applications Joint International Workshop: Nuclear Technology and Society Needs for Next Generation Development of New MicroStrip Gas Chambers for X-ray Applications H.Niko and H.Takahashi Nuclear Engineering and Management,

More information

GEM at CERN. Leszek Ropelewski CERN PH-DT2 DT2-ST & TOTEM

GEM at CERN. Leszek Ropelewski CERN PH-DT2 DT2-ST & TOTEM GEM at CERN Leszek Ropelewski CERN PH-DT2 DT2-ST & TOTEM MicroStrip Gas Chamber Semiconductor industry technology: Photolithography Etching Coating Doping A. Oed Nucl. Instr. and Meth. A263 (1988) 351.

More information

arxiv: v1 [physics.ins-det] 10 Aug 2016

arxiv: v1 [physics.ins-det] 10 Aug 2016 High-rate axial-field ionization chamber for particle identification of radioactive beams J. Vadas a,b, Varinderjit Singh a,b, G. Visser b, A. Alexander a, S. Hudan a,b, J. Huston a,b, B. B. Wiggins a,b,

More information

Accreting Neutron Stars

Accreting Neutron Stars Tracy K. Steinbach Indiana University Accreting Neutron Stars ² The outer crust of an accreting neutron star is an unique environment for nuclear reactions ² Identified as the origin of energetic X-ray

More information

X-ray superburst ~10 42 ergs Annual solar output ~10 41 ergs. Cumming et al., Astrophys. J. Lett. 559, L127 (2001) (2)

X-ray superburst ~10 42 ergs Annual solar output ~10 41 ergs. Cumming et al., Astrophys. J. Lett. 559, L127 (2001) (2) Neutron stars, remnant cores following supernova explosions, are highly interesting astrophysical environments In particular, accreting neutron stars presents a unique environment for nuclear reactions

More information

A New Microchannel-Plate Neutron Time-of-Flight Detector

A New Microchannel-Plate Neutron Time-of-Flight Detector A New Microchannel-Plate Neutron Time-of-Flight Detector 1 1 3 14. MCP ntof at.3 m 1. 16. 167. 17. T i ratio 1.6 1.4 1. 1..8.6.4.. T i 1.8-m ntof/ T i MCP ntof Average = 1. rms =.% 1 1 Shot number V. Yu.

More information

Los Alamos National Laboratory Facility Review

Los Alamos National Laboratory Facility Review Los Alamos National Laboratory Facility Review Ron Nelson P-27 & LANSCE Neutron Data Needs & Capabilities for Applications LBNL 27 May 2015 Los Alamos Neutron Science Center User Facilities Los Alamos

More information

At low excitation, the compound nucleus de-excites by statistical emission of light particles (n,p,α)

At low excitation, the compound nucleus de-excites by statistical emission of light particles (n,p,α) Does the α cluster structure in light nuclei persist through the fusion process? Justin Vadas, T.K. Steinbach, J. Schmidt, V. Singh, S. Hudan, R.T. de Souza; Indiana University L. Baby, S. Kuvin, I. Wiedenhover;

More information

Advances in the Micro-Hole & Strip Plate gaseous detector

Advances in the Micro-Hole & Strip Plate gaseous detector Nuclear Instruments and Methods in Physics Research A 504 (2003) 364 368 Advances in the Micro-Hole & Strip Plate gaseous detector J.M. Maia a,b,c, *, J.F.C.A. Veloso a, J.M.F. dos Santos a, A. Breskin

More information

A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B

A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B Journal of the Korean Physical Society, Vol. 32, No. 4, April 1998, pp. 462 467 A Measurement of Monoenergetic Neutrons from 9 Be(p,n) 9 B J. H. Kim, H. Bhang, J. H. Ha, J. C. Kim, M. J. Kim, Y. D. Kim

More information

Timing and cross-talk properties of BURLE multi-channel MCP-PMTs

Timing and cross-talk properties of BURLE multi-channel MCP-PMTs Timing and cross-talk properties of BURLE multi-channel MCP-PMTs, Peter Križan, Rok Pestotnik University of Maribor, University of Ljubljana and Jožef Stefan Institute Outline of the talk: Motivation:

More information

TPC-like analysis for thermal neutron detection using a GEMdetector

TPC-like analysis for thermal neutron detection using a GEMdetector Bernhard Flierl - LS Schaile TPC-like analysis for thermal neutron detection using a GEMdetector Triple GEM Detector B-Cathode 6 mm drift space 2 mm GEMs 2 mm 2 mm APV25 readout 2 µm B-converter cathode

More information

GEM: A new concept for electron amplification in gas detectors

GEM: A new concept for electron amplification in gas detectors GEM: A new concept for electron amplification in gas detectors F. Sauli, Nucl. Instr. & Methods in Physics Research A 386 (1997) 531-534 Contents 1. Introduction 2. Two-step amplification: MWPC combined

More information

High Spatial Resolution in thermal Neutron Detection: from CASCADE to BASTARD. Markus Köhli. DPG Frühjahrstagung Münster

High Spatial Resolution in thermal Neutron Detection: from CASCADE to BASTARD. Markus Köhli. DPG Frühjahrstagung Münster High Spatial Resolution in thermal Neutron Detection: from CASCADE to BASTARD DPG Frühjahrstagung Münster 27.03.2017 Physikalisches Institut (LCTPC) Rheinische Friedrich-Wilhelms-Universität Bonn Markus

More information

GEM-based photon detector for RICH applications

GEM-based photon detector for RICH applications Nuclear Instruments and Methods in Physics Research A 535 (2004) 324 329 www.elsevier.com/locate/nima GEM-based photon detector for RICH applications Thomas Meinschad, Leszek Ropelewski, Fabio Sauli CERN,

More information

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy Thomas Niedermayr, I. D. Hau, S. Terracol, T. Miyazaki, S. E. Labov and S. Friedrich Former colleagues: M. F. Cunningham, J. N.

More information

Light ion recoil detector

Light ion recoil detector Light ion recoil detector Overall design The detector for light (target-like) particles is a substantial part of the R3B setup. It allows registration of recoils in coincidence with the heavy fragments,

More information

Precision Calibration of Large Area Micromegas Detectors Using Cosmic Muons

Precision Calibration of Large Area Micromegas Detectors Using Cosmic Muons Precision Calibration of Large Area Micromegas Detectors Using Cosmic Muons a, Otmar Biebel a, Jonathan Bortfeldt b, Bernhard Flierl a, Maximilian Herrmann a, Ralf Hertenberger a, Felix Klitzner a, Ralph

More information

Development of a Time Projection Chamber with GEM technology in IMP. Herun yang Gas detector group

Development of a Time Projection Chamber with GEM technology in IMP. Herun yang Gas detector group Development of a Time Projection Chamber with GEM technology in IMP Herun yang Gas detector group Outline Introduction TPC prototype based on GEM performance test based cosmic ray Beam test Summary Gas

More information

Joint Institute for Nuclear Research. Flerov Laboratory of Nuclear Reactions. University Center LABORATORY WORK

Joint Institute for Nuclear Research. Flerov Laboratory of Nuclear Reactions. University Center LABORATORY WORK Joint Institute for Nuclear Research Flerov Laboratory of Nuclear Reactions University Center LABORATORY WORK TOF measurement of the charged particles using the MCP detector Supervisor: Dauren Aznabayev

More information

Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center. Michal Mocko

Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center. Michal Mocko Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center Michal Mocko G. Muhrer, F. Tovesson, J. Ullmann International Topical Meeting on Nuclear Research Applications and Utilization

More information

solenoid and time projection chamber for neutron lifetime measurement LINA

solenoid and time projection chamber for neutron lifetime measurement LINA solenoid and time projection chamber for neutron lifetime measurement LINA H. Otono a arxiv:1603.06572v1 [physics.ins-det] 21 Mar 2016 a Research Centre for Advanced Particle Physics, Kyushu University,

More information

Status Report: Multi-Channel TCT

Status Report: Multi-Channel TCT Status Report: Multi-Channel TCT J. Becker, D. Eckstein, R. Klanner, G. Steinbrück University of Hamburg 1. Introduction 2. Set-up and measurement techniques 3. First results from single-channel measurements

More information

Digital imaging of charged particle track structures with a low-pressure optical time projection chamber

Digital imaging of charged particle track structures with a low-pressure optical time projection chamber Digital imaging of charged particle track structures with a low-pressure optical time projection chamber U. Titt *, V. Dangendorf, H. Schuhmacher Physikalisch-Technische Bundesanstalt, Bundesallee 1, 38116

More information

Pulse-shape shape analysis with a Broad-energy. Ge-detector. Marik Schönert. MPI für f r Kernphysik Heidelberg

Pulse-shape shape analysis with a Broad-energy. Ge-detector. Marik Schönert. MPI für f r Kernphysik Heidelberg Pulse-shape shape analysis with a Broad-energy Ge-detector Marik Barnabé é Heider Dušan Budjáš Oleg Chkvorets Stefan Schönert MPI für f r Kernphysik Heidelberg Outline 1. Motivation and goals 2. BEGe detector

More information

INTENSE PULSED NEUTRON GENERATION TO DETECT ILLICIT MATERIALS.

INTENSE PULSED NEUTRON GENERATION TO DETECT ILLICIT MATERIALS. INTENSE PULSED NEUTRON GENERATION TO DETECT ILLICIT MATERIALS. C B Franklyn Radiation Science Department, Necsa, PO Box 582, Pretoria 0001, South Africa. Fax:+27-12-305-5851 e-mail: chris.franklyn@necsa.co.za

More information

NEWAGE. Kentaro Miuchi (Kyoto University) (New generation WIMP search with an advanced gaseous tracker experiment)

NEWAGE. Kentaro Miuchi (Kyoto University) (New generation WIMP search with an advanced gaseous tracker experiment) Kentaro Miuchi (Kyoto University) with K. Nakamura, H. Nishimura T. Tanimori, H. Kubo, J. Parker, A, Takada, S. Iwaki, T. Sawano, Y. Matsuoka, Y. Sato, S. Komura (Kyoto) A. Takeda, H. Sekiya (Kamioka)

More information

Photofission of 238-U Nuclei

Photofission of 238-U Nuclei Photofission of 238-U Nuclei International Thorium Energy Conference - ThEC18, 29-31st of October 2018, Belgium İsmail Boztosun This research has been supported by TÜBİTAK with grant number 114F220 Motivations

More information

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf The EPOS Team and R. Krause-Rehberg Martin-Luther University, Halle-Wittenberg, Dept. of Physics, 06099 Halle / Germany

More information

High-Sensitivity Gamma-Ray Imaging With Double Sided Strip Detectors

High-Sensitivity Gamma-Ray Imaging With Double Sided Strip Detectors High-Sensitivity Gamma-Ray Imaging With Double Sided Strip Detectors Thomas Niedermayr, Morgan Burks, Lucian Mihailescu, Karl Nelson, David Lange, John Valentine, Kai Vetter Lawrence Livermore National

More information

The Galaxy Viewed at Very Short Time-Scales with the Berkeley Visible Image Tube (BVIT)

The Galaxy Viewed at Very Short Time-Scales with the Berkeley Visible Image Tube (BVIT) The Galaxy Viewed at Very Short Time-Scales with the Berkeley Visible Image Tube (BVIT) Barry Y. Welsh, O.H.W. Siegmund, J. McPhate, D. Rogers & J.V. Vallerga Space Sciences Laboratory University of California,

More information

Alpha-Gamma discrimination by Pulse Shape in LaBr 3 :Ce and LaCl 3 :Ce

Alpha-Gamma discrimination by Pulse Shape in LaBr 3 :Ce and LaCl 3 :Ce Alpha-Gamma discrimination by Pulse Shape in LaBr 3 :Ce and LaCl 3 :Ce F.C.L. Crespi 1,2, F.Camera 1,2, N. Blasi 2, A.Bracco 1,2, S. Brambilla 2, B. Million 2, R. Nicolini 1,2, L.Pellegri 1, S. Riboldi

More information

LAB 4: Gamma-ray coincidence spectrometry (2018)

LAB 4: Gamma-ray coincidence spectrometry (2018) LAB 4: Gamma-ray coincidence spectrometry (2018) As you have seen, in several of the radioactive sources we encountered so far, they typically emit more than one gamma photon per decay or even more than

More information

Joe Parker for the Cosmic Ray γ Group Kyoto University

Joe Parker for the Cosmic Ray γ Group Kyoto University Joe Parker for the Cosmic Ray γ Group Kyoto University Cosmic Ray Group NID Project Team @ 京大 K. Hattori, C. Ida, S. Iwaki, S. Kabuki, H. Kubo, S. Kurosawa, K. Miuchi, H. Nishimura, J. D. Parker, T. Sawano,

More information

SLS Symposium on X-Ray Instrumentation

SLS Symposium on X-Ray Instrumentation SLS Symposium on X-Ray Instrumentation Tuesday, December 7, 2010 10:00 to 12:15, WBGB/019 10:00 The optics layout of the PEARL beamline P. Oberta, U. Flechsig and M. Muntwiler 10:30 Instrumentation for

More information

Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal

Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal 25 International Linear Collider Workshop - Stanford, U.S.A. Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal A. Bellerive, K. Boudjemline, R. Carnegie, M. Dixit, J. Miyamoto,

More information

Response function measurements of an NE102A organic scintillator using an 241 Am-Be source

Response function measurements of an NE102A organic scintillator using an 241 Am-Be source Nuclear Instruments and Methods m Physics Research A 345 (1994) 514-519 North-Holland NCLEAR INSTRMENTS & METHODS IN PHYSICS RESEARCH Section A Response function measurements of an NE12A organic scintillator

More information

SNM detection by means of thermal neutron interrogation and a liquid scintillation detector

SNM detection by means of thermal neutron interrogation and a liquid scintillation detector Journal of Instrumentation OPEN ACCESS SNM detection by means of thermal neutron interrogation and a liquid scintillation detector To cite this article: A Ocherashvili et al Related content - Time dependent

More information

Total kinetic energy and fragment mass distributions from fission of Th-232 and U-233

Total kinetic energy and fragment mass distributions from fission of Th-232 and U-233 Total kinetic energy and fragment mass distributions from fission of Th-232 and U-233 Daniel Higgins 1,2*, Uwe Greife 1, Shea Mosby 2, and Fredrik Tovesson 2 1 Colorado School of Mines, Physics Department,

More information

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples)

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples) Detecting high energy photons Interactions of photons with matter Properties of detectors (with examples) Interactions of high energy photons with matter Cross section/attenution length/optical depth Photoelectric

More information

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection R. Kreuger, C. W. E. van Eijk, Member, IEEE, F. A. F. Fraga, M. M. Fraga, S. T. G. Fetal, R. W. Hollander, Member, IEEE, L. M.

More information

X-ray ionization yields and energy spectra in liquid argon

X-ray ionization yields and energy spectra in liquid argon E-print arxiv:1505.02296 X-ray ionization yields and energy spectra in liquid argon A. Bondar, a,b A. Buzulutskov, a,b,* A. Dolgov, b L. Shekhtman, a,b A. Sokolov a,b a Budker Institute of Nuclear Physics

More information

Development of Scintillator Detectors at J-PARC/MLF

Development of Scintillator Detectors at J-PARC/MLF Development of Scintillator Detectors at J-PARC/MLF J-PARC, JAEA Kazuhiko Soyama Basic Energy Sciences Neutron & Photon Detector Workshop August 1-3, 2012 Holiday Inn Gaithersburg, USA Contents 1. J-PARC,

More information

PROPOSED POSITION MONITOR SYSTEM USING DRIFT CHAMBER AND LASER

PROPOSED POSITION MONITOR SYSTEM USING DRIFT CHAMBER AND LASER III/279 PROPOSED POSITION MONITOR SYSTEM USING DRIFT CHAMBER AND LASER N. Ishihara 1 KEK, National Laboratory for High Energy Physics Tsukuba, Ibaraki, 305, Japan 1. Introduction In order to realize the

More information

100 m down and light-years away: Nuclear science in an extreme laboratory

100 m down and light-years away: Nuclear science in an extreme laboratory 100 m down and light-years away: Nuclear science in an extreme laboratory Z. Gosser, M.J. Rudolph, K. Brown, B. Floyd, T. Steinbach, S. Hudan, and R.T. de Souza GANIL : A. Chbihi, B. Jacquot ORNL : J.F.

More information

Spatial distribution of electron cloud footprints from microchannel plates: Measurements and modeling

Spatial distribution of electron cloud footprints from microchannel plates: Measurements and modeling REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 7, NUMBER 8 AUGUST 1999 Spatial distribution of electron cloud footprints from microchannel plates: Measurements and modeling A. S. Tremsin and O. H. W. Siegmund

More information

The Hermes Recoil Silicon Detector

The Hermes Recoil Silicon Detector The Hermes Recoil Silicon Detector Introduction Detector design considerations Silicon detector overview TIGRE microstrip sensors Readout electronics Test beam results Vertex 2002 J. Stewart DESY Zeuthen

More information

Present and Future of Fission at n_tof

Present and Future of Fission at n_tof 16th ASRC International Workshop " Nuclear Fission and Structure of Exotic Nuclei " Present and Future of Fission at n_tof Christina Weiss, CERN, Geneva/Switzerland 20.03.2014 Present and Future of Fission

More information

Waseda University. Design of High Brightness Laser-Compton Light Source for EUV Lithography Research in Shorter Wavelength Region

Waseda University. Design of High Brightness Laser-Compton Light Source for EUV Lithography Research in Shorter Wavelength Region Waseda University Research Institute for Science and Engineering Design of High Brightness Laser-Compton Light Source for EUV Lithography Research in Shorter Wavelength Region Research Institute for Science

More information

High quantum efficiency S-20 photocathodes for photon counting applications

High quantum efficiency S-20 photocathodes for photon counting applications High quantum efficiency S-20 photocathodes for photon counting applications D. A. Orlov a,*, J. DeFazio b, S. Duarte Pinto a, R. Glazenborg a and E. Kernen a a PHOTONIS Netherlands BV, Dwazziewegen 2,

More information

A new detector for neutron beam monitoring

A new detector for neutron beam monitoring A new detector for neutron beam monitoring European Organization for Nuclear Research (CERN), Geneva, Switzerland in collaboration with Commissariat à l Energie Atomique (CEA), Saclay, France, Instituto

More information

Status Report: Charge Cloud Explosion

Status Report: Charge Cloud Explosion Status Report: Charge Cloud Explosion J. Becker, D. Eckstein, R. Klanner, G. Steinbrück University of Hamburg Detector laboratory 1. Introduction and Motivation. Set-up available for measurement 3. Measurements

More information

Track Resolution Measurements for a Time Projection Chamber with Gas Electron Multiplier Readout

Track Resolution Measurements for a Time Projection Chamber with Gas Electron Multiplier Readout Track Resolution Measurements for a Time Projection Chamber with Gas Electron Multiplier Readout Dean Karlen 1,2, Paul Poffenberger 1, Gabe Rosenbaum 1, Robert Carnegie 3, Madhu Dixit 3,2, Hans Mes 3,

More information

RATE CAPABILITY OF A HIGH EFFICIENCY TRANSITION RADIATION DETECTOR

RATE CAPABILITY OF A HIGH EFFICIENCY TRANSITION RADIATION DETECTOR RATE CAPABILITY OF A HIGH EFFICIENCY TRANSITION RADIATION DETECTOR M. PETRIŞ 1, M. PETROVICI 1, D. BARTOŞ 1, I. BERCEANU 1, V. SIMION 1, A. RADU 1, A. ANDRONIC 3, C. GARABATOS 3, M. KLEIN-BÖSING 2, R.

More information

MONTE-CARLO SIMULATIONS OF TIME- RESOLVED, OPTICAL READOUT DETECTOR for PULSED, FAST-NEUTRON TRANSMISSION SPECTROSCOPY (PFNTS)

MONTE-CARLO SIMULATIONS OF TIME- RESOLVED, OPTICAL READOUT DETECTOR for PULSED, FAST-NEUTRON TRANSMISSION SPECTROSCOPY (PFNTS) MONTE-CARLO SIMULATIONS OF TIME- RESOLVED, OPTICAL READOUT DETECTOR for PULSED, FAST-NEUTRON TRANSMISSION SCTROSCOPY (PFNTS) a*, David Vartsky a, I. Mardor a, M. B. Goldberg a, D. Bar a, G. Feldman a,

More information

Gas Detectors for Neutrons* R. K. Crawford Argonne National Laboratory, Argonne, IL 60439, USA DISCLAIMER

Gas Detectors for Neutrons* R. K. Crawford Argonne National Laboratory, Argonne, IL 60439, USA DISCLAIMER Gas Detectors for Neutrons* R. K. Crawford Argonne National Laboratory, Argonne, IL 60439, USA OS" DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States

More information

Time-of-Flight PET using Cherenkov Photons Produced in PbF 2

Time-of-Flight PET using Cherenkov Photons Produced in PbF 2 Photons Produced in PbF 2 R. Dolenec a, S. Korpar b,a, P. Križan c,a, R. Pestotnik a, A. Stanovnik d,a a, Ljubljana, Slovenia b Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia

More information

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS)

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS) Progress of the EPOS Project: Gamma Induced Positron Spectroscopy (GiPS) R. Krause-Rehberg 1,*,W.Anwand 2,G.Brauer 2, M. Butterling 1,T.Cowan 2,M. Jungmann 1, A. Krille 1, R. Schwengner 2, A. Wagner 2

More information

pp physics, RWTH, WS 2003/04, T.Hebbeker

pp physics, RWTH, WS 2003/04, T.Hebbeker 3. PP TH 03/04 Accelerators and Detectors 1 pp physics, RWTH, WS 2003/04, T.Hebbeker 2003-12-16 1.2.4. (Inner) tracking and vertexing As we will see, mainly three types of tracking detectors are used:

More information

arxiv: v1 [astro-ph.im] 6 Dec 2010

arxiv: v1 [astro-ph.im] 6 Dec 2010 arxiv:12.1166v1 [astro-ph.im] 6 Dec 20 MIMAC: A micro-tpc matrix for directional detection of dark matter, J. Billard, G. Bosson, O. Bourrion, C. Grignon, O. Guillaudin, F. Mayet, J.P. Richer LPSC, Universite

More information

arxiv:physics/ v2 27 Mar 2001

arxiv:physics/ v2 27 Mar 2001 High pressure operation of the triple-gem detector in pure Ne, Ar and Xe A. Bondar, A. Buzulutskov, L. Shekhtman arxiv:physics/0103082 v2 27 Mar 2001 Budker Institute of Nuclear Physics, 630090 Novosibirsk,

More information

arxiv: v1 [physics.ins-det] 2 Oct 2011

arxiv: v1 [physics.ins-det] 2 Oct 2011 Title : will be set by the publisher Editors : will be set by the publisher EAS Publications Series, Vol.?, 2011 arxiv:1110.0222v1 [physics.ins-det] 2 Oct 2011 THE DRIFT DIRECTIONAL DARK MATTER EXPERIMENTS

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2018/225 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 27 September 2018 (v2, 19 November

More information

Precision neutron flux measurement with a neutron beam monitor

Precision neutron flux measurement with a neutron beam monitor Journal of Physics: Conference Series OPEN ACCESS Precision neutron flux measurement with a neutron beam monitor To cite this article: T Ino et al 2014 J. Phys.: Conf. Ser. 528 012039 View the article

More information

A gas-filled calorimeter for high intensity beam environments

A gas-filled calorimeter for high intensity beam environments Available online at www.sciencedirect.com Physics Procedia 37 (212 ) 364 371 TIPP 211 - Technology and Instrumentation in Particle Physics 211 A gas-filled calorimeter for high intensity beam environments

More information

Distinguishing fissions of 232 Th, 237 Np and 238 U with beta-delayed gamma rays

Distinguishing fissions of 232 Th, 237 Np and 238 U with beta-delayed gamma rays Distinguishing fissions of 232, 237 and 238 with beta-delayed gamma rays A. Iyengar 1, E.B. Norman 1, C. Howard 1, C. Angell 1, A. Kaplan 1, J. J. Ressler 2, P. Chodash 1, E. Swanberg 1, A. Czeszumska

More information

Compton Scattering from Light Nuclei at MAX-lab. Luke Myers Collaboration

Compton Scattering from Light Nuclei at MAX-lab. Luke Myers Collaboration Compton Scattering from Light Nuclei at MAX-lab Luke Myers COMPTON@MAX-lab Collaboration INT Workshop Electroweak Properties of Light Nuclei November 5, 2012 Priorities of the Experimental Program Initially:

More information

The heavy-ion magnetic spectrometer PRISMA

The heavy-ion magnetic spectrometer PRISMA Nuclear Physics A 701 (2002) 217c 221c www.elsevier.com/locate/npe The heavy-ion magnetic spectrometer PRISMA A.M. Stefanini a,,l.corradi a,g.maron a,a.pisent a,m.trotta a, A.M. Vinodkumar a, S. Beghini

More information

Research Center Dresden Rossendorf

Research Center Dresden Rossendorf News of the EPOS Project at the ELBE Radiation Source in the Research Center Dresden Rossendorf EPOS-Team & R. Krause-Rehberg Extended Concept of EPOS Progress of the mono-energetic Positron Beam (MePS)

More information

Method of active correlations in the experiment 249 Cf+ 48 Ca n

Method of active correlations in the experiment 249 Cf+ 48 Ca n Method of active correlations in the experiment 249 Cf+ 48 Ca 297 118 +3n Yu.S.Tsyganov, A.M.Sukhov, A.N.Polyakov Abstract Two decay chains originated from the even-even isotope 294 118 produced in the

More information

Development of a Radioxenon Detection System Using CdZnTe, Array of SiPMs, and a Plastic Scintillator

Development of a Radioxenon Detection System Using CdZnTe, Array of SiPMs, and a Plastic Scintillator Development of a Radioxenon Detection System Using CdZnTe, Array of SiPMs, and a Plastic Scintillator Steven Czyz Farsoni, A., Ranjbar, L., Gadey, H. School of Nuclear Science and Engineering Oregon State

More information

arxiv: v1 [physics.ins-det] 1 Nov 2011

arxiv: v1 [physics.ins-det] 1 Nov 2011 Title : will be set by the publisher Editors : will be set by the publisher EAS Publications Series, Vol.?, 211 arxiv:1111.22v1 [physics.ins-det] 1 Nov 211 STATUS AND PROSPECTS OF THE DMTPC DIRECTIONAL

More information

Pulsed neutron fields measurements around a synchrotron storage ring

Pulsed neutron fields measurements around a synchrotron storage ring Pulsed neutron fields measurements around a synchrotron storage ring Marco Caresana 1*, Marcello Ballerini 2, David Garf Ulfbeck 4, Niels Hertel 3, Giacomo Paolo Manessi 2, Carsten Søgaard 5 1 Politecnico

More information

arxiv:physics/ v2 [physics.ins-det] 18 Jul 2000

arxiv:physics/ v2 [physics.ins-det] 18 Jul 2000 Lorentz angle measurements in irradiated silicon detectors between 77 K and 3 K arxiv:physics/759v2 [physics.ins-det] 18 Jul 2 W. de Boer a, V. Bartsch a, J. Bol a, A. Dierlamm a, E. Grigoriev a, F. Hauler

More information

First Beam Profile Measurements Based on Light Radiation of Atoms Excited by the Particle Beam

First Beam Profile Measurements Based on Light Radiation of Atoms Excited by the Particle Beam First Beam Profile Measurements Based on Light Radiation of Atoms Excited by the Particle Beam Jürgen Dietrich Forschungszentrum Jülich GmbH Bensheim, October 19, 2004 COSY Overview COSY accelerates (polarised)

More information

PoS(EPS-HEP2015)232. Performance of a 1 m 2 Micromegas Detector Using Argon and Neon based Drift Gases

PoS(EPS-HEP2015)232. Performance of a 1 m 2 Micromegas Detector Using Argon and Neon based Drift Gases Performance of a m Micromegas Detector Using Argon and Neon based Drift Gases a, Otmar Biebel a, Jonathan Bortfeldt a, Ralf Hertenberger a, Ralph Müller a and Andre Zibell b a Ludwig-Maximilians-Universität

More information

JRA-04 Detection of Low Energy Particles - DLEP. Monolithic DE-E telescope; prototype DSSSD + PAD telescope: results

JRA-04 Detection of Low Energy Particles - DLEP. Monolithic DE-E telescope; prototype DSSSD + PAD telescope: results JRA-04 Detection of Low Energy Particles - DLEP DLEP activity report An example of what we are studying activity status Detectors Monolithic DE-E telescope; prototype DSSSD + PAD telescope: results Readout

More information

Status report of CPHS and neutron activities at Tsinghua University

Status report of CPHS and neutron activities at Tsinghua University IL NUOVO CIMENTO 38 C (2015) 185 DOI 10.1393/ncc/i2015-15185-y Colloquia: UCANS-V Status report of CPHS and neutron activities at Tsinghua University X. Wang( 1 )( 2 )( ),Q.Xing( 1 )( 2 ),S.Zheng( 1 )(

More information

arxiv: v1 [physics.ins-det] 7 Dec 2018

arxiv: v1 [physics.ins-det] 7 Dec 2018 Study of the ecological gas for MRPCs Yongwook Baek a,b,, Dowon Kim a,c, M.C.S. Williams a,b,d a Gangneung-Wonju National University, South Korea b CERN, Switzerland c ICSC World Laboratory, Geneva, Switzerland

More information

Prospects for achieving < 100 ps FWHM coincidence resolving time in time-of-flight PET

Prospects for achieving < 100 ps FWHM coincidence resolving time in time-of-flight PET Prospects for achieving < 100 ps FWHM coincidence resolving time in time-of-flight PET, 28-Feb-2012, ICTR-PHE, Geneva, Switzerland 1 Time-of-flight PET Colon cancer, left upper quadrant peritoneal node

More information

Polycrystalline CdTe Detectors: A Luminosity Monitor for the LHC

Polycrystalline CdTe Detectors: A Luminosity Monitor for the LHC EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN AB DIVISION CERN-AB-2003-003 BDI Polycrystalline CdTe Detectors: A Luminosity Monitor for the LHC E. Gschwendtner; M. Placidi; H. Schmickler Abstract The

More information

Aspects of radiation hardness for silicon microstrip detectors

Aspects of radiation hardness for silicon microstrip detectors Aspects of radiation hardness for silicon microstrip detectors Richard Wheadon, INFN Pisa, Via Livornese 1291, S. Piero a Grado, Pisa, Italy Abstract The ways in which radiation damage affects the properties

More information

The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator

The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator Svirikhin A.I. Joint Institute for Nuclear Research, Dubna, Russia Manipal University,

More information

HARPO: Measurement of polarised gamma rays (1.7 to 72MeV) with the HARPO TPC

HARPO: Measurement of polarised gamma rays (1.7 to 72MeV) with the HARPO TPC HARPO: Measurement of polarised gamma rays (1.7 to 72MeV) with the HARPO TPC Philippe Gros for the HARPO collaboration 1/39 Gamma Astronomy HARPO project Setup at the NewSUBARU photon beam Gas monitoring

More information

Working Group F: Diagnostics and Instrumentation for High-Intense Beams Summary

Working Group F: Diagnostics and Instrumentation for High-Intense Beams Summary Working Group F: Diagnostics and Instrumentation for High-Intense Beams Summary Manfred Wendt for the Working Group F contributors 8/29/2008 HB2008 WG F: Diagnostics Summary 1 WG F: Overview Presentations

More information

CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration

CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration INFN Bari, Ohio State University, CERN, University of Michigan, University of Oslo, INFN Roma,

More information

RTPC Simulation Studies for Tagged Deep Inelastic Experiment. Rachel Montgomery SBS Collaboration Meeting, Jefferson Lab, 22/07/16

RTPC Simulation Studies for Tagged Deep Inelastic Experiment. Rachel Montgomery SBS Collaboration Meeting, Jefferson Lab, 22/07/16 RTPC Simulation Studies for Tagged Deep Inelastic Experiment Rachel Montgomery SBS Collaboration Meeting, Jefferson Lab, 22/07/16 1 Tagged DIS Measurement with RTPC and SBS Measure DIS cross section, detecting

More information

arxiv: v1 [physics.ins-det] 17 May 2017

arxiv: v1 [physics.ins-det] 17 May 2017 A CsI(Tl) detector array for the measurement of light charged particles in heavy-ion reactions arxiv:1705.06004v1 [physics.ins-det] 17 May 2017 P. C. Rout a, V. M. Datar b, D. R. Chakrabarty c, Suresh

More information

Paul Huffman! Investigating Hadronic Parity Violation Using the γd np Reaction at the Proposed HIGS2 facility at TUNL

Paul Huffman! Investigating Hadronic Parity Violation Using the γd np Reaction at the Proposed HIGS2 facility at TUNL Investigating Hadronic Parity Violation Using the γd np Reaction at the Proposed HIGS2 facility at TUNL Paul Huffman! North Carolina State University Triangle Universities Nuclear Laboratory!!!! M.W. Ahmed!

More information

The Magnetic Recoil Spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

The Magnetic Recoil Spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF) PSFC/JA-16-32 The Magnetic Recoil Spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF) J.A. Frenje 1 T.J. Hilsabeck 2, C. Wink1, P. Bell 3,

More information

Development of High-Z Semiconductor Detectors and Their Applications to X-ray/gamma-ray Astronomy

Development of High-Z Semiconductor Detectors and Their Applications to X-ray/gamma-ray Astronomy Development of High-Z Semiconductor Detectors and Their Applications to X-ray/gamma-ray Astronomy Taka Tanaka (SLAC/KIPAC) 9/19/2007 SLAC Advanced Instrumentation Seminar Outline Introduction CdTe Diode

More information

Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal

Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal Madhu Dixit Carleton University & TRIUMF Carleton A. Bellerive K. Boudjemline R. Carnegie M. Dixit J. Miyamoto H. Mes E. Neuheimer

More information

Experimental verification of a gain reduction model for the space charge effect in a wire chamber

Experimental verification of a gain reduction model for the space charge effect in a wire chamber Prog. Theor. Exp. Phys. 218, 13C1 (1 pages) DOI: 1.193/ptep/ptx178 Experimental verification of a gain reduction model for the space charge effect in a wire chamber Naoki Nagakura 1,, Kazuki Fujii 1, Isao

More information

Charged particle detection in GE6 To stop high energy particles need large thickness of Germanium (GE6 has ~13 cm) Charged particle detection in Ge

Charged particle detection in GE6 To stop high energy particles need large thickness of Germanium (GE6 has ~13 cm) Charged particle detection in Ge Using stacked germanium detectors for charged hadron detection Daniel Watts Edinburgh University Derek Branford, Klaus Foehl Charged particle detection in GE To stop high energy particles need large thickness

More information

Response curve measurement of the SiPM

Response curve measurement of the SiPM Response curve measurement of the SiPM The theoritical formula : N Fired = N pix. (1 (1 1/N pix ) Npe ) does not hold because: 1) crosstalk and afterpulses increases N Fired (by a factor 1 / (1 ε) for

More information

arxiv:physics/ v2 [physics.ins-det] 31 Oct 2003

arxiv:physics/ v2 [physics.ins-det] 31 Oct 2003 arxiv:physics/37152v2 [physics.ins-det] 31 Oct 23 Position Sensing from Charge Dispersion in Micro-Pattern Gas Detectors with a Resistive Anode M. S. Dixit a,d,, J. Dubeau b, J.-P. Martin c and K. Sachs

More information

Measurement of the n_tof beam profile in the second experimental area (EAR2) using a silicon detector

Measurement of the n_tof beam profile in the second experimental area (EAR2) using a silicon detector Measurement of the n_tof beam profile in the second experimental area (EAR) using a silicon detector Fidan Suljik Supervisors: Dr. Massimo Barbagallo & Dr. Federica Mingrone September 8, 7 Abstract A new

More information