BIOINF 4120 Bioinformatics 2 - Structures and Systems -

Size: px
Start display at page:

Download "BIOINF 4120 Bioinformatics 2 - Structures and Systems -"

Transcription

1 BIOINF 4120 Bioinformatics 2 - Structures and Systems - Oliver Kohlbacher Summer Structure Elucidation Overview Protein structure elucidation X-ray diffraction (XRD) Crystallization Physics of electron diffraction Phasing, modeling, refinement Nuclear magnetic resonance spectroscopy (NMR) Physical foundations of NMR spectroscopy 1D and 2D spectra and their interpretation Comparison NMR and XRD Structural Databases: the PDB 2 X-Ray Crystallography X-Ray Source Protein Crystal Detector Analysis 3 1

2 X-Rays 4 Protein Crystals Proteins are difficult to crystallize Irregular shape large holes in the crystal Rather large crystals required ( mm) Large amounts of protein necessary Protein needs to be very pure Crystal growth is very slow (weeks to months) Some proteins do not crystallize at all (membrane proteins!) Branden, Tooze, p Crystallization Hanging Drop Nölting, p. 70, Branden/Tooze, p

3 Protein Crystals Regular arrangement of protein molecules in a three-dimensional lattice Irregular shape of proteins causes water-filled holes in the crystal high water content (20 90%) Unit cell:smallest subunit of the crystal from which the whole crystal can be created by translation Branden, Tooze, p Protein Crystal 8 Example: Fab unit cell contains two copies of Fab Crystal is formed by translationof this unit cell along a regular lattice X-ray Diffraction of Proteins Bernal and Crowfootobserved in 1934that pepsin crystals create a well-defined diffraction pattern Nearly three decades and the invention of computers were necessary until Kendrew and Perutz could solve the first structures in 1960(myoglobin, hemoglobin) Max Perutz, John Kendrew 9 3

4 Wave Equations Euler s formula 10 Any periodic sine or cosine function can be represented as a complex exponential function. Example: Wave Equations 11 φ λ. s Intensity for time tat position ris described by: with unit vector spointing along the direction of the wave front, with frequency ω, wave length λ, phase φand i² = 1 Interference Constructive Amplitude increases Destructive Amplitude decreases Depends on phase difference Interference of two coherent waves E 1 and E 2 of equal amplitude E 0 :

5 Interference Constant factor Phase factor Resulting wave has the same frequency as the original waves E 1 and E 2 Amplitude depends on phase factor, i.e., the phase difference φ Amplitude is easily observable 13 Diffraction at Two Centers 14 Origin s 0 s 0 r s 0 r r s s 2θ s 0 λs = s s 0 s The retardationoftheinterferingwavesisr s r s 0 andthusthephasedifference φ = 2πλ -1 r (s-s 0 ) = 2πr S withs= (s s 0 ) / λ Diffraction at Two Centers 15 s 0 r s 0 λs = s s 0 s 0 r r s s s 0 s φ = 2πλ -1 r (s-s 0 ) = 2πr S Considering the ratio of wave Eand wave E 0 (r, t) diffracted at the origin yields: 5

6 Structure Factor Apart from the phase difference, diffraction probabilityf i of atom i is important: 16 The whole diffraction patternis then the sum of all diffracted waves originating from atoms iat unit cell positions r i : F is also called structure factor Structure factor depends on atom positionsand diffraction probabilities Structure Factor Structure factor corresponds to the Fourier transform of the atom coordinates of the diffracting protein Diffraction occurs by interaction with the atoms electron hulls, not with the nuclei Thus, we introduce a continuous electron density ρ(r) F then becomes 17 Diffraction Pattern of a Protein Nölting 18 6

7 Fourier Analysis Nölting 19 Fourier Analysis Nölting 20 Fourier Analysis Im Re Nölting 21 7

8 Phasing Problem Diffraction pattern corresponds to Fourier transform of electron density Inverse Fourier transform yields electron density from this Problem: detector measures intensity only, not the phase! I = F(S) = F(S)F * (S) Phase information, however, is required to compute electron density! Phasing problem: Reconstruction of the phase information Common way to solve this: heavy atom replacement John O Brien, The New Yorker Collection 1991 Rhodes, p Overview X-Ray Diffraction Nölting, p Electron Density Maps 24 8

9 Electron Density Maps 25 Resolution Resolution of a structure determines information content Determined by quality of the crystal: Purity Inclusions Water content Stability under irradiation Resolution can be estimated from diffraction pattern Nölting 26 Resolution Resolution determines which atomic details are recognizable Poor resolution (large value) blurs the details of the structure Resolution is measured in Å Resolution of 2 Å does notmean, that the error for the atom coordinates is about 2 Å! Error in the atom coordinates would be about 0.3 Å in that case 27 9

10 Resolution Resolution [Å] Information obtainable 4.0 Fold class, some secondary structures 3.5 Helices and strands become distinguishable poor 3.0 Most side chains recognizable All side chains well defined, φ and ψ of the backbone partially well defined, water can be seen All backbone torsions well defined, first hydrogen atoms visible typical very good 1.0 Hydrogen atoms become visible possible 28 Nuclear Magnetic Resonance 1 H nuclei possess nuclear magnetic moment In an external magnetic field B 0, every nucleus assumes one of two possible states (spins) : αor β The two states differ in energy, spin state α(parallel to B 0 ) is energetically more favorable β B 0 α E 29 Nuclear Magnetic Resonance 1 H nuclei possess nuclear magnetic moment In an external magnetic field B 0, every nucleus assumes one of two possible states (spins) : α or β The two states differ in energy, spin state α (parallel to B 0 ) is energetically more favorable Addition of energy can invert the spin state β h ν α E 30 10

11 Nuclear Magnetic Resonance 1 H nuclei possess nuclear magnetic moment In an external magnetic field B 0, every nucleus assumes one of two possible states (spins) : α or β The two states differ in energy, spin state α (parallel to B 0 ) is energetically more favorable Addition of energy can invert the spin state β α E 31 Nuclear Magnetic Resonance E depends on The magnitude of the external magnetic field The electronic environment of the nucleus 32 Nuclear Magnetic Resonance E Can be measured (absorption) Has different magnitude for different types of atoms For a system of atoms we thus obtain an NMR spectrum 33 11

12 Angular Momentum Nuclei have nuclear angular momentum P P can be considered the quantum mechanical analog of a classical angular momentum (which does not suggest that the nuclei are rotating in any way!) Pdepends on spin quantum numberi (= h/2π, with Planck s constant h) Iis a function of the nuclide, i.e., of the number of neutrons and protons in the nucleus For (g,g) nuclei (even number of protons and neutrons) Ibecomes zero invisible for NMR! 34 Magnetic Moment Magnetic moment µ= γp isproportional to angular momentum Proportionality constant γ is called magnetogyric ratio γ determines sensitivity of measurement: high γ = high sensitivity γ differs for each nuclide 35 Properties of Important Nuclides Nuclide Nat. abundance [%] I γ [10 7 T -1 s -1 ] Rel. sensitivity 1 H ½ D C C 1.1 ½ N N 0.37 ½ O O / P 100 ½

13 Quantization of P In an external magnetic field with magnetic flux density B 0 the magnitude of P,resp. µ, is quantized along the direction of B 0 (z-axis) Possible states of the nuclear spin are described by magnetic quantum number m and P z = m with m= I, I + 1,.., +I µ z = γm For a nucleus with I= ½ (e.g., 1 H) we obtain: m= +½, ½ and thus there are two possible spin states P z,½ = ½ and P z,-½ = ½ P z,+½ P z,-½ z 37 Energy in a Magnetic Field For simplicity, we will consider only nuclei with I = ½. Similar statements hold for other nuclei. Every atom with µ 0is a magnetic dipole in an external magnetic field Classically, the energy Eof a dipole is E= - µ z B 0 = -m γb 0 The energy difference between the two spin states is thus E= E -½ E ½ = γb 0 This energy difference corresponds to a resonance frequency νwith hν= E 38 Energy in a Magnetic Field Resonance frequency depends on γand B 0 Stronger magnetic fields correspond to larger energy differences, which in turn correspond to higher resonance frequencies E m = +½ 0 E 1 E 2 m = ½ B 1 B

14 Spin Populations Each atom can assume one of two states, all atoms are thus split into two populations of size N α and N β Majority of nuclei assume the ground state, i.e., the state of lowest energy (N β < N α ) Occupancy of states follows Boltzmann distribution Example: T= 300 K, B 0 = 7.05 T N β = N α Differences in occupancy of the states are very small since energy differences are small compared to k B T! 40 NMR Hardware 41 NMR Hardware 42 14

15 NMR SpectraofCH n Br 4-n In principle, resonance frequencies should depend on the nuclide only should be identical for all 1 H nuclei Counter example: bromomethanes resonance frequency depends on chemical environment of the nuclei 43 Shielding Chemical environment influences ν NMR contains structural information! Electrons create a fieldb that shields nucleus from B 0 Nucleus thus is exposed to an effective field B eff = B 0 -B B is proportional to B 0 B eff = B 0 B = B 0 σb 0 = (1 σ) B 0 with shielding σ 44 Chemical Shift ν depends on the nuclide and B 0 Instruments differ in their B 0 To simplify comparison between instruments, introduce a scale independent of B 0 Chemical shift δ δ is usually given in ppm(10-6 ) relative to the resonance frequency ν ref of a reference substance 45 15

16 Reference Substances Reference substancesshould be CH 3 Chemically inert Easy to handle Yield clear, intensive signals Reference substance for 1 H and 13 C is often tetramethylsilane (TMS) All 1 H und 13 C nuclei in TMS are H 3 C Si CH 3 CH 3 chemically equivalent, i.e., the result in only one peak each 46 Structural Information in Spectra Chemical shift depends on Topology(constitution) Geometry(conformation) Certain experiments yield Topological information (neighborhood) Distance information(e.g., NOE constraints) In combination this data can be used to deduce the structure of the protein 47 1 H-NMR SpectrumofEtOH 48 16

17 Scalar Coupling Spins interact with each other Energy of one nucleus depends on an other nucleus spin state Energy levels shifted 2 J Resonance frequency shifted Coupling is mediated across bonds 1 J coupling across one bond 2 J coupling across two bonds (geminal) 3 J 3 J coupling across three bonds (vicinal) 49 Scalar Coupling Example:spinsystemA X hν A1 hν A2 ν A1 ν A2 ν A J ν A 50 Incfluence of Structure on δ Chemical shift is caused by changes in electron density Electron density is influenced by: Topology Directly neighboring atoms (+I,-I effect, ) Implicitly given by the type of the amino acid Geometry Charges in the vicinity (electrostatics) Aromatic systems (ring current effect) 51 17

18 Random Coil Shift Nuclei in a similar environment, i.e., with identical neighboring atoms, have similar chemical shifts Differences in conformation can cause differences in the shift random coil shiftsare the shifts of amino acid atoms in a random coil, a peptide without explicit secondary structure 52 Chemical Shifts of Amino Acids 53 1 H-NMR Spectrum of a Protein 54 18

19 2D NMR Spectrum Peaks on the diagonal correspond to the shifts in 1D spectrum Cross peaks(off-diagonal) are caused by transfer of magnetization between two nuclei, i.e., interaction between these nuclei It usually implies "closeness" of these nuclei δ B δ A δ 1 δ A δ B δ 2 55 (H,H)-COSY COrrelatedSpectroscopY magnetization is transferred along bonds Cross peaks occur between nuclei separated by two or three bonds 56 (H,H)-COSY COSY shows characteristic patterns for certain amino acids This allows the assignment of peaks to certain amino acids and thus their identification in a spectrum 57 19

20 (H,H)-COSY 58 Structure Elucidation with NMR 1. Multiple NMR experiments 2. Determination of Coupling constants (yields backbone torsion angles) NOE distances (yields interatomic distances) Hydrogen bond patterns 3. Modeling of the structure consistent with these structural constraints 59 Comparison XRD NMR XRD Also for large proteins Requires crystals Hydrogen atoms invisible Unlabeled protein Higher spatial resolution < 30 kda NMR From solution Hydrogen atoms are essential Isotope-labeled protein required Information on flexibility 60 20

21 Databases PDB PDB (Protein Data Bank) Database for biomolecular structures Maintained by the RCSB (Research Collaboratory for Structural Bioinformatics) Deposition of structures in the PDB is prerequisite for the publication of the structure in a journal Each structure is given a unique identifier (PDB ID) 4 characters 1st character version 2nd 4th character structure ID Example: 2PTI, 3PTI, 4PTI are different structures of protein BPTI 2PTI: 1973, 3PTI: 1976, 4PTI: PDB Growth Yearly Growth Total Data from: Data as of PDB Statistics Proteins Protein-NA- Complexes Nucleic Acids Total XRD 81,972 4,263 1,516 87,751 NMR 9, ,079 10,377 Total 91,065 4,468 2,595 98,128 Data as of

22 PDB The First Entry! 64 PDB The First Entry! HEADER OXYGEN STORAGE 05-APR-73 1MBN 1MBNH 1 COMPND MYOGLOBIN (FERRIC IRON - METMYOGLOBIN) 1MBN 4 SOURCE SPERM WHALE (PHYSETER CATODON) 1MBNM 1 AUTHOR H.C.WATSON,J.C.KENDREW 1MBNG 1 [ ] REVDAT 27-OCT-83 1MBNS 1 REMARK 1MBNS 1 20 JRNL AUTH H.C.WATSON 1MBNG 2 JRNL TITL THE STEREOCHEMISTRY OF THE 1MBNG 3 PROTEIN MYOGLOBIN JRNL REF PROG.STEREOCHEM. V MBNG 4 JRNL REFN ASTM PRSTAP US ISSN 1MBNG [ ] SEQRES 153 VAL LEU SER GLU GLY GLU TRP GLN VAL 1MBN 39 1 LEU VAL LEU HIS [ ] HET HEM 1 44 PROTOPORPHYRIN IX WITH FE(OH), FERRIC 1MBND 10 FORMUL 2 H32 O4 FE MBNG 25 HEM C34 N4 FORMUL 2 HEM H1 O1 1MBNG 26 HELIX 1 A SER 3 GLU 18 1 N=3.63,PHI=1.73,H=1.50 1MBN 52 [ ] TURN 1 CD1 PHE PHE BETW C/D HELICES IMM PREC 1MBN CD2 [ ] ATOM 1 N VAL MBN 72 ATOM 2 CA VAL MBN 73 ATOM 3 C VAL MBN 74 ATOM 4 O VAL MBN 75 ATOM 5 CB VAL MBN 76 ATOM 6 CG1 VAL MBNP 4 ATOM 7 CG2 VAL MBNL 8 ATOM 8 N LEU MBN 79 ATOM 9 CA LEU MBN 80 ATOM 10 C LEU MBN 81 ATOM 11 O LEU MBN 82 ATOM 12 CB LEU MBN 83 ATOM 13 CG LEU MBN 84 ATOM 14 CD1 LEU MBNL 9 [ ] 65 References + Materials Structure elucidation in general B. Nölting, Methods in Modern Biophysics, Springer, Berlin Branden, Tooze, Introduction to Protein Structure, Garland, New York, 1999 R. Cotterill, Biophysics An Introduction, Wiley, West Sussex, 2002 T. Creighton: Proteins Structures and Molecular Properties, Freeman, 2nd ed., 1992 X-ray diffraction T. L. Blundell and L. N. Johnson, Protein Crystallography, Academic Press New York, 1976 G. Rhodes, Crystallography made crystal clear, Elsevier, 1999 NMR H. Günther, NMR-Spektroskopie, Thieme, Stuttgart H. Friebolin, Basic One- and Two-Dimensional NMR Spectroscopy, VCH, Weinheim Kurt Wüthrich, NMR of Proteins and Nucleic Acids. John Wiley and Sons, 1986 J. Cavenagh, W. J. Fairbrother, A. G. Palmer, andn. J. Skelton, Protein NMR Spectroscopy: Principles and Practice, Academic Press Inc., San Diego,

Biochemistry 530 NMR Theory and Practice

Biochemistry 530 NMR Theory and Practice Biochemistry 530 NMR Theory and Practice Gabriele Varani Department of Biochemistry and Department of Chemistry University of Washington Lecturer: Gabriele Varani Biochemistry and Chemistry Room J479 and

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Nuclear Magnetism Vrije Universiteit Brussel 21st October 2011 Outline 1 Overview and Context 2 3 Outline 1 Overview and Context 2 3 Context Proteins (and other biological macromolecules) Functional characterisation

More information

Basic principles of multidimensional NMR in solution

Basic principles of multidimensional NMR in solution Basic principles of multidimensional NMR in solution 19.03.2008 The program 2/93 General aspects Basic principles Parameters in NMR spectroscopy Multidimensional NMR-spectroscopy Protein structures NMR-spectra

More information

NMR BMB 173 Lecture 16, February

NMR BMB 173 Lecture 16, February NMR The Structural Biology Continuum Today s lecture: NMR Lots of slides adapted from Levitt, Spin Dynamics; Creighton, Proteins; And Andy Rawlinson There are three types of particles in the universe Quarks

More information

Macromolecular X-ray Crystallography

Macromolecular X-ray Crystallography Protein Structural Models for CHEM 641 Fall 07 Brian Bahnson Department of Chemistry & Biochemistry University of Delaware Macromolecular X-ray Crystallography Purified Protein X-ray Diffraction Data collection

More information

Bioinformatics. Macromolecular structure

Bioinformatics. Macromolecular structure Bioinformatics Macromolecular structure Contents Determination of protein structure Structure databases Secondary structure elements (SSE) Tertiary structure Structure analysis Structure alignment Domain

More information

X-ray crystallography NMR Cryoelectron microscopy

X-ray crystallography NMR Cryoelectron microscopy Molecular Graphics with PyMOL Overview of: Protein Data Bank Coordinates Jean-Yves Sgro PyMOL interface Hands-on! Experimental Methods 3 Main: X-ray crystallography NMR Cryoelectron microscopy X-ray source

More information

BMB/Bi/Ch 173 Winter 2018

BMB/Bi/Ch 173 Winter 2018 BMB/Bi/Ch 173 Winter 2018 Homework Set 8.1 (100 Points) Assigned 2-27-18, due 3-6-18 by 10:30 a.m. TA: Rachael Kuintzle. Office hours: SFL 220, Friday 3/2 4:00-5:00pm and SFL 229, Monday 3/5 4:00-5:30pm.

More information

Molecular Modeling lecture 2

Molecular Modeling lecture 2 Molecular Modeling 2018 -- lecture 2 Topics 1. Secondary structure 3. Sequence similarity and homology 2. Secondary structure prediction 4. Where do protein structures come from? X-ray crystallography

More information

I690/B680 Structural Bioinformatics Spring Protein Structure Determination by NMR Spectroscopy

I690/B680 Structural Bioinformatics Spring Protein Structure Determination by NMR Spectroscopy I690/B680 Structural Bioinformatics Spring 2006 Protein Structure Determination by NMR Spectroscopy Suggested Reading (1) Van Holde, Johnson, Ho. Principles of Physical Biochemistry, 2 nd Ed., Prentice

More information

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure: Physical properties, chemical properties, formulas Shedding real light on molecular structure: Wavelength Frequency ν Wavelength λ Frequency ν Velocity c = 2.998 10 8 m s -1 The Electromagnetic Spectrum

More information

7. Nuclear Magnetic Resonance

7. Nuclear Magnetic Resonance 7. Nuclear Magnetic Resonance Nuclear Magnetic Resonance (NMR) is another method besides crystallography that can be used to find structures of proteins. NMR spectroscopy is the observation of spins of

More information

Introduction to" Protein Structure

Introduction to Protein Structure Introduction to" Protein Structure Function, evolution & experimental methods Thomas Blicher, Center for Biological Sequence Analysis Learning Objectives Outline the basic levels of protein structure.

More information

Details of Protein Structure

Details of Protein Structure Details of Protein Structure Function, evolution & experimental methods Thomas Blicher, Center for Biological Sequence Analysis Anne Mølgaard, Kemisk Institut, Københavns Universitet Learning Objectives

More information

NMR Spectroscopy of Polymers

NMR Spectroscopy of Polymers UNESCO/IUPAC Course 2005/2006 Jiri Brus NMR Spectroscopy of Polymers Brus J 1. part At the very beginning the phenomenon of nuclear spin resonance was studied predominantly by physicists and the application

More information

Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination

Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination Lecture 9 M230 Feigon Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination Reading resources v Roberts NMR of Macromolecules, Chap 4 by Christina Redfield

More information

Molecular Graphics with PyMOL

Molecular Graphics with PyMOL Molecular Graphics with PyMOL Jean)YvesSgro Instructors Molecular Graphics & Scientific Communication Ann Palmenberg Jean-Yves Sgro Marchel Hill Holly Basta H. Adam Steinberg 1 Lab Book : Section 1 Computer

More information

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Chapter 7. Nuclear Magnetic Resonance Spectroscopy Chapter 7 Nuclear Magnetic Resonance Spectroscopy I. Introduction 1924, W. Pauli proposed that certain atomic nuclei have spin and magnetic moment and exposure to magnetic field would lead to energy level

More information

Biochemistry 530 NMR Theory and Practice

Biochemistry 530 NMR Theory and Practice Biochemistry 530 NMR Theory and Practice David Baker Autumn Quarter 2014 Slides Courtesy of Gabriele Varani Recommended NMR Textbooks Derome, A. E. (1987) Modern NMR Techniques for Chemistry Research,

More information

Biochemistry 530 NMR Theory and Practice

Biochemistry 530 NMR Theory and Practice Biochemistry 530 NMR Theory and Practice Gabriele Varani Department of Biochemistry and Department of Chemistry University of Washington 1D spectra contain structural information.. but is hard to extract:

More information

HIV protease inhibitor. Certain level of function can be found without structure. But a structure is a key to understand the detailed mechanism.

HIV protease inhibitor. Certain level of function can be found without structure. But a structure is a key to understand the detailed mechanism. Proteins are linear polypeptide chains (one or more) Building blocks: 20 types of amino acids. Range from a few 10s-1000s They fold into varying three-dimensional shapes structure medicine Certain level

More information

NMR in Medicine and Biology

NMR in Medicine and Biology NMR in Medicine and Biology http://en.wikipedia.org/wiki/nmr_spectroscopy MRI- Magnetic Resonance Imaging (water) In-vivo spectroscopy (metabolites) Solid-state t NMR (large structures) t Solution NMR

More information

Determining Protein Structure BIBC 100

Determining Protein Structure BIBC 100 Determining Protein Structure BIBC 100 Determining Protein Structure X-Ray Diffraction Interactions of x-rays with electrons in molecules in a crystal NMR- Nuclear Magnetic Resonance Interactions of magnetic

More information

Unit 11 Instrumentation. Mass, Infrared and NMR Spectroscopy

Unit 11 Instrumentation. Mass, Infrared and NMR Spectroscopy Unit 11 Instrumentation Mass, Infrared and NMR Spectroscopy Spectroscopic identification of organic compounds Qualitative analysis: presence but not quantity (i.e. PEDs) Quantitative analysis: quantity

More information

To Do s. Answer Keys are available in CHB204H

To Do s. Answer Keys are available in CHB204H To Do s Read Chapters 2, 3 & 4. Complete the end-of-chapter problems, 2-1, 2-2, 2-3 and 2-4 Complete the end-of-chapter problems, 3-1, 3-3, 3-4, 3-6 and 3-7 Complete the end-of-chapter problems, 4-1, 4-2,

More information

NMR-spectroscopy in solution - an introduction. Peter Schmieder

NMR-spectroscopy in solution - an introduction. Peter Schmieder NMR-spectroscopy in solution - an introduction 2/92 Advanced Bioanalytics NMR-Spectroscopy Introductory session (11:00 12:30) Basic aspects of NMR-spectroscopy NMR parameter Multidimensional NMR-spectroscopy

More information

Protein Structure Marianne Øksnes Dalheim, PhD candidate Biopolymers, TBT4135, Autumn 2013

Protein Structure Marianne Øksnes Dalheim, PhD candidate Biopolymers, TBT4135, Autumn 2013 Protein Structure Marianne Øksnes Dalheim, PhD candidate Biopolymers, TBT4135, Autumn 2013 The presentation is based on the presentation by Professor Alexander Dikiy, which is given in the course compedium:

More information

NMR, X-ray Diffraction, Protein Structure, and RasMol

NMR, X-ray Diffraction, Protein Structure, and RasMol NMR, X-ray Diffraction, Protein Structure, and RasMol Introduction So far we have been mostly concerned with the proteins themselves. The techniques (NMR or X-ray diffraction) used to determine a structure

More information

To Do s. Answer Keys are available in CHB204H

To Do s. Answer Keys are available in CHB204H To Do s Read Chapters 2, 3 & 4. Complete the end-of-chapter problems, 2-1, 2-2, 2-3 and 2-4 Complete the end-of-chapter problems, 3-1, 3-3, 3-4, 3-6 and 3-7 Complete the end-of-chapter problems, 4-1, 4-2,

More information

NMR parameters intensity chemical shift coupling constants 1D 1 H spectra of nucleic acids and proteins

NMR parameters intensity chemical shift coupling constants 1D 1 H spectra of nucleic acids and proteins Lecture #2 M230 NMR parameters intensity chemical shift coupling constants Juli Feigon 1D 1 H spectra of nucleic acids and proteins NMR Parameters A. Intensity (area) 1D NMR spectrum: integrated intensity

More information

1) NMR is a method of chemical analysis. (Who uses NMR in this way?) 2) NMR is used as a method for medical imaging. (called MRI )

1) NMR is a method of chemical analysis. (Who uses NMR in this way?) 2) NMR is used as a method for medical imaging. (called MRI ) Uses of NMR: 1) NMR is a method of chemical analysis. (Who uses NMR in this way?) 2) NMR is used as a method for medical imaging. (called MRI ) 3) NMR is used as a method for determining of protein, DNA,

More information

Basics of protein structure

Basics of protein structure Today: 1. Projects a. Requirements: i. Critical review of one paper ii. At least one computational result b. Noon, Dec. 3 rd written report and oral presentation are due; submit via email to bphys101@fas.harvard.edu

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction:

Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction: Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction: Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for organic structure determination. Like IR spectroscopy,

More information

Introduction solution NMR

Introduction solution NMR 2 NMR journey Introduction solution NMR Alexandre Bonvin Bijvoet Center for Biomolecular Research with thanks to Dr. Klaartje Houben EMBO Global Exchange course, IHEP, Beijing April 28 - May 5, 20 3 Topics

More information

Protein Structure: Data Bases and Classification Ingo Ruczinski

Protein Structure: Data Bases and Classification Ingo Ruczinski Protein Structure: Data Bases and Classification Ingo Ruczinski Department of Biostatistics, Johns Hopkins University Reference Bourne and Weissig Structural Bioinformatics Wiley, 2003 More References

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance PRINCIPLES OF NMR SPECTROSCOPY Contents Principles of nuclear magnetic resonance The nmr spectrometer Basic principles in nmr application NMR tools used to obtain information

More information

Principles of Physical Biochemistry

Principles of Physical Biochemistry Principles of Physical Biochemistry Kensal E. van Hold e W. Curtis Johnso n P. Shing Ho Preface x i PART 1 MACROMOLECULAR STRUCTURE AND DYNAMICS 1 1 Biological Macromolecules 2 1.1 General Principles

More information

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10) 2009, Department of Chemistry, The University of Western Ontario 7a.1 7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text 11.1 11.5, 12.1 12.5, 12.10) A. Electromagnetic Radiation Energy is

More information

9. Nuclear Magnetic Resonance

9. Nuclear Magnetic Resonance 9. Nuclear Magnetic Resonance Nuclear Magnetic Resonance (NMR) is a method that can be used to find structures of proteins. NMR spectroscopy is the observation of spins of atoms and electrons in a molecule

More information

V27: RF Spectroscopy

V27: RF Spectroscopy Martin-Luther-Universität Halle-Wittenberg FB Physik Advanced Lab Course V27: RF Spectroscopy ) Electron spin resonance (ESR) Investigate the resonance behaviour of two coupled LC circuits (an active rf

More information

1. 3-hour Open book exam. No discussion among yourselves.

1. 3-hour Open book exam. No discussion among yourselves. Lecture 13 Review 1. 3-hour Open book exam. No discussion among yourselves. 2. Simple calculations. 3. Terminologies. 4. Decriptive questions. 5. Analyze a pulse program using density matrix approach (omonuclear

More information

Nuclear Magnetic Resonance (NMR)

Nuclear Magnetic Resonance (NMR) Nuclear Magnetic Resonance (NMR) E E increases with increasing magnetic field strength Boltzmann distribution at thermal equilibrium: N (m=-1/2) /N (m=+1/2) = e ( E/kT) with E = γ(h/2π)b o NMR Physical

More information

HSQC spectra for three proteins

HSQC spectra for three proteins HSQC spectra for three proteins SH3 domain from Abp1p Kinase domain from EphB2 apo Calmodulin What do the spectra tell you about the three proteins? HSQC spectra for three proteins Small protein Big protein

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Lectures for CCB 538 James Aramini, PhD. CABM 014A jma@cabm.rutgers.edu J.A.! 04/21/14! April 21!!!!April 23!! April 28! Outline 1. Introduction / Spectroscopy Overview! 2. NMR

More information

Lecture 2 nmr Spectroscopy

Lecture 2 nmr Spectroscopy Lecture 2 nmr Spectroscopy Pages 427 430 and Chapter 13 Molecular Spectroscopy Molecular spectroscopy: the study of the frequencies of electromagnetic radiation that are absorbed or emitted by substances

More information

BCMB / CHEM 8190 Biomolecular NMR GRADUATE COURSE OFFERING IN NUCLEAR MAGNETIC RESONANCE

BCMB / CHEM 8190 Biomolecular NMR GRADUATE COURSE OFFERING IN NUCLEAR MAGNETIC RESONANCE BCMB / CHEM 8190 Biomolecular NMR GRADUATE COURSE OFFERING IN NUCLEAR MAGNETIC RESONANCE "Biomolecular Nuclear Magnetic Resonance" is a course intended for all graduate students with an interest in applications

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Features: Used to identify products of reactions Also gives information about chemical environment, connectivity and bonding of nuclei Requirements: Pure or mostly

More information

NMR Spectroscopy. for 1 st B.Tech INTRODUCTION Lecture -1 Indian Institute of Technology, Dhanbad

NMR Spectroscopy. for 1 st B.Tech INTRODUCTION Lecture -1 Indian Institute of Technology, Dhanbad NMR Spectroscopy for 1 st B.Tech Lecture -1 Indian Institute of Technology, Dhanbad by Dr. R P John & Dr. C. Halder INTRODUCTION Nucleus of any atom has protons and neutrons Both Proton and Neutron has

More information

Ferdowsi University of Mashhad

Ferdowsi University of Mashhad Spectroscopy in Inorganic Chemistry Nuclear Magnetic Resonance Spectroscopy spin deuterium 2 helium 3 The neutron has 2 quarks with a -e/3 charge and one quark with a +2e/3 charge resulting in a total

More information

CS273: Algorithms for Structure Handout # 13 and Motion in Biology Stanford University Tuesday, 11 May 2003

CS273: Algorithms for Structure Handout # 13 and Motion in Biology Stanford University Tuesday, 11 May 2003 CS273: Algorithms for Structure Handout # 13 and Motion in Biology Stanford University Tuesday, 11 May 2003 Lecture #13: 11 May 2004 Topics: Protein Structure Determination Scribe: Minli Zhu We acknowledge

More information

Chemistry 843 "Advanced NMR Spectroscopy" Gerd Gemmecker, 1999

Chemistry 843 Advanced NMR Spectroscopy Gerd Gemmecker, 1999 Dr. Gerd Gemmecker Room 5333a Phone 2-8619 e-mail gemmecker@chem.wisc.edu Gerd.Gemmecker@ch.tum.de Chemistry 843 "Advanced NMR Spectroscopy" Gerd Gemmecker, 1999 This course will cover the theory required

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

1. What is an ångstrom unit, and why is it used to describe molecular structures?

1. What is an ångstrom unit, and why is it used to describe molecular structures? 1. What is an ångstrom unit, and why is it used to describe molecular structures? The ångstrom unit is a unit of distance suitable for measuring atomic scale objects. 1 ångstrom (Å) = 1 10-10 m. The diameter

More information

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure Bioch/BIMS 503 Lecture 2 Structure and Function of Proteins August 28, 2008 Robert Nakamoto rkn3c@virginia.edu 2-0279 Secondary Structure Φ Ψ angles determine protein structure Φ Ψ angles are restricted

More information

Basic One- and Two-Dimensional NMR Spectroscopy

Basic One- and Two-Dimensional NMR Spectroscopy Horst Friebolin Basic One- and Two-Dimensional NMR Spectroscopy Third Revised Edition Translated by Jack K. Becconsall WILEY-VCH Weinheim New York Chichester Brisbane Singapore Toronto Contents XV 1 The

More information

BMB/Bi/Ch 173 Winter 2018

BMB/Bi/Ch 173 Winter 2018 BMB/Bi/Ch 173 Winter 2018 Homework Set 8.1 (100 Points) Assigned 2-27-18, due 3-6-18 by 10:30 a.m. TA: Rachael Kuintzle. Office hours: SFL 220, Friday 3/2 4-5pm and SFL 229, Monday 3/5 4-5:30pm. 1. NMR

More information

Origin of Chemical Shifts BCMB/CHEM 8190

Origin of Chemical Shifts BCMB/CHEM 8190 Origin of Chemical Shifts BCMB/CHEM 8190 Empirical Properties of Chemical Shift υ i (Hz) = γb 0 (1-σ i ) /2π σ i, shielding constant dependent on electronic structure, is ~ 10-6. Measurements are made

More information

Protein Structure Determination 9/25/2007

Protein Structure Determination 9/25/2007 One-dimensional NMR spectra Ethanol Cellulase (36 a.a.) Branden & Tooze, Fig. 18.16 1D and 2D NMR spectra of inhibitor K (57 a.a.) K. Wuthrich, NMR of Proteins and Nucleic Acids. (Wiley, 1986.) p. 54-55.

More information

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015,

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Course,Informa5on, BIOC%530% GraduateAlevel,discussion,of,the,structure,,func5on,,and,chemistry,of,proteins,and, nucleic,acids,,control,of,enzyma5c,reac5ons.,please,see,the,course,syllabus,and,

More information

Chapter 14. Nuclear Magnetic Resonance Spectroscopy

Chapter 14. Nuclear Magnetic Resonance Spectroscopy Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 14 Nuclear Magnetic Resonance Spectroscopy Prepared by Rabi Ann Musah State University of New York at Albany Copyright

More information

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (I) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (I) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2 Química Orgânica I Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 Nuclear Magnetic Resonance Spectroscopy (I) AFB QO I 2007/08 2 1 Adaptado de: Organic Chemistry, 6th Edition; L. G. Wade,

More information

NMR-spectroscopy of proteins in solution. Peter Schmieder

NMR-spectroscopy of proteins in solution. Peter Schmieder NMR-spectroscopy of proteins in solution Basic aspects of NMR-Spektroskopie Basic aspects of NMR-spectroscopy 3/84 Prerequisite for NMR-spectroscopy is a nuclear spin that can be thought of as a mixture

More information

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons Fundamental MRI Principles Module 2 N S 1 Nuclear Magnetic Resonance There are three main subatomic particles: protons positively charged neutrons no significant charge electrons negatively charged Protons

More information

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum,

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum, Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum, 16.02.2009 Solid-state and solution NMR spectroscopy have many things in common Several concepts have been/will

More information

Chapter 13 Spectroscopy

Chapter 13 Spectroscopy hapter 13 Spectroscopy Infrared spectroscopy Ultraviolet-Visible spectroscopy Nuclear magnetic resonance spectroscopy Mass Spectrometry 13.1 Principles of Molecular Spectroscopy: Electromagnetic Radiation

More information

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY 20 CHAPTER MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY 20.1 Introduction to Molecular Spectroscopy 20.2 Experimental Methods in Molecular Spectroscopy 20.3 Rotational and Vibrational Spectroscopy 20.4 Nuclear

More information

Resonance assignments in proteins. Christina Redfield

Resonance assignments in proteins. Christina Redfield Resonance assignments in proteins Christina Redfield 1. Introduction The assignment of resonances in the complex NMR spectrum of a protein is the first step in any study of protein structure, function

More information

NMR Nuclear Magnetic Resonance Spectroscopy p. 83. a hydrogen nucleus (a proton) has a charge, spread over the surface

NMR Nuclear Magnetic Resonance Spectroscopy p. 83. a hydrogen nucleus (a proton) has a charge, spread over the surface NMR Nuclear Magnetic Resonance Spectroscopy p. 83 a hydrogen nucleus (a proton) has a charge, spread over the surface a spinning charge produces a magnetic moment (a vector = direction + magnitude) along

More information

Introduction. Introduction. Introduction. Chem Experiment 4 NMR & Mass Spectroscopy and Biomolecular Structure. Fall, 2011

Introduction. Introduction. Introduction. Chem Experiment 4 NMR & Mass Spectroscopy and Biomolecular Structure. Fall, 2011 hem 43 - Experiment 4 MR & Mass pectroscopy and Biomolecular tructure Fall, 2 What does MR measure? Introduction What information does MR provide us about the structures of biological macromolecules -

More information

Chapter 13. R.F.----µ-wave----I.R. (Heat)------Visible------U.V X-Ray------γ-Ray SPECTROSCOPY. Definition: Types to Be Covered:

Chapter 13. R.F.----µ-wave----I.R. (Heat)------Visible------U.V X-Ray------γ-Ray SPECTROSCOPY. Definition: Types to Be Covered: hamras Glendale ommunity ollege rganic hemistry 105 Exam 4 Materials hapter 13 SPETRSPY Definition: Types to Be overed: A) Infrared Spectroscopy (IR) B) Nuclear Magnetic Resonance Spectroscopy (NMR) )

More information

Nuclear Magnetic Resonance (NMR)

Nuclear Magnetic Resonance (NMR) Nuclear Magnetic Resonance (NMR) Nuclear Magnetic Resonance (NMR) The Nuclear Magnetic Resonance Spectroscopy (NMR) is one of the most important spectroscopic methods to explore the structure and dynamic

More information

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Supporting information Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Wan-Na Chen, Christoph Nitsche, Kala Bharath Pilla, Bim Graham, Thomas

More information

Figure 1. Molecules geometries of 5021 and Each neutral group in CHARMM topology was grouped in dash circle.

Figure 1. Molecules geometries of 5021 and Each neutral group in CHARMM topology was grouped in dash circle. Project I Chemistry 8021, Spring 2005/2/23 This document was turned in by a student as a homework paper. 1. Methods First, the cartesian coordinates of 5021 and 8021 molecules (Fig. 1) are generated, in

More information

Indirect Coupling. aka: J-coupling, indirect spin-spin coupling, indirect dipole-dipole coupling, mutual coupling, scalar coupling (liquids only)

Indirect Coupling. aka: J-coupling, indirect spin-spin coupling, indirect dipole-dipole coupling, mutual coupling, scalar coupling (liquids only) Indirect Coupling aka: J-coupling, indirect spin-spin coupling, indirect dipole-dipole coupling, mutual coupling, scalar coupling (liquids only) First, two comments about direct coupling Nuclear spins

More information

Inorganic Spectroscopic and Structural Methods

Inorganic Spectroscopic and Structural Methods Inorganic Spectroscopic and Structural Methods Electromagnetic spectrum has enormous range of energies. Wide variety of techniques based on absorption of energy e.g. ESR and NMR: radiowaves (MHz) IR vibrations

More information

H B. θ = 90 o. Lecture notes Part 4: Spin-Spin Coupling. θ θ

H B. θ = 90 o. Lecture notes Part 4: Spin-Spin Coupling. θ θ Lecture notes Part 4: Spin-Spin Coupling F. olger Försterling October 4, 2011 So far, spins were regarded spins isolated from each other. owever, the magnetic moment of nuclear spins also have effect on

More information

Chapter 13: Molecular Spectroscopy

Chapter 13: Molecular Spectroscopy Chapter 13: Molecular Spectroscopy Electromagnetic Radiation E = hν h = Planck s Constant (6.63 x 10-34 J. s) ν = frequency (s -1 ) c = νλ λ = wavelength (nm) Energy is proportional to frequency Spectrum

More information

Biochemistry 530 NMR Theory and Practice. Gabriele Varani Department of Biochemistry and Department of Chemistry University of Washington

Biochemistry 530 NMR Theory and Practice. Gabriele Varani Department of Biochemistry and Department of Chemistry University of Washington Biochemistry 530 NMR Theory and Practice Gabriele Varani Department of Biochemistry and Department of Chemistry University of Washington 1D spectra contain structural information.. but is hard to extract:

More information

Contents. xiii. Preface v

Contents. xiii. Preface v Contents Preface Chapter 1 Biological Macromolecules 1.1 General PrincipIes 1.1.1 Macrornolecules 1.2 1.1.2 Configuration and Conformation Molecular lnteractions in Macromolecular Structures 1.2.1 Weak

More information

Physical Background Of Nuclear Magnetic Resonance Spectroscopy

Physical Background Of Nuclear Magnetic Resonance Spectroscopy Physical Background Of Nuclear Magnetic Resonance Spectroscopy Michael McClellan Spring 2009 Department of Physics and Physical Oceanography University of North Carolina Wilmington What is Spectroscopy?

More information

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two Supplementary Figure 1. Biopanningg and clone enrichment of Alphabody binders against human IL 23. Positive clones in i phage ELISA with optical density (OD) 3 times higher than background are shown for

More information

Chapter 15 Lecture Outline

Chapter 15 Lecture Outline Organic Chemistry, First Edition Janice Gorzynski Smith University of Hawaii Chapter 5 Lecture Outline Introduction to NMR Two common types of NMR spectroscopy are used to characterize organic structure:

More information

Introduction to Nuclear Magnetic Resonance Spectroscopy

Introduction to Nuclear Magnetic Resonance Spectroscopy Introduction to Nuclear Magnetic Resonance Spectroscopy Dr. Dean L. Olson, NMR Lab Director School of Chemical Sciences University of Illinois Called figures, equations, and tables are from Principles

More information

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9)

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) XIV 67 Vibrational Spectroscopy (Typical for IR and Raman) Born-Oppenheimer separate electron-nuclear motion ψ (rr) = χ υ (R) φ el (r,r) -- product

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Spin Dynamics & Vrije Universiteit Brussel 25th November 2011 Outline 1 Pulse/Fourier Transform NMR Thermal Equilibrium Effect of RF Pulses The Fourier Transform 2 Symmetric Exchange Between Two Sites

More information

Computational structural biology and bioinformatics

Computational structural biology and bioinformatics Computational structural biology and bioinformatics What is it all about? Why take it? What are we going to be doing? Organizational notes. Grades etc. Books. CS6104. Spring CS6104. 04. Spring Alexey 04.

More information

Computational Molecular Modeling

Computational Molecular Modeling Computational Molecular Modeling Lecture 1: Structure Models, Properties Chandrajit Bajaj Today s Outline Intro to atoms, bonds, structure, biomolecules, Geometry of Proteins, Nucleic Acids, Ribosomes,

More information

Analysis and Prediction of Protein Structure (I)

Analysis and Prediction of Protein Structure (I) Analysis and Prediction of Protein Structure (I) Jianlin Cheng, PhD School of Electrical Engineering and Computer Science University of Central Florida 2006 Free for academic use. Copyright @ Jianlin Cheng

More information

1. neopentyl benzene. 4 of 6

1. neopentyl benzene. 4 of 6 I. 1 H NMR spectroscopy A. Theory 1. The protons and neutrons in atomic nuclei spin, as does the nucleus itself 2. The circulation of nuclear charge can generate a nuclear magnetic moment, u, along the

More information

Central Dogma. modifications genome transcriptome proteome

Central Dogma. modifications genome transcriptome proteome entral Dogma DA ma protein post-translational modifications genome transcriptome proteome 83 ierarchy of Protein Structure 20 Amino Acids There are 20 n possible sequences for a protein of n residues!

More information

THE UNIVERSITY OF MANITOBA. PAPER NO: 409 LOCATION: Fr. Kennedy Gold Gym PAGE NO: 1 of 6 DEPARTMENT & COURSE NO: CHEM 4630 TIME: 3 HOURS

THE UNIVERSITY OF MANITOBA. PAPER NO: 409 LOCATION: Fr. Kennedy Gold Gym PAGE NO: 1 of 6 DEPARTMENT & COURSE NO: CHEM 4630 TIME: 3 HOURS PAPER NO: 409 LOCATION: Fr. Kennedy Gold Gym PAGE NO: 1 of 6 DEPARTMENT & COURSE NO: CHEM 4630 TIME: 3 HOURS EXAMINATION: Biochemistry of Proteins EXAMINER: J. O'Neil Section 1: You must answer all of

More information

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule.

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule. Chapter 13: Nuclear magnetic resonance spectroscopy NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule. 13.2 The nature of

More information

X-Ray structure analysis

X-Ray structure analysis X-Ray structure analysis Kay Diederichs kay.diederichs@uni-konstanz.de Analysis of what? Proteins ( /ˈproʊˌtiːnz/ or /ˈproʊti.ɨnz/) are biochemical compounds consisting of one or more polypeptides typically

More information

NUCLEAR MAGNETIC RESONANCE. The phenomenon of nuclear magnetic resonance will be used to study magnetic moments of nuclei.

NUCLEAR MAGNETIC RESONANCE. The phenomenon of nuclear magnetic resonance will be used to study magnetic moments of nuclei. 14 Sep 11 NMR.1 NUCLEAR MAGNETIC RESONANCE The phenomenon of nuclear magnetic resonance will be used to study magnetic moments of nuclei. Theory: In addition to its well-known properties of mass, charge,

More information

Better Bond Angles in the Protein Data Bank

Better Bond Angles in the Protein Data Bank Better Bond Angles in the Protein Data Bank C.J. Robinson and D.B. Skillicorn School of Computing Queen s University {robinson,skill}@cs.queensu.ca Abstract The Protein Data Bank (PDB) contains, at least

More information

Scattering Lecture. February 24, 2014

Scattering Lecture. February 24, 2014 Scattering Lecture February 24, 2014 Structure Determination by Scattering Waves of radiation scattered by different objects interfere to give rise to an observable pattern! The wavelength needs to close

More information

Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description. Version Document Published by the wwpdb

Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description. Version Document Published by the wwpdb Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description Version 3.30 Document Published by the wwpdb This format complies with the PDB Exchange Dictionary (PDBx) http://mmcif.pdb.org/dictionaries/mmcif_pdbx.dic/index/index.html.

More information

Atomic and Molecular Dimensions

Atomic and Molecular Dimensions 1 Atomic and Molecular Dimensions Equilibrium Interatomic Distances When two atoms approach each other, their positively charged nuclei and negatively charged electronic clouds interact. The total interaction

More information

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR)

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR) Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure Nuclear Magnetic Resonance (NMR) !E = h" Electromagnetic radiation is absorbed when the energy of photon corresponds

More information